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Linear oscillations and stability of a liquid bridge in an axial electric field
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Small amplitude oscillations of viscous, capillary bridges are studied in the presence of an electric
dc field. The electric field is proposed as a means to maintain bridges longer than their perimeter and
of uniform cylindrical shape. This is desired in the fabrication of semiconductor crystals. The
material of the bridge and the surrounding medium is modeled either as a perfect or as a leaky
dielectric. The frequency and the damping rate of the oscillations are calculated numerically by
solving a generalized eigenvalue problem. It is shown that they depend on the ratios of the dielectric
constantse = €, /€y, and conductivitiesS= o, /og, of the two materials, the aspect ratio of the
bridge, A = wR/L, the ratio of viscous to the capillary force, ©fRe %, which can also be viewed

as the inverse Reynolds number of the flow, and, finally, the electrical Bond nu@ervhich is

the ratio of the electric stresses to the capillary force. The stability limit of an initially cylindrical
bridge is determined with respect to varicose disturbances. In agreement with previous studies it is
shown that, if both materials are perfect dielectrics, application of an electric field has a stabilizing
effect on the bridge, in the sense that the minimum valyg,,, of the aspect ratio for the bridge to
remain stable drops below 0.5, irrespective of the specific value of theerdfiboth materials are

leaky dielectrics, bridge stability is determined by the sign®f€) and (S—1)(e—1), with the
positive sign indicating bridge stabilization. The fact&@—e) arises due to the appearance of a
tangential electric stress in the perturbed state for leaky dielectrics. For both cases of leaky and
perfect dielectrics, the most unstable mode is the one leading to amphora shaped bridges. It was also
found that, when application of an electric field stabilizes the bridge, leaky dielectrics require a
lower field than perfect dielectrics and that a large enough field tends to stabilize the bridge for
almost the entire range of values of the aspect ratidhese findings concur with earlier analytical
results for the stability of jets in longitudinal electric fields and, in conjunction with certain
experimental observations, point to the usefulness of the leaky dielectric model pertaining to the
stability of bridges. ©2001 American Institute of Physic§DOI: 10.1063/1.1416183

I. INTRODUCTION natural frequencies and decay rates in the presence of such
disturbances. More recently, liquid bridges have been used as

A significant amount of research has been recently de . . . .
means to measure the extensional viscosity of polymeric

voted to the dynamics of liquid bridges, mostly because they " =7
find extensive use in the fabrication of single semiconductof'UldS , _ _ , _
crystals of high purity from the melt via the floating zone  1here has been continued interest in the behavior of lig-
method? In a different context, a floating zone has been pro-Uid jets under the influence or not of an electric or gravita-
posed as a convenient system for simultaneously measurirfpnal field, because of the numerous industrial applications,
surface tension and viscosity of ceramic materials whictUch @s in ink jet printers, paint spraying, fuel atomization,
melt at high temperature€000—3000 °G22 In the former ~ €lectrohydrodynamic mixing, etc. The loss of stability of a
application resistive heating is used to form a molten bridgdong column of liquid placed between two solid surfaces and
between a melting polycrystalline feed rod and a solidifiedin the presence or absence of a gravitational field was first
cylindrical crystal. In order to enhance the efficiency andconsidered by Plateau.n particular, using hydrostatic
feasibility of the process large bridges with large length totheory he found that liquid columns lose their cylindrical
diameter ratios are desired. However, liquid bridges of cylin-shape due to capillarity, provided that the wavelength of the
drical shape are known to become unstable in the presence @eformation is larger than their circumference. Rayl®igpk:
capillary and gravitational forces and to be susceptible tdended Plateau’s work using hydrodynamic theory of linear
buoyancy driven convection. These effects are reduced iftability and established that masses of cXIindricaI shgpe be-
space, where, however, a liquid bridge is susceptible t@ome unstable when the ratio of their lendth,to radius R,
g-jitter, spacecraft maneuvers, etc., that may excite oscillaexceeds 2. When gravity is present, Coriell, Hardy, and
tions on its free surface. Therefore it is important to know itsCorde$ showed that the minimum aspect ratib= 7R/L,

for a liquid bridge to remain stable is increased from 0.5, the
dAuthor to whom correspondence should be addressed. Fa861-993- value in the absence of gravity, as the density mismatch be-
255; electronic mail: tsamo@chemeng.upatras.gr tween the fluid in the bridge and the surrounding medium
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increases. The latter is characterized by the gravitationgtlane dividing the region between the two plates of the
Bond number, Be: (A pgR?)/y identifying the relative mag- bridge, yet axisymmetric. In particular, they showed that the
nitude between gravitational and surface tension forgés; electric field always stabilizes a liquid bridge irrespective of
the gravitational acceleratiory, denotes the interfacial ten- the ratio of dielectric constants between the bridge and its
sion between the liquid column and the surrounding mediumsurroundings. They also carried out an experimental investi-
and Ap the density difference between the two media. Moregation of the stability of a liquid bridge in a neutrally buoy-
recently, the results of the hydrostatic analysis for the effec@nt environment using an axial ac electric field. Monitoring
of the Bond number on liquid bridge stability obtained by the break-up of the bridge with varying electric field inten-
Coriell et al. were reproduced and extended by Tsamopousity, they were able to confirm their theoretical results, espe-
los, Chen, and Bork&rin the context of hydrodynamic nor- cially for large values of the latter, albeit for a single value of
mal mode analysis in the presence of infinitesimal distur€=1.8. They attributed the increasing discrepancy between
bances. Thus they were able to account for viscous effects ifieir experimental and theoretical findings to the more pro-

the liquid column in order to obtain the frequencies andnounced effect of gravity as the field strength is diminished.
damping rates of the bridge. Subsequently, Rama al’ extended the previous theory to

The stabilizing effect of strong electric fields that are &count for gravitational effects and showed improved agree-
aligned with the axis of the fluid cylinder was first pointed Ment with experiments, again for a single case veitil.7.
out by Rac8 and Taylor® In this fashion cylindrical jets Still, the predicted electric field, which is required for stabi-
with aspect ratios\ as low as 0.06 were observed. In the lization of a certain bridge was quite higher than the one
early distinction of materials to perfect conductors or perfec{éasured elsewhef€. 48
insulators, Melcher and Tayfbradded the idea of a leaky At about the same time, Sankaran and Savilexam-
dielectric in order to explain certain paradoxical phenomenéned expenmentally the Stab"'t_y of a |IQL!Id bridge In aneu-
pertaining to, presumably, nonconducting fluigsian and trally buoyant environment using an axial dