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Linear oscillations and stability of a liquid bridge in an axial electric field
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Small amplitude oscillations of viscous, capillary bridges are studied in the presence of an electric
dc field. The electric field is proposed as a means to maintain bridges longer than their perimeter and
of uniform cylindrical shape. This is desired in the fabrication of semiconductor crystals. The
material of the bridge and the surrounding medium is modeled either as a perfect or as a leaky
dielectric. The frequency and the damping rate of the oscillations are calculated numerically by
solving a generalized eigenvalue problem. It is shown that they depend on the ratios of the dielectric
constants,e5e in /eout, and conductivities,S5s in /sout, of the two materials, the aspect ratio of the
bridge,L5pR̃/L̃, the ratio of viscous to the capillary force, Oh5Re21, which can also be viewed
as the inverse Reynolds number of the flow, and, finally, the electrical Bond number,Cel , which is
the ratio of the electric stresses to the capillary force. The stability limit of an initially cylindrical
bridge is determined with respect to varicose disturbances. In agreement with previous studies it is
shown that, if both materials are perfect dielectrics, application of an electric field has a stabilizing
effect on the bridge, in the sense that the minimum value,Lmin , of the aspect ratio for the bridge to
remain stable drops below 0.5, irrespective of the specific value of the ratioe. If both materials are
leaky dielectrics, bridge stability is determined by the sign of (S2e) and (S21)(e21), with the
positive sign indicating bridge stabilization. The factor (S2e) arises due to the appearance of a
tangential electric stress in the perturbed state for leaky dielectrics. For both cases of leaky and
perfect dielectrics, the most unstable mode is the one leading to amphora shaped bridges. It was also
found that, when application of an electric field stabilizes the bridge, leaky dielectrics require a
lower field than perfect dielectrics and that a large enough field tends to stabilize the bridge for
almost the entire range of values of the aspect ratioL. These findings concur with earlier analytical
results for the stability of jets in longitudinal electric fields and, in conjunction with certain
experimental observations, point to the usefulness of the leaky dielectric model pertaining to the
stability of bridges. ©2001 American Institute of Physics.@DOI: 10.1063/1.1416183#
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I. INTRODUCTION

A significant amount of research has been recently
voted to the dynamics of liquid bridges, mostly because t
find extensive use in the fabrication of single semiconduc
crystals of high purity from the melt via the floating zon
method.1 In a different context, a floating zone has been p
posed as a convenient system for simultaneously measu
surface tension and viscosity of ceramic materials wh
melt at high temperatures~1000–3000 °C!.2,3 In the former
application resistive heating is used to form a molten brid
between a melting polycrystalline feed rod and a solidifi
cylindrical crystal. In order to enhance the efficiency a
feasibility of the process large bridges with large length
diameter ratios are desired. However, liquid bridges of cy
drical shape are known to become unstable in the presen
capillary and gravitational forces and to be susceptible
buoyancy driven convection. These effects are reduce
space, where, however, a liquid bridge is susceptible
g-jitter, spacecraft maneuvers, etc., that may excite osc
tions on its free surface. Therefore it is important to know

a!Author to whom correspondence should be addressed. Fax:13061-993-
255; electronic mail: tsamo@chemeng.upatras.gr
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natural frequencies and decay rates in the presence of
disturbances. More recently, liquid bridges have been use
a means to measure the extensional viscosity of polym
fluids.4

There has been continued interest in the behavior of
uid jets under the influence or not of an electric or gravi
tional field, because of the numerous industrial applicatio
such as in ink jet printers, paint spraying, fuel atomizatio
electrohydrodynamic mixing, etc. The loss of stability of
long column of liquid placed between two solid surfaces a
in the presence or absence of a gravitational field was
considered by Plateau.5 In particular, using hydrostatic
theory he found that liquid columns lose their cylindric
shape due to capillarity, provided that the wavelength of
deformation is larger than their circumference. Rayleigh6 ex-
tended Plateau’s work using hydrodynamic theory of line
stability and established that masses of cylindrical shape
come unstable when the ratio of their length,L̃, to radius,R̃,
exceeds 2p. When gravity is present, Coriell, Hardy, an
Cordes7 showed that the minimum aspect ratio,L5pR̃/L̃,
for a liquid bridge to remain stable is increased from 0.5,
value in the absence of gravity, as the density mismatch
tween the fluid in the bridge and the surrounding medi
4 © 2001 American Institute of Physics
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3565Phys. Fluids, Vol. 13, No. 12, December 2001 Linear oscillations and stability of a liquid bridge
increases. The latter is characterized by the gravitatio
Bond number, Bo5(DrgR̃2)/g identifying the relative mag-
nitude between gravitational and surface tension forces;g is
the gravitational acceleration,g denotes the interfacial ten
sion between the liquid column and the surrounding mediu
andDr the density difference between the two media. Mo
recently, the results of the hydrostatic analysis for the eff
of the Bond number on liquid bridge stability obtained
Coriell et al. were reproduced and extended by Tsamop
los, Chen, and Borkar8 in the context of hydrodynamic nor
mal mode analysis in the presence of infinitesimal dist
bances. Thus they were able to account for viscous effec
the liquid column in order to obtain the frequencies a
damping rates of the bridge.

The stabilizing effect of strong electric fields that a
aligned with the axis of the fluid cylinder was first pointe
out by Raco9 and Taylor.10 In this fashion cylindrical jets
with aspect ratiosL as low as 0.06 were observed. In th
early distinction of materials to perfect conductors or perf
insulators, Melcher and Taylor11 added the idea of a leak
dielectric in order to explain certain paradoxical phenome
pertaining to, presumably, nonconducting fluids~Alan and
Mason12!. These phenomena, first explained by Taylor,13 do
not arise in either perfect dielectrics or conductors.14 A com-
plete characterization of a leaky material as far as its ele
cal properties are concerned requires both its dielectric c
stant and its conductivity. The success of this idea and
earlier experiments with jets motivated Saville15 to examine
the linear electrohydrodynamic stability of an infinite flu
cylinder immersed in a longitudinal electric field. Both fluid
were treated as leaky dielectrics. This allows for the app
ance of interfacial electric charges in a slightly perturbed
which generate a net shearing force along the interface
addition to the normal forces that arise as a result of
difference in dielectric constants between the two flui
These induced shearing electrical stresses must be bala
by mechanical~viscous! stresses, which set an otherwi
static fluid in motion. In this fashion he found that a lea
dielectric requires much lower field strength than a perf
dielectric for jet stabilization to take place. In addition h
showed that the stability of the cylindrical configuration d
pends on the relative magnitude of the conductivity and
electric constant ratios,s in /sout, e in /eout, between the inner
and outer fluid. In the present study it will be seen that su
conditions hold in the case of liquid bridges as well. Fina
he pointed out the importance of the viscous boundary lay
that form on either side of the interface between the t
fluids, on the amplification and damping rates of the t
fluid system, when their viscosities are relatively low.

Gonzalezet al.16 conducted a hydrostatic analysis on t
stability of a liquid bridge of finite length in zero gravit
treating the two fluids as perfect dielectrics. Starting from
cylindrical shape as the basic state, they constructed a b
cation diagram relating the values of the bridge aspect ra
the dimensionless field strength, and the dielectric cons
ratio. Thus they computed the point where instability fi
settles giving rise to an antisymmetric shape, to be refe
to as amphora shape hereafter, with respect to the ce
Downloaded 18 Jan 2002 to 194.177.202.194. Redistribution subject to 
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plane dividing the region between the two plates of t
bridge, yet axisymmetric. In particular, they showed that
electric field always stabilizes a liquid bridge irrespective
the ratio of dielectric constants between the bridge and
surroundings. They also carried out an experimental inve
gation of the stability of a liquid bridge in a neutrally buoy
ant environment using an axial ac electric field. Monitori
the break-up of the bridge with varying electric field inte
sity, they were able to confirm their theoretical results, es
cially for large values of the latter, albeit for a single value
e51.8. They attributed the increasing discrepancy betw
their experimental and theoretical findings to the more p
nounced effect of gravity as the field strength is diminish
Subsequently, Ramoset al.17 extended the previous theory t
account for gravitational effects and showed improved agr
ment with experiments, again for a single case withe51.7.
Still, the predicted electric field, which is required for stab
lization of a certain bridge was quite higher than the o
measured elsewhere.18

At about the same time, Sankaran and Saville18 exam-
ined experimentally the stability of a liquid bridge in a ne
trally buoyant environment using an axial dc electric fie
Their results confirm the superiority of the leaky dielect
model over the perfect dielectric one, indicating gain or lo
of stability with the application of an electric field dependin
on the conductivities and dielectric constants of the two m
dia as predicted earlier15 by linear stability analysis. In the
following sections it is shown that such an inversion of s
bility characteristics as a result of interchanging the inn
and outer bridge fluids can be explained in the context
leaky dielectric behavior. Finally, they pointed out the diffe
ence between the critical field strength for which the ba
cylindrical shape of the bridge loses stability to ampho
shapes and the field strength required for pinch-off of
bridge to take place. The clear appearance of fluid mot
internal and external to the bridge after departure from
static cylindrical shape was achieved, is analogous to
recirculation observed in a drop of leaky dielectric placed
an electric field.12 It leads to the conclusion that a stabilit
analysis of this problem based on hydrostatics alone m
produce results of limited validity. Recent experimen
aboard the space shuttle19 on the stability of liquid bridges
subject to an axial electric field confirmed previous terrest
findings18 with isopycnic systems while pointing out certa
patterns in the dynamics of liquid bridges that do not co
form with leaky dielectric behavior; for example, the bulgin
of the amphora always occurred nearer the positive electr
of the bridge even though the sense of deformation should
independent of field orientation.

The present study is a hydrodynamical approach to
uid bridge stability that accounts for liquid motion, in th
perturbed state, inside the bridge. This motion is genera
by the interfacial electric stresses, which are shown to a
whether the two fluids are treated as perfect or leaky die
trics. However, only in the latter case will free electric char
appear at the interface. Pinning the ends of the bridge at
disk surfaces provides a cutoff in the wavelengths allowed
a free jet and makes impossible the analytical solution of
eigenvalue problem.8 The detailed nonlinear formulation o
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the dynamical problem is given in Sec. II, neglecting moti
in the surrounding medium and focusing on the cylindri
basic state. However, extension of the same formulation
be used for the examination of different basic states, e
those that due to gravity have amphora shapes and, bec
of this, internal fluid motion due to the electric stresses. T
is left for future investigation. The linear limit of infinitesi
mal disturbances is examined next and the governing dif
ential equations of the eigenvalue problem that determ
bridge stability are developed, Sec. III. Due to the finite s
of the bridge and the effect of internal fluid motion the pro
lem is best tackled numerically. Thus the finite eleme
method is used for the discretization of the governing eq
tions inside the two fluids. The resulting set of algebr
equations provides the eigenvalues of the two-fluid system
a function of the parameters of the problem: the Ohneso
number, Oh5m/(rgR̃)1/2, which can also be viewed as a
inverse Reynolds number of the flow, albeit based only
the properties of the bridge fluid~r, m signify its density and
viscosity, andg the interfacial tension!, that measures the
relative magnitude of viscous and capillary forces, the brid
aspect ratio,L5pR̃/L̃, the ratio between the two dielectri
constants,e5e in /eout, the ratio between the conductivities o
the two fluids,S5s in /sout and the dimensionless electr
field strength,Cel5( ẽoutE0

2R̃)/g ~E0 signifies the magnitude
of the axially applied electric field!. The numerical solution
is outlined in Sec. IV. This procedure is slightly modified
Secs. IV A and IV B in order to capture eigenvalues cor
sponding to normal modes that are symmetric and antis
metric, respectively, with respect to the mid-plane defined
the two plates of the bridge. This essentially reduces
computational cost by one-half of the original due to t
reduction in the computational domain. In Sec. V A a d
tailed account of the results of the numerical eigenvalue
culation is presented in terms of the frequencies and
amplification/damping rates of the bridge. The stability lim
of the bridge is also given, as this is described by the m
mum value of the aspect ratio,Lmin , required for the cylin-
drical bridge to remain stable, and its variation with the pro
lem parameters, in Sec. V B. It will be seen that so
important findings regarding the stability of jets, treated
leaky dielectrics, in the presence of a longitudinal elec
field15 persist in the case of liquid bridges. In addition, ge
eral trends of leaky dielectric behavior observed experim
tally are reproduced. Finally, in Sec. VI the numerical resu
are discussed and explained in view of the physics of
problem and conclusions are drawn.

II. GOVERNING EQUATIONS

We are interested in examining the stability of a liqu
bridge that is formed by placing liquid between two statio
ary, cylindrical and coaxial rods which are at a distanceL̃
from each other. In the absence of gravity and of an elec
field the bridge takes the shape of a perfect cylinder as l
as the Plateau stability limit is not exceeded, i.e.,L̃,2pR̃,
where R̃ is the radius of the circular contact line that th
liquid bridge forms as it wets the two planar surfaces; Fig
It is well known that capillary forces sustain the cylindric
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shape. Although the radius of each rod,R̃r , is significantly
larger than the radius of the contact line, it is assumed
the latter remains fixed, especially under the small brid
perturbations that we consider in this work. Nevertheless
practice, one can place at each contact area of the
o-rings or a disk of suitable material with very small b
sufficient thickness to prevent spreading of the liquid on
rest of the rod’s surface. As a result, the contact line is for
to remain fixed even for larger disturbances.16,18A dc electric
field is applied between the two rods as a means for study
its effect on bridge stability. Bulk properties of the liqui
~density,r, viscosity,m, dielectric constant,e in , and electric
conductivity, s in! as well as interfacial properties~surface
tension,g! are uniform and constant under the present i
thermal analysis. In most practical applications the surrou
ing material is a gas and, thus it is assumed that it has n
ligible density and viscosity, but uniform and finite dielectr
constant,ẽout, and electric conductivity,sout.

Small disturbances may initiate motion of the liqui
which can be easily detected at its interface with the s
rounding medium. For axisymmetric bridges, this surfa
varies with the axial distance and time,f̃ ( z̃, t̃). Nonaxisym-
metric disturbances are not considered here, since it is kn
that they manifest themselves at very large field strength10

The physical properties of the liquid and the geometric sca
of the bridge affect its motion and stability, as was shown
Tsamopouloset al.8 in the absence of an electric field. In th
latter study the combined effect of gravitational and visco
forces on the stability of a liquid bridge was examined. He
the research effort is focused on how a dc electric field ac
in the axial direction affects both the Plateau stability lim
and the frequency and damping rate of the bridge. To
end, the bridge is assumed to oscillate in zero gravity or i
neutrally buoyant environment neglecting any density m
matches between the two fluids. This flow configuration h
been realized in various experimental studies, Gonza
et al.,16 and Sankaran and Saville,18 among others, and mor
recently aboard the space shuttle19 where the effect of buoy-
ancy was practically eliminated. The present investigat
focuses on calculating the eigenfrequencies and eigenmo

FIG. 1. Schematic diagram of a liquid bridge immersed in a dc electric fi
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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relating them to the physical properties of this system s
as the conductivity and dielectric constant ratio, and fina
on comparing them against previous theoretical15,16 and ex-
perimental findings.17–19 The usual cylindrical coordinate
system (r ,u,z) is used, which is taken to be coaxial with th
two rods with its origin located midway between them.

In the following, the full nonlinear formulation is given
describing the dynamics of a liquid bridge that is surround
by a passive fluid. The formulation allows for treatment
the two fluids as either perfect or leaky dielectrics. First
conservation equations of mass and momentum for the liq
in the bridge are written in dimensionless form:

¹I •vI 50, ~1!

S ]vI
]t

1vI •¹v D52¹I P1Oh¹I •t=m , ~2!

where the velocity components in cylindrical coordinates
vI 5(u,v,w) and the stress tensor due to viscous forces
defined by Newton’s law,t=m5@¹v1( ¹v )T#. As will be
seen in the following, the relaxation time for the elect
charge in the bulk of the fluids is much smaller than t
bridge oscillation time. This prevents any free charge fr
appearing in the bulk of the liquid and, thus no elect
stresses arise in Eq.~2!.11 Variables have been rendered d
mensionless with respect to their dimensional counterpart
follows:

z5 z̃
p

L̃
, r 5

r̃

R̃
, P5 P̃

R̃

g
,

~3!

vI 5vĨ S rR̃

g D 1/2

, t5 t̃S g

rR̃3D 1/2

,

with tildes denoting dimensional quantities. Since there is
characteristic velocity in this problem, only physical a
geometrical properties appear in the dimensionless num
that arises in the momentum balance, Eq.~2!, the Ohnesorge
number, Oh5m/(rgR̃)1/2. Alternatively, the inverse Oh ca
be viewed as a modified Reynolds number of the flow. D
ferent length scales have been used in the radial and a
directions and their ratio,L5pR̃/L̃, is the second dimen
sionless parameter of this system. It arises, for example
the dimensionless form of the gradient operator:

¹I 5eI r

]

]r
1eI u

1

r

]

]u
1eI zL

]

]z
. ~4!

The usual no-slip and no-penetration boundary conditi
apply at both solid surfaces,

vI ~r ,z56 1
2!50I . ~5!

We will take the azimuthal velocity to be zero throughout t
bridge. Also, since we will be considering only axisymmet
disturbances, the radial velocity and the radial derivative
the axial velocity are zero at the centerline,

u5
]w

]r
50, r 50. ~6!
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In the interfacial force balances that primarily govern t
deformation and motion of the free surface, electric stres
will necessarily arise. Their determination requires the cal
lation of the electric field in both the bridge and the su
rounding medium. At this point it should be stressed th
both media are taken to be charge free, since their respe
charge relaxation times,10–12 ẽ in /sin , ẽout/sout, are much
smaller than the characteristic time for bridge oscillatio
~bridge radius up to 1 cm! which is scaled via (R̃3r/g)1/2.
Therefore, Gauss’ law for a charge-free medium that is
early polarizable and uniform, irrespective of being perfe
or leaky dielectric, reduces to calculating the electric pot
tial in either phase by solving Laplace’s equation:

¹2Vin,out50, ~7!

where the electric field, charge and potential are made
mensionless by a characteristic field,E0 :

ẼI 5E0EI , Q̃5~ ẽoutE0!Q, Ṽ5S E0

L̃

p
DV,

EĨ 5¹I Ṽ, EI 5
1

L
¹I V; ~8!

ẽ in5einẽ0 , ẽout5eoutẽ0 correspond to the permittivities of th
inner and outer fluids, respectively, withẽ058.85310212 ~in
MKS units! denoting the permittivity of free space. Th
boundary conditions associated with the imposed field set
electric potential to be constant along each rod/fluid interf
extending all the way to the dimensionless radius of the ro
R̃r /R̃:

Vin,out~r ,6p/2!56p/2, 0<r<R̃r /R̃ ~9!

and enforce symmetry at the common axis of the rods
field uniformity far away from the bridge:

]Vin

]r
~r 50,z!50, ~10a!

lim
r→`

]Vout

]r
~r ,z!→0. ~10b!

In most experiments the radius of the two rods,R̃r , is about
10 times as large as the bridge radius,R̃, and this has been
shown to allow for neglecting end effects in the electric fie
at their edges.10,16

The boundary conditions on the fluid/fluid interface d
pend on whether the materials are assumed to be perfe
leaky dielectrics.11,20 If both fluids are assumed to be perfe
dielectrics, they do not carry any electric charge even at th
common interface and they do not allow any current to p
through this interface, where Gauss’ law again holds:

enI •EI in5nI •EI out at r 5 f ~z,t !, ~11!

where e5e in /eout. If both fluids are assumed to be leak
dielectrics, surface charge will arise at their common int
face. Then, the conservation law of surface charge~Eq. II in
Melcher and Taylor11! equates the rate of its accumulation o
the interface to~i! the net flux of charge to the interface from
either phase,~ii ! the net rate of addition due to surface cu
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3568 Phys. Fluids, Vol. 13, No. 12, December 2001 Pelekasis, Economou, and Tsamopoulos
rent, and~iii ! the net rate of charge overtake due to the tra
lation of the interface along its normal. Thus the interfac
charge conservation equation reads

t r

]Q

]t
5SnI •EI in2nI •EI out2S¹SKI 1t rnI •vI ~re,out2re, in!

at r 5 f ~z,t !, ~12!

whereS5s in /sout, ¹S is the surface divergence, andKI rep-
resents the surface current density which includes contr
tions due to convection and conduction of surface charg11

re, in andre,out represent charge density in the bulk of the tw
fluids, and t r is the ratio of charge relaxation time to th
characteristic time for bridge oscillation:

t r5
~ ẽout/sout!

~rR̃/g!1/2 . ~13!

As mentioned already, for materials of interest~insulators
and imperfect conductors! and typical bridge diameters,t r

→0, whereast r becomes large for conducting materials.
order to be consistent with the assumption of immedi
charge equilibration in the bulk of the fluid we will taket r

50. In this case, the net surface charge can be calculata
posteriori from Gauss’ law:

Q5enI •EI in2nI •EI out at r 5 f ~z,t !. ~14!

Of course, for both perfect and leaky dielectrics, the irro
tionality of the electric field reduces at the interfaces to
quiring that its tangential component be continuous
equivalently, that the electric potential be continuous the

tI•EI in5tI•EI out or Vin5Vout at r 5 f ~z,t !. ~15!

Given the values of parameters,S, ande, Eqs.~7!–~15!
are sufficient to determine the electric field in both fluids,
their common interface is known. The latter is determined
the interfacial stress balance and the kinematic condit
The total ~mechanical and electrical! tangential stress mus
be zero and the total normal stress must be balanced by
capillary force. This is compactly written as

b2PI=1~Oht=m1eCelt= e
in2Celt= e

out!c•nI 12HnI 50I

at r 5 f ~z,t !. ~16!

The pressure in the outer fluid has been set to zero. In
~16!, Cel is the dimensionless electrical Bond number, wh
is the ratio of the electric to the surface tension forces an
defined as

Cel5
ẽoutE0

2R̃

g
. ~17!

The permittivity of the medium surrounding the bridge
used in the above definition in accordance with previous
perimental studies.18 In all the above equationsnI and tI are
the unit normal and tangent vectors on the free interfa
respectively. According to the Monge´ representation, every
point on the interface may be described by the position v
tor FI (z,t)5 f (z,t)eI r1(z/L)eI z and as a result vectorsnI and
tI are given by
Downloaded 18 Jan 2002 to 194.177.202.194. Redistribution subject to 
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nI 5
eI r2L f zeI z

D1/2 , ~18!

tI5
L f zeI r1eI z

D1/2 , ~19!

whereD511L2f z
2 and subscriptz denotes partial differen-

tiation with respect to that coordinate. For an incompress
and uniform material, the electric stress tensor is defin
~Stratton21! by

t= e5EE2 1
2uEI u2I= with t̃= e5t= eẽ0E0

2, ~20!

whereuEI u is the magnitude ofEI . The curvature of the free
interface, has been made dimensionless byR̃21 and it is
given by

22H5
11L2~ f z

22 f f zz!

~11L2f z
2!3/2

1

f
. ~21!

The final boundary condition on the moving surface is t
kinematic condition that equates the velocity of the surfa
to the liquid velocity there:

nI •
]FI

]t
5nI •vI at r 5 f ~z,t !. ~22!

Throughout the motion, the line of contact of the liqui
gas interface with each cylindrical rod remains fixed at
edge of each original contact surface. According to the an
sis by Benjamin and Scott,22 this is the relevant condition
especially when a sharp corner is present in the suppor
solid surface. Thus

f ~ t !51, z56 1
2p. ~23!

Finally, the volume of the liquid bridge must remain consta
during the motion. Although other cases may be readily
amined, the volume is taken here to be that of a perf
cylinder spanning the distance between the rods:

V[
Ṽ

R̃2L̃
5

1

2p E
0

2pE
2p/2

p/2

f 2 dz du5p. ~24!

III. BASIC STATE AND THE EIGENVALUE PROBLEM

In order to calculate the eigenvalues and eigenmode
this system all equations will be linearized around a ste
state. To this end, small and volume-preserving disturban
will be assumed for all dependent variables. Thus the
namic state of the system is described, in the limit of infi
tesimal disturbances of amplituded!1, as

3
vI
P
f

t=m

t= e

V
Q

4 53
vI b

Pb

f b

t=mb

t= eb

Vb

Qb

4 1d3
vI p

Pp

f p

t=mp

t= ep

Vp

Qp

4 , ~25!

where subscriptb indicates the base state and the subscripp
the perturbed one. When gravitational effects are neglig
the base state corresponds to a static cylindrical shape. T
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2Hb51, nI b5eI r , andtIb5eI z . Therefore, the electric field in
both fluids is aligned with the axial direction and Eq.~11! or
~14! indicate that no charge is accumulated on the fluid/fl
interface and no tangential electric stresses arise, wheth
perfect or a leaky dielectric model is used, respectively.
other words the electric field has no effect on a bridge
perfect cylindrical shape. Thus

3
vI b

Pb

f b

t=mb

t= eb

Vb

Qb

4 53
0I

12Cel~e21!/2
1
0=

2
1

2 F 1 0 0

0 1 0

0 0 21
G

z
0

4 . ~26!

It is noteworthy that the base pressure is modified from
one in the absence of electric field by a factor that is prop
tional to the difference in dielectric constants of the two fl
ids, e21. As e is raised above unity the base pressure in
bridge decreases, compared to the value it would have
tained in the absence of the electric field.

Introducing Eqs.~25! and ~26! into the governing equa
tions of the previous section results in a set of linear eq
tions in terms of the perturbed variables. The equations
scribing the hydrodynamic aspects of the flow are

¹I •vI p50, ~27!

]vI p

]t
52¹I Pp1Oh¹I •t=mp , ~28!

vI p~r ,z56 1
2p!50, ~29!

up5
]wp

]r
50, r 50. ~30!

The linearized equations for the calculation of the electri
field are

¹2Vp
in,out50, ~31!

Vp
in,out~r ,6p/2!50, 0<r<R̃r /R̃, ~32!

]Vp
in

]r
~r 50,z!50, ~33a!

lim
r→`

]Vp
out

]r
~r ,z!→0, ~33b!

Vp
in5Vp

out at r 5 f b , ~34!

with the following condition for a perfect dielectric, resultin
from Eq. ~11!:

e
]Vp

in

]r
2

]Vp
out

]r
5L2

] f p

]z
~e21! at r 5 f b , ~35!

or with the following two conditions for a leaky dielectric
resulting from Eqs.~12! and ~14!, respectively:
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S
]Vp

in

]r
2

]Vp
out

]r
5L2

] f p

]z
~S21! at r 5 f b , ~36!

and

Qp5~e2S!S ]Vp
in

]r
2L2

] f p

]z D at r 5 f b . ~37!

Equations~35! and~36! constitute the linearized form of th
interfacial condition for the electric field pertaining to th
cylindrical bridge situation at base state, which is the o
considered here. The last equation can be useda posteriori,
i.e., after the solution of the linear problem, in order to c
culate the induced surface charge. It should be pointed
that, as can be seen from Eq.~37! the surface charge is ob
tained as the product of (S2e) and the normal component o
the perturbed field evaluated on the side of the bridge flu
Consequently the surface charge vanishes whenS5e, as is
the case with perfect dielectrics. In the following we use t
condition,S5e, in order to identify perfect dielectrics and
will be seen that deviations from it will play an essential ro
in the stability of leaky dielectrics.

The linearized equations for the interfacial force balan
the kinematic condition, and the condition that fixes the t
contact lines read

@2PpI=1~Oht=mp1eCelt= ep
in 2Celt= ep

out!#•nI b12HpnI b

1@2PbI=12Hb1eCelt= eb
in 2Celt= eb

out#•nI p50, r 5 f b ,

~38!

nI b•eI r

] f p

]t
5nI b•vI p , r 5 f b , ~39!

f p~ t,z56 1
2p!50, ~40!

where nI p52L(] f p /]z)eI z denotes the perturbed norm
vector at the interface and 2Hp is the linearly perturbed sur
face curvature:

2Hp52 f p2L2
]2f p

]z2 . ~41!

It can be easily shown by applying the divergence theor
on the linearized continuity equation~27! in conjunction
with the kinematic condition~39!, that the linearized volume
conservation is automatically satisfied by any linear dist
bance that initially preserves the bridge volume. Thus v
ume conservation need not be imposed as an additiona
dependent condition that has to be satisfied by the brid
Finally, according to the standard methodology, all perturb
variables are expressed as

3
up~r ,z,t !
wp~r ,z,t !
Vp~r ,z,t !
Pp~r ,z,t !
f p~z,t !

t= e,p~r ,z,t !
Qp~ t !

4 53
ū~r ,z!

w̄~r ,z!

V̄~r ,z!

P̄~r ,z!

f̄ ~z!

t̃= e~r ,z!

Q̄

4 e2st, ~42!
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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wheres is an eigenvalue of the system and it is complex
general,s5s r1 is i . After introducing Eq.~42! into the
equations for the perturbed variables, an equation set is
tained that is similar to the one given above, except for
substitution for the time derivatives:]( )/]t→2s( ).

Typically, a distinct eigenvalue corresponds to ea
eigenmode. If the real part of all eigenvalues is positive,
base state is linearly stable and the distinct values ofs r and
s i correspond to the damping rate and frequency of e
mode, respectively. On the other hand, if the real part of e
one eigenvalue is negative the system is unstable. Clearly
values of s depend on the parameters of the syst
(Oh,L,Cel ,e,S). Points in the parameter space at whi
s r50 are identified as bifurcation points from the perfe
cylindrical shape. It should also be noted that, if needed,
methodology followed in this section can be used in orde
study the stability of more complicated basic states, nam
those pertaining to ‘‘amphora’’ shapes induced by grav
and entailing internal motion of the fluid. Clearly then, t
details of the initial bridge configuration will be differen
from those given in Eq.~26!. Such an examination is no
pursued here and is left for a future study.

IV. NUMERICAL SOLUTION

Equations~27!–~41! will be reduced to an algebraic gen
eralized eigenvalue problem for the eigenvalues,s, and the
corresponding eigenvectors. To this end, the finite-elem
Downloaded 18 Jan 2002 to 194.177.202.194. Redistribution subject to 
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method is employed. The radial and axial velocity comp
nents as well as the electric potential, the perturbed press
and the perturbed shape are represented by biquadratic
grangian functions,F i(r ,z), bilinear Lagrangian functions
Xi(r ,z), and quadratic Lagrangian functionsV i(z), respec-
tively:

F ū
w̄

V̄
G ~r ,z!5(

i 51

N F ui

wi

Vi

GF i~r ,z!,

~43!

P̄~r ,z!5(
i 51

M

piXi~r ,z!, f̄ ~z!5(
i 51

L

f iV i~z!,

whereL, M, and N are the number of coefficients in eac
summation. Galerkin’s procedure is employed in order
construct the residual equations. Equation~27! is multiplied
by the trial functionXi , Eqs.~28! and~31! are multiplied by
the trial functionF i , and Eq.~39! is multiplied by the trial
function V i . Subsequently, they are integrated over the
spective domain. Integration by parts or the divergence th
rem are applied, where necessary, in order to reduce sec
order derivatives to first-order ones. Thus the weak form
the governing equations is obtained:

RCi5E
A
Xi¹I •vĪ qdA, ~44!
RI Mi5E
A
F2s v̄I 1

1

r
~2 P̄1Oh t̄muu!eI r GF i dA1E

A
¹I F i•~2 P̄I=1Oh t̄=m!dA

1E
2p/2

p/2

F i2H̄eI r dz1E
2p/2

p/2

F i~2Pb11!LS 2
] f̄

]zD eI z dz1E
2p/2

p/2

F iCel~et= elb
in 2t= elb

out!ur 5 f b
•LS 2

] f̄

]zD eI z dz

1E
2p/2

p/2

F iCel~et̄= el
in2 t̄= el

out!ur 5 f b
•eI r dz2E

0

1

eI r t̄mrzF i uz52p/2
z5p/2 r dr 1E

0

1

eI z~ P̄2 t̄mzz!F i uz52p/2
z5p/2 r dr , ~45!
a-

ns
l
the
ing

the
ce,
-
nor-
REi
in,out52E

A
S ]F i

]r

]V̄in,out

]r
1L2

]F i

]z

]V̄in,out

]z D dA

6E
2p/2

p/2

F i r
]V̄in,out

]r
U

r 5 f b

dz

1E
0

1

F i

]V̄in,out

]z
U

z52p/2

z5p/2

r dr , ~46!

RKi5E
2p/2

p/2

V i~2s f̄ 2ū!dz. ~47!

The residuals,Rci , RI Mi , REi , andRKi correspond to conti-
nuity, momentum, electric potential, and kinematic equ
tions. In these general expressionsdA5r dr dz, 0<r< f b

51, 2p/2<z<p/2, and 2Hp52H̄e2st. Boundary condi-
tions ~30! and ~38! have been incorporated in Eq.~45! and
Eqs.~33a!, ~33b! have been incorporated in Eq.~46!. It is the
coupling through the interfacial balances atr 5 f b that brings
about the influence of the electric field on bridge oscillatio
and stability. In Eq.~45!, if we concentrate on the interfacia
terms and ignore, for the moment, the contribution due to
disturbance in the curvature then the line integrals involv
interaction between the base state and the correction to
normal vector at the interface due to the disturban
L(] f̄ /]z)eI z , along with the line integral involving interac
tion between the perturbed electric stresses and the base
mal vector,eI r , give
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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E
2p/2

p/2

F i~2Pb11!LS 2
] f̄

]zD eI z dz

1E
2p/2

p/2

F iCel~et= elb
in 2t= elb

out!ur 5 f b
•LS 2

] f̄

]zD eI z dz

1E
2p/2

p/2

F iCel~et=̄ el
in2 t̄= el

out!ur 5 f b
•eI r dz

5E
2p/2

p/2

F iCelF ]V̄in

]z
~12e!eI r G

r 5 f b

dz ~48!

for a perfect dielectric (S5e), whereas for a leaky dielectri
they read

E
2p/2

p/2

F i~2Pb11!LS 2
] f̄

]zD eI z dz

1E
2p/2

p/2

F iCel~et= elb
in 2t= elb

out!ur 5 f b
•LS 2

] f̄

]zD eI zd

1E
2p/2

p/2

F iCel~et̄= el
in2 t̄= el

out!ur 5 f b
•eI r dz

5E
2p/2

p/2

F iCelF ]V̄in

]z
~12e!eI r1~e2S!

3S 1

L

]V̄in

]r
2L

] f̄

]zD eI zG
r 5 f b

dz. ~49!

The rest of the essential conditions will be dealt with in t
next subsections. At this point it is important to note that
the case of perfect dielectrics,S5e, the only surviving stress
component on the perturbed surface is the normal one. W
leaky dielectrics are considered both normal and tangen
electric stresses are acting on the two fluid interface, a
result of the perturbed electric field. This feature of lea
dielectrics was also pointed out by Saville15 in the context of
jet electrohydrodynamic stability and will be seen to play
essential part in the determination of the stability charac
istics of a liquid bridge also.

In Eq. ~46! the plus and minus signs in front of the lin
integral at r 5 f b correspond to the inner and outer fluid
respectively. In general, a different electric potential is d
fined in the inner and the outer fluid. However, continuity
potentials at the fluid/fluid interface, Eq.~34!, eliminates the
outer potential there, for example, and one may treat
electric potential as a single variable in both fluids. On
other hand, this variable must have a discontinuous nor
derivative at this interface. This discontinuity can be eas
incorporated in the finite element formulation, through t
line integral atr 5 f b in Eq. ~46!. For a perfect dielectric and
for an initially cylindrical bridge, Eq.~35! reduces the con
tributions to this line integral from the two fluids to
Downloaded 18 Jan 2002 to 194.177.202.194. Redistribution subject to 
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E
2p/2

p/2

F i r S ]V̄in

]r
2

]V̄out

]r D U
r 5 f b

dz

5E
2p/2

p/2

F i r S S ]V̄in

]r
2L2

] f̄

]z D ~12e! D U
r 5 f b

dz. ~50!

Instead, for a leaky dielectric, use of Eq.~36! reduces the
same contributions to

E
2p/2

p/2

F i r S ]V̄in

]r
2

]V̄out

]r D U
r 5 f b

dz

5E
2p/2

p/2

F i r S S ]V̄in

]r
2L2

] f̄

]z D ~12S! D U
r 5 f b

dz. ~51!

In an effort to improve the accuracy of eigenvalue calcu
tions for the case of very large conductivities of the brid
fluid compared with the surrounding medium,S→`, as is
the case with certain pairs of fluids often used in experim
tal investigations, e.g., water/air or castor oil-eugenol brid
suspended in silicone oil,18,19 in Eqs. ~49! and ~51! we set
S2e;S and S21;S, respectively, and subsequently w
apply the interfacial condition~36! in order to introduce the
term

]Vp
out

]r
2L2

] f p

]z

instead of

S
]Vp

in

]r
2L2

] f p

]z
S,

thus eliminatingS from the problem formulation while intro-
ducing O(1) quantities in the numerical formulation whic
are easier to approximate.

Equations~43!–~51! constitute a generalized eigenvalu
problem of the form

A= xI 5sB= xI , ~52!

whereA= and B= are coefficient matrices andxI is the eigen-
vector corresponding to the eigenvalues. An IMSL routine
~DGVLRG! may be used in order to calculate all the com
plex eigenvalues and eigenvectors of the discretized eq
tions for given values of the problem parameters. Owing
the large storage and CPU time requirements associated
calculating all the eigenvalues via the IMSL routine, the A
noldi method was used which calculates a restricted num
of the eigenvalues depending on their magnitude. This
proach follows closely the variation of the Arnoldi method
developed by Lehoucq and Scott23 who have incorporated
several improvements in the original Arnoldi algorithm a
made it available through the internet. We typically calc
lated up to 100 eigenvalues with the Arnoldi method. In th
fashion the computation of eigenvalues of a~330033300!
double precision matrix and, when needed, the correspo
ing eigenvectors required about 50 min in CPU time as
posed to 3.5 h using the standard IMSL routine on a
Origin 200 that calculates the complete set of eigenvalu
The calculation of the eigenvectors follows the proced
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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described in Ref. 8. On the other hand, the computatio
effort and requirements may be reduced by a factor of 2
more and the accuracy may be increased by calculating s
rately the symmetric and antisymmetric modes of the syst
In fact, the results of the numerical investigation presente
Sec. V were obtained in this fashion. In the process, pro
boundary conditions must be set atz50, so that only half of
the domain is discretized~0<r<Rr /R, 0<z<p/2!. These
conditions are explained in detail in Secs. IV A and IV B f
symmetric and antisymmetric modes, respectively.

The accuracy of the numerical results has been veri
by calculating the eigenvalues in the absence of an ele
field and comparing them with those calculated by T
mopouloset al.8 and with those calculated by Borkar an
Tsamopoulos24 in the limit of very small Oh~large Re! num-
ber. Convergence of eigenvalues has been verified by re
ment of the mesh in both ther- and z-directions. Twelve
elements were found to be sufficient in the radial direction
each phase, appropriately packed around the fluid/fluid in
face. Extending the outer domain toR̃r /R̃510 was found to
be sufficient, so that the calculations are not affected by
actual location. A ratio ofR̃r /R̃580/5 was used in the ex
perimental investigation of Gonzalezet al.16 whereas the ra-
tio between the diameter of the outer glass containment,
cm, and the diameter of the rings containing the bridge in
apparatus described in Refs. 18, 19, 4.7 mm, is roughly
Furthermore, 16 elements are required in the axial direc
~in the half of the domain! in order to achieve at least fou
significant digits of accuracy in the first mode, especially
small values of Oh. Accuracy drops to three significant dig
for higher eigenmodes. Finally, it was also found that asL
approaches zero, accuracy decreases. Therefore, eigenv
obtained in that limit are reported here up to the compu
accuracy.

A. Symmetric modes

Shapes of liquid bridges are symmetric about the m
plane of the bridge,z50, when

] f̄ /]z50, z50. ~53!

According to the analysis by Tsamopouloset al.8 the eigen-
vectors then correspond to the odd modes, so that shape
described by an infinite summation of cosines. Moreover,
radial component of the velocity must be symmetric and
axial component must be zero at the midplane:

]ū/]z5w̄50 at z50. ~54!

Using Eqs.~27! and ~54! it may also be shown that

t̄mrz5]2w̄/]z250 at z50. ~55!

Finally, introducing Eqs.~54! and ~55! in the axial compo-
nent of the momentum balance results in

] P̄/]z50, z50. ~56!

In order to solve in the upper half of the domain the essen
conditions at the upper plate, Eq.~29!, allow for discarding
both momentum balances there altogether. Similarly, az
50 the essential condition~54! allows for discarding the
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axial momentum balance there. On the other hand, the n
ral condition~54! at z50 eliminates the line integral involv
ing t̄mrz from the radial momentum balance in Eq.~45!.
Similarly the electric potential is symmetric at the midplan

]V̄/]z50, z50. ~57!

Therefore, the last line integral atz50 will be discarded
from Eq. ~46!, and this equation will not be written at all a
z5p/2 due to the essential condition, Eq.~32!.

B. Antisymmetric modes

Antisymmetric shapes of liquid bridges arise when t
interface shape, the radial velocity component, and the e
tric potential assume the same numerical value, but with
posite sign above and below the mid-plane. For example

ūuz51Dz52ūuz52Dz , z50. ~58!

Since all three variables are continuous functions, it follo
that

ū5
]nū

]r n5V̄5
]nV̄

]r n 5 f̄ 50 at z50 and for n51,2,... .

~59!

In this case the bridge shape is described by a summatio
sines. Due to the essential conditions, Eqs.~59! and ~32! on
the electric potential atz50, andp/2, respectively, Eq.~46!
will not be written at all at these boundaries. Combining E
~59! and ~27! yields

]w̄

]z
5tmzz50, ~60a!

z50. ~60b!

Also due to Eqs.~58! and ~59!,

]ū

]zU
z51Dz

5
]ū

]zU
z52Dz

, ~61!

and in the limit ofDz→0,

]2ū

]z2 50, z50. ~62!

Substitution of Eqs.~59!, ~60!, and~61! into the radial com-
ponent of the momentum equation reduces it to] P̄/]r (z
50)50, which upon integration gives

P̄5const, z50. ~63!

Without loss of generality, this constant is taken to be eq
to zero. Again, in order to solve in the upper half of th
domain, the essential conditions at the upper plate, Eq.~29!,
allow for discarding both of the momentum balances the
Similarly, atz50 the essential condition~59! allows for dis-
carding the radial momentum balance there. On the o
hand, natural condition~60b! along with Eq.~62! at z50
eliminate the line integral involving (P̄2 t̄mzz) from the
axial momentum balance in Eq.~45!.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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V. RESULTS AND DISCUSSION

A. Eigenfrequencies and damping Õgrowth rates of the
liquid bridge

Using the above described numerical methodology
extensive parametric study was conducted aiming at ide
fying the dynamic characteristics of a bridge of finite leng
in the limit of infinitesimally small disturbances. To this en
the real~damping rate,s r.0, or growth rate,s r,0! and
imaginary parts~frequency,s i! of the first four eigenvalues
were monitored. They correspond to the volume preserv
varicose eigenmodes with 1, 2, 3, and 4 extrema in the
interval (0<z<p/2), respectively~Fig. 2 shows a schemati
representation of the first two modes for the entire bridg!.
As a first step toward connecting the results of this stu
with those available in the literature, the effect of Re[1/Oh
is examined on the linear dynamics of a bridge character
by the following dimensionless quantities:L52, e580, S
5100, andeCel50.6. These are simply taken as represen
tive values chosen in order to exemplify general trends. S
ations corresponding to specific pairs of fluids inside a
outside the bridge will be considered at the end of this s
tion. Figures 3~a!, 3~b! show the dependence of the dampi
rate and frequency on Oh21. In general, higher modes co
respond to bridges with more distorted shapes which, for
reason, are damped faster. Similarly, surface tension is m
effective with disturbancies of smaller wavelength leading
higher frequencies for the higher modes. In the limit
Oh21→` the damping rate of the four modes approach
asymptotically zero as predicted by inviscid theory~Sanz
and Diez!25 and boundary layer theory24 in the absence of an
electric field. As Oh21 becomes smaller, Oh21,5, viscous
damping increases logarithmically, a behavior also obser
numerically by Strani and Sabetta26 for viscous oscillations
of free or supported drops. It should also be mentioned t
besides the fact that hereL.0.5, the presence of an electr
field further stabilizes the already stable bridge, given
particular value forSas will be discussed later. The freque
cies of the four modes approach a constant value in the l
of large Oh21, whereas they decrease sharply as Oh21 be-
comes smaller than, roughly, 5.0. This effect is more inte
for higher eigenmodes. It is anticipated that for some sm
but finite value of Oh21 the complex eigenvalues will give

FIG. 2. Schematic representation of the first two axisymmetric eigenmo
~a! first antisymmetric mode,~b! first symmetric mode.
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rise to an overdamped pair of two real positive ones indic
ing pure damping. Such a trend has also been identified
Tsamopouloset al.,8 in their study on the stability of liquid
bridges when the density mismatch between the interior
exterior fluids is neglected and in the absence of an elec
field, and by Strani and Sabetta26 for viscous drop oscilla-
tions.

Figures 4~a!, 4~b! show the effect of the electric field
intensity, as this is expressed throughCel , on the damping
rate and oscillation frequency of the bridge;L52, Oh50.1,
e580, andS5100. The almost linear increase of boths r and
s i with Cel indicates the tendency of the field to stabilize t
bridge. It will be seen in the following how this behavior
affected by the particular choice ofS ande. This monotonic
dependence is a consequence of the stretching of the br
surface induced by the repulsion forces between elec
charges that are induced on the fluid/fluid interface due to
field. In addition, the values obtained when the electric fi
is turned off,Cel50, agree very well with those shown i
Fig. 2 and Table II in Ref. 8 when the gravitational Bon
number is zero. The productCele is used here as well as i
the following graphs, representing a dimensionless elec
field based entirely on properties of the bridge fluid.

The effect ofe and S on bridge dynamics is shown in
Figs. 5~a!, 5~b!, 6~a!, and 6~b!, respectively; in Figs. 5~a!,
5~b!, L52, Oh50.1,S520, andCele50.6, whereas in Figs
6~a!, 6~b!, L52, Oh50.1, e580, andCele50.6. The effect

s;

FIG. 3. Evolution of the~a! real and~b! imaginary parts of the eigenvalue
corresponding to the first four eigenmodes,s j r j 51....4, with increasing
Oh21; S5100, e580, L52, Cele50.6.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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of increasing the permittivity ratioe is to decrease the damp
ing rate, Fig. 5~a!, until a constant positive value is reache
asymptotically for large values ofe. An interesting effect of
increasinge is observed in the imaginary part of the eige
values, representing the frequency of bridge oscillations,
5~b!. In particular, the frequency of the fourth mode
slightly increasing rather than decreasing as the inne
outer permittivity ratio is increasing. This is probably due
the stronger effect of the normal force on the bridge due
the electric stress@radial component of the force in Eq.~48!
or ~49!# which intensifies bridge oscillations. Similar is th
effect of e on the eigenvalues whenS,1.

As shown in Figs. 6~a!, 6~b!, the effect of increasingS is
to stabilize the bridge by increasing the damping rate. In f
as the conductivity ratio acquires large positive values
real part of the eigenvalues increases until it reaches a
teau approaching an asymptotic value in the limitS→` with
e constant. A similar behavior is exhibited by the imagina
part. WhenS5e, the leaky dielectric model reduces to
perfect dielectric one and the eigenvalues obtained
Gonzalezet al.16 are recovered.

The effect of the aspect ratioL on bridge stability is
shown in Figs. 7~a!, 7~b! in terms of the variation of the
damping rate and frequency, respectively. The well kno
fact that a longer bridge, of a cylindrical shape with smal
L, is less stable than a shorter one of the same volume w
subjected to an axial electric field, is reflected in the decre

FIG. 4. Evolution of the~a! real and~b! imaginary parts of the eigenvalue
corresponding to the first four eigenmodes,s j r j 51....4, with increasing
Cele; S5100, e580, L52, Oh50.1.
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of the damping rate for all four modes with decreasingL.
This is mostly due to the destabilizing effect of surface te
sion. As a matter of fact, as the aspect ratioL is decreased
below 0.42 the damping rate of the eigenvalue correspond
to the first asymmetric mode becomes negative indica
instability. ForL,0.42 the two complex conjugate eigenva
ues of the first mode turn real, one positive and one nega
Only the latter one, indicating instability, is shown in Fig.
A similar behavior is exhibited by the first symmetric mod
whenL,0.1. In fact asL further decreases higher asymme
ric and symmetric modes become unstable. Evaluation of
exact value of aspect ratioL for which such modes becom
unstable was not pursued since the stability limit of a cyl
drical bridge is primarily determined by the first mode a
the accuracy of calculations deteriorates whenL becomes
excessively small.

B. Bridge stability

As mentioned above, an important measure of the ef
of the applied electric field on bridge stability is the critic
value of the aspect ratio,Lmin , below which the bridge loses
stability to the first varicose mode. An extensive discuss

FIG. 5. Evolution of the~a! real and~b! imaginary parts of the eigenvalue
corresponding to the first four eigenmodes,s j r j 51....4, with increasinge;
S520, Cele50.6, L52, Oh50.1.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 6. Evolution of the~a! real and
~b! imaginary parts of the eigenvalue
corresponding to the first four eigen
modes,s j r j 51....4, with increasingS;
Cele50.6, e580, L52, Oh50.1.
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on the effect ofS ande on the stability of a liquid bridge of
finite length as well as specific conditions for which applic
tion of an axial field can actually be destabilizing, as
intensity increases~increasingCel!, are given in the follow-
ing. A numerical search was conducted on the evolution
Lmin as a function of the problem parameters and it w
found that the stabilization or destabilization of the elect
bridge, in other words whether the minimum aspect ratio
bridge stabilityLmin lies below or above 0.5 which is th
value obtained in the absence of the electric field, depend
the factors (S2e) and (S21)(e21) as suggested b
Saville15 for the case of a cylindrical jet in the presence of
electric field that is aligned with its axis of symmetry. Upo
closer examination of Eqs.~48!–~51! it becomes evident tha
(S2e) signifies the action of the tangential stress due to
perturbed electric field on the bridge. On the other hand,
factor (S21)(e21) signifies the effect of the normal elec
tric stress on the bridge. This was first pointed out in Ref.
for a cylindrical jet, its validity for the case of a bridge is n
Downloaded 18 Jan 2002 to 194.177.202.194. Redistribution subject to 
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obvious and will be better demonstrated in Sec. VI. Th
when (S2e).0 the tangential stress stabilizes the fi
mode and consequently the bridge, reducingLmin below 0.5.
Similarly, whenS.1 ande.1 the normal electric stress ha
a stabilizing effect on the bridge. The opposite happens w
(S2e),0 and (S21)(e21),0. The overall effect of the
electric field on the bridge is a result of the combined eff
of these two stress components. Figure 8 shows the evolu
of Lmin with increasing strength of the axial field,eCel , for
S ranging between 30 and 0.5,e set to 10 and Oh to 0.1. As
S increases from its value corresponding to perfect diel
trics, S5e, application of the field has a stabilizing effe
forcing Lmin below 0.5, withLmin decreasing as the devia
tion of S2e from zero grows larger. As soon asS2e be-
comes negative the tangential stress has a destabilizing
fect, whereas (S21)(e21) is stabilizing as long asS
remains above unity. Thus there is a critical value ofS be-
tween 2 and 9 for which application of the electric fie
actually destabilizes the bridge and this destabilization
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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comes more intense asCel increases. This effect is intens
fied whenS drops below unity since the normal stress a
becomes destabilizing in this case. The above set of eig
value calculations essentially verifies for leaky dielectrics
well known result for perfect dielectrics that both the critic
wave number at which instability arises as well as the ini
growth rate of the most unstable disturbance decrease a

FIG. 7. Evolution of the~a! real and~b! imaginary part of the eigenvalue
corresponding to the first four eigenmodes,s j r j 51....4, with increasingL;
Cele50.6, e580, S5100, Oh50.1.

FIG. 8. Variation of the minimum aspect ratio,Lmin , for a cylindrical
shaped bridge to be stable under varicose instabilities with increasing
tric field intensity,Cele, for different values of the conductivity ratio~a! S
530, ~b! S510, ~c! S59, ~d! S52, ~e! S50.5, e510, Oh50.1.
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intensity of the electric field increases~Nayyar and
Murthy27!. At the same time, however, it points out an im
portant difference between leaky and perfect dielectric ma
rials, which has also been confirmed experimentally,18,19

namely that the application of the electric field can deter
rate bridge stability whenS,e.

A similar set of numerical results is shown in Fig. 9 asS
increases from 0.2 to 2 withe set to 0.5 and Oh to 0.1. In thi
case, whenS is much smaller thane, the destabilizing effect
of the tangential stress dominates over the stabilizing ef
of the normal one and application of an electric field des
bilizes the bridge. AsS increases, somewhere in the interv
0.45 and 0.49, a critical value ofS is attained beyond which
the effect of the tangential stress dominates and the bridg
stabilized aseCel increases. This behavior persists asS in-
creases beyond 1. In fact whenS becomes larger than, ap
proximately, 10, the field tends to stabilize the entire range
aspect ratiosL, something that was also observed
Saville15 in the context of jet stability. A more specific com
parison with analytical results15 as well as with experimenta
observations18,19 is given in the following paragraphs. An
interesting aspect of the results presented in Figs. 8 and
that the stability criteria obtained in the present study ag
with those provided by the analysis of Saville.15 This is due
to the fact that the effect ofS and e on bridge stability is
determined through the interfacial conditions governing
electric field, as will be demonstrated clearly in Sec. V
which are common in Saville’s analysis15 and in the presen
study. It should also be noted that Oh does not affect
location of the bifurcation points signifying the transitio
from the cylindrical bridge to an amphora, or in other wor
the location ofLmin which can also be obtained via stat
analysis as was seen for the case of perfect dielectric16

Consequently, the stability characteristics of the bridge
qualitatively represented by the criteria presented in Ref.
however, the actual location of the bifurcation points,Lmin ,
is not necessarily the same as the one predicted in Ref
since the latter study ignores the boundary layers near
two cylindrical rods supporting the bridge.

We now turn to the comparison of the predictions pr

c-

FIG. 9. Variation of the minimum bridge aspect ratio,Lmin , with increasing
electric field intensity,Cele, for different values of the conductivity ratio~a!
S50.2, ~b! S50.49, ~c! S50.5, ~d! S51, ~e! S52, e50.5, Oh50.1.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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vided by the model presented here with previous experim
tal investigations of liquid bridge stability. As was first ob
served experimentally by Sankaran and Saville18 in
terrestrial experiments, through the use of isopycnic syste
and subsequently verified by Burcham and Saville19 aboard a
space shuttle, by exchanging the inner and outer fluids
bridge consisting originally of a castor oil-eugenol mixtu
and silicone, respectively, application of an electric field c
destabilize the bridge. Thus when silicone is used as
inner fluid of the bridge the latter is destabilized when
electric field is applied. This result is a specific feature of
leaky dielectric model. In the same context it was conclud
in Ref. 18 that bridge stability depends on the sign of
factor (S2e). In order to test these results in the prese
study bridge stability is investigated for the castor o
eugenol/silicon oil pair of inner and outer bridge fluids, r
spectively, in Fig. 10. Geometrical characteristics of t
bridge as well as properties for the two materials are
tained from Ref. 18;R̃50.24 cm, e52.0, Re5Oh2150.3,
and S@1. Due to the very large value ofS and in order to
avoid numerical error the case ofS→` was examined nu-
merically; more information on the modification of the n
merical procedure in order to accommodate this limit
given in Sec. IV. In Fig. 10Cel is plotted versus the maxi
mum slenderness ratiobmax5p/(2Lmin) in order to compare
our results with the experimental observations of Sanka
and Saville18 ~Fig. 2 in their article!. Clearly there is at leas
qualitative agreement between the two graphs. Asbmax in-
creases beyond the value obtained in the absence of an
tric field, b'3.14, there is an abrupt increase in the cor
sponding value ofCel until a plateau is reached. In thi
plateau even the slightest increase in the electric fi
strength results in a significant stabilization of the bridge
behavior indicated by the experimental observations.18,19 In
fact whenCel50.15 Lmin'0.03 (bmax'52) which amounts
to an almost complete stabilization of the bridge. It is int
esting to note that Saville15 in his analysis predicts that com
plete stabilization of a jet withe52 andS→` is achieved
whenCel'0.03(4p)50.37. Due to the increasing numeric
errors asLmin decreases, we did not attempt to reproduce

FIG. 10. Variation of the maximum slenderness ratio,bmax5p/2/Lmin , with
increasing electric field intensity,Cel , for a bridge with castor oil-eugeno
and silicon oil occupying the inner and outer fluids, respectively~S→`,
e52.0, Oh50.3! and a water/air bridge~S→`, e580.0, Oh50.0025!.
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prediction but the qualitative agreement between our
proach and Saville’s is obvious despite the fact that in
latter study a small Oh number was assumed for both
inner and the outer bridge fluids. The case of water/air~e
'80, Re'Oh21'400, S→`! was also examined numer
cally and it resulted in a much slower increase ofb with
increasingeCel ~Fig. 10!; 0<eCel<0.6. This is in agree-
ment with the prediction by Saville15 that whene'80 the
value ofCel that is required for complete stabilization of th
bridge is 0.005~4 p!50.0628 or, in terms ofeCel , 5. It
should also be noted that application of the perfect dielec
model for the eugenol-castor oil/silicone oil and the water/
bridges predicts a much weaker stabilization of the brid
~larger Lmin! than the leaky dielectric model discusse
above; for example, for eugenol-castor oil/silicone
bridges application of the perfect dielectric model giv
Lmin'0.49 when eCel50.6. This also corroborates th
proposition by Saville15 that leaky dielectrics require a muc
lower field for their stabilization.

The pair silicone oil/castor oil-eugenol with silicone o
occupying the inner portion of the bridge is obtained by
terchanging the inner and outer bridge fluids in the exp
mental setup described in the previous paragraph. This
pair of fluids that is more compatible with the theory dev
oped in the present study since the silicone oil used in R
17 is much more viscous than castor oil. Hence, to a fi
approximation, viscous effects in castor oil can be neglec
Consequently, besides the bridge stability limit,Lmin , which
does not depend on Oh, the damping or growth rates tha
obtained for such a pair are expected to be more useful f
comparison against experimentally observed rates than
ones obtained for the case with silicon oil forming the ou
bridge fluid. Using the physical constants provided by S
karan and Saville19 we obtain the following values for the
dimensionless parameters of the silicon oil/castor oil euge
bridge:e5e in /eout50.54,S50.005, Oh5100. For this set of
parameter values andeCel50.108,Lmin was calculated nu-
merically to be 0.56. The experimentally measured value
Ref. 18 isL̃/2R̃52.05, which becomesL50.76 in terms of
the definition for the aspect ratio adopted in the pres
study. Figure 11 shows the effect of varying field intens
Cel on Lmin for a silicone bridge surrounded by a mixture
castor-oil and eugenol. Clearly, the bridge is destabilized
the intensity of the field is increased, a behavior that is
served in the experiments of Sankaran and Saville18 and is
compatible with the leaky dielectric model as opposed to
perfect dielectric model which does not predict bridge des
bilization upon application of an electric field. The validit
of the leaky dielectric model for the castor oil eugen
silicon oil bridges was verified experimentally in the micr
gravity environment aboard a space shuttle19 also. However,
there are certain observations that do not conform with
leaky or the perfect dielectric models such as the inability
an ac field, oscillating at frequencies much higher th
needed to nullify charge relaxation, to stabilize castor
bridges in the dielectric gas sulphur hexafluoride,19 SF6 , or
the fact that the amphoras were always oriented with th
bulge nearer the positive electrode18 despite the fact that the
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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bridge deformation scales with the square of the fi
strength and therefore the deformation should be indep
dent of the field orientation. These are phenomena wh
nature is not yet understood and require further investigat

VI. INTERPRETATION OF RESULTS AND
CONCLUDING REMARKS

As a means to obtain a better understanding of the
tern of behavior regarding the variation ofLmin with the
problem parameters we resort to the contribution of elec
stresses to the momentum equation. Thus Eq.~49! yields the
following form for the electric stresses contribution in th
momentum balance, multiplied by~21! in order to indicate a
force acting on the bridge from the surrounding fluid,

2E
2p/2

p/2

F i~2Pb11!LS 2
] f̄

]zD eI z dz

2E
2p/2

p/2

F iCel~et= elb
in 2t= elb

out!ur 5 f b
•LS 2

] f̄

]zD eI z dz

2E
2p/2

p/2

F iCel~et̄= el
in2 t̄= el

out!ur 5 f b
•eI r dz

5E
2p/2

p/2

F iCelF ]V̄in

]z
~e21!eI r1~S2e!

3S 1

L

]V̄in

]r
2L

] f̄

]zD eI zG
r 5 f b

dz. ~64!

Closer examination of the right hand side of Eq.~64! reveals
two different types of electric force. The first term represe
the normal force exerted on the bridge due to the differe
in permittivity constants between the two materials. The l
term is always tangential to the interface, indicating a sh
force, and is present only when leaky dielectrics are con
ered. The behavior of these terms depends solely on the
lution of Laplace’s equation in the two media subject
boundary condition~36! or ~35!, with the factor (S21) @see

FIG. 11. Variation of the minimum bridge aspect ratio,Lmin , with increas-
ing electric field intensity,eCel , for a bridge with silicon oil and casto
oil-eugenol occupying the inner and outer fluids, respectively;S50.005,
e50.54, Oh5100.
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Eq. ~36!# as a parameter for leaky dielectrics or the fac
~e21! @see Eq.~35!# for perfect dielectrics, given the shap
of the interface. First, the eigenvector corresponding to
first eigenmode, which is the most unstable one, is calcula

and is normalized so thatf̄ (z).0 in the interval 0,z
,p/2, Figs. 12~a!, 12~b!. Figure 12~c! depicts the type of
normal and tangential stress that act in a stabilizing or de
bilizing fashion on the portion of the interface depicted
Figs. 12~a!, 12~b!. Examining the variation of the eigenvec
tor along the interfacer 51, it turns out that the tangentia
derivative

FIG. 12. Variation in the longitudinal direction,z, of f̄ , ]V̄/]z ,
]V̄in/]r • • • •, ]V̄out/]r • • • , as evaluated at the bridge interfac
for the eigenvector corresponding to the first mode:~a! S510, ~b! S50.5,
e580, eCel50.6, Oh50.1, L52. ~c! Schematic representation of the stab
lizing or destabilizing normal and tangential forces acting on the upper
of a bridge whose interface is represented by the mode depicted in~a!,~b!.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Downloaded 18 Ja
TABLE I. Effect of electric properties of the inner and outer fluids on bridge stability.Scrit is a limiting value
of S below which application of an electric field destabilizes the bridge. It depends on the specific v
acquired bye andCel .

Normal electric stress;(S21)(e21),
(S21)(e21).0→Stabilization (Lmin,0.5), (S21)(e21),0→Destabilization (Lmin.0.5)

Tangential electric stress;(S2e)
(S2e).0→Stabilization (Lmin,0.5), (S2e),0→Destabilization (Lmin.0.5)

e,1 e51 e.1

S.1
Tangential stress→Stabilizing
Normal stress→Destabilizing
Overall effect→Stabilizing

S.e
Tangential stress

Stabilizing

S.e
Tangential stress→Stabilizing

Normal stress→Stabilizing
Over all effect→Stabilizing

S51
Tangential stress→Stabilizing

S5e ~Perfect Dielectrics!
Normal stress→Stabilizing

e,S,1
Tangential stress→Stabilizing

Normal stress→Stabilizing
Overall effect→Stabilizing

S5e51 ~same fluid!
No effect

1,S,e
Tangential stress→Destabilizing

Normal stress→Stabilizing
S,SCrit Destabilization

S5e ~Perfect Dielectrics!
Normal stress→Stabilizing

S51
Tangential stress→Destabilizing

S,e
Tangential stress→Destabilizing

Normal stress→Stabilizing
S,SCrit Destabilization

S,e
Tangential stress

Destabilizing

S,1
Tangential stress→Destabilizing

Normal stress→Destabilizing
Overall effect→Destabilizing
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]V̄in

]z S 5
]V̄out

]z D
is negative around the interface crest whenS.1, while the
opposite is true whenS,1. The normal derivative to the
interface on the side of the bridge fluid, (]V̄in/]r ), changes
sign from positive to negative asz increases around the cre
of the interface whenS.1, whereas the change in sign o
curs in the opposite direction whenS,1. The exact opposite
is true for the normal derivative on the side of the flu
surrounding the bridge, (]V̄out/]r ). The same observation
hold for the case of perfect dielectrics usinge instead ofS.
Finally, the derivative of the perturbation of the interfac
d f̄ /dz, is positive before the crest turning negative as
crosses it approaching the fixed point attached to the up
rod.

In this fashion, examining the normal component of t
stress in Eq.~64!, which is the only remaining stress comp
nent in the case of perfect dielectrics, we can explain
findings of Gonzalezet al.16 regarding the stability of an
electric bridge when both fluids are treated as perfect die
trics. More specifically, the tangential derivative of the ele
tric potential around the crest of the interface behaves
2~e21!, or 2(S21) for leaky dielectrics, and consequent
its contribution to the force on the interface due to the n
mal stress component is like2(e21)2, or like 2(S21)(e
21) for leaky dielectrics. In fact, it will always be negativ
for perfect dielectrics, tending to eliminate the crest of t
interface thus stabilizing the bridge and maintainingLmin

below 0.5, as predicted in Ref. 16. In the case of leaky
electrics the action of this term will depend on the relat
n 2002 to 194.177.202.194. Redistribution subject to 
,
t
er

e

c-
-
e

-

e

i-

magnitude ofS and e with respect to unity, as was pointe
out by Saville.15

When leaky dielectrics are considered the tangen
stress component enters the force balance in Eq.~64!. The
term2(d f̄ /dz) acquires negative and positive values arou
the location of maximum displacement of the interface
such a way that, whenS.e, the shear forces correspondin
to this term on either side of the crest point away from
tending to eliminate large displacements and stabilizing
bridge. In the same fashion this term has a destabilizing
fect whenS,e. The same argument is true for the norm
derivative of the electric potential evaluated on the side
the bridge fluid,]V̄in/]r , whenS,1. Namely, the stabilizing
or destabilizing action of the latter term depends on the f
tor (S2e) with a positive value indicating stabilization
Turning to the case withS.1, in order to determine its effec
on bridge stability we first employ interfacial condition~36!
according to which the term multiplying (S2e) in Eq. ~64!
is equal to

S 1

L

]V̄out

]r
2L

] f̄

]zD 1

S
.

When S.1 the normal derivative of the electric potentia
evaluated on the side of the outer bridge fluid, crosses zer
positive values around the interface crest in such a way a
result in a shear force that, for positiveS2e, points away
from the crest stabilizing the bridge. Consequently, for
entire range of values ofS ~below or above unity! the action
of the shear force on the interface is determined by the fa
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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(S2e), a feature first pointed out in Ref. 15, with positiv
values indicating stability andLmin remaining below 0.5
while the opposite is true whenS,e.

Concluding, it should be pointed out that the linear s
bility of a liquid bridge was examined upon application of
axial electric field treating the bridge fluids as leaky diele
trics, and the effect of the latter was identified as stabiliz
when S>e, in the sense that the minimum value of th
bridge aspect ratio,Lmin , was seen to decrease below 0
~the critical minimum value for stability obtained in the a
sence of the electric field!, as the intensity of the electric fiel
increases~Cel increases!. WhenS,e there is a critical value
of S below which the electric field actually destabilizes t
bridge constantly increasingLmin above 0.5 asCel increases.
This type of behavior is a result of the combined action
the normal and tangential electric stress components on
perturbed interface whose action is determined by fac
(S21)(e21) and (S2e), respectively. When perfect di
electrics are considered the contribution of the tangen
stress component vanishes and the electric field has in
ably a stabilizing effect on the bridge. These stability con
tions do not depend on Oh as they identify bifurcation poi
marking the transition from a perfect cylindrical bridge to
amphora shape. They were first proposed by Saville,15 in his
analytical study on the stability of cylindrical jets under t
action of a longitudinal electric field, confirmed numerica
for the case of perfect dielectrics via a static analysis16 and,
partly, verified experimentally in terrestrial18 and
microgravity19 experiments. A systematic tabulation of th
stability criteria for perfect and leaky dielectrics is provid
in Table I.

Finally, increasing the intensity of the electric field, as
is measured byCel , only intensifies the above behavior ten
ing to stabilize the entire range of bridge aspect ratios w
it becomes large enough, provided we operate in the par
eter range for which application of an electric field stabiliz
the bridge. Under these conditions extremely long brid
may be generated, as was experimentally observed by p
ous investigators.9,10 Therefore, an electric field can stabiliz
a liquid bridge much more effectively than can a shear fl
field, applied on its outer surface.28 In a future study it will
be interesting to follow Chen and Tsamopoulos29 and include
the effects of gravity, external fluid viscosity, and nonline
ity in the analysis, thus allowing for better simulation of th
available experimental investigations and complete cover
of the relevant parameter range. Finally, it would be ve
interesting to examine break-up of the bridge and format
of drops as in Zhang and Basaran,30 Zhanget al.31 and Ra-
moset al.32
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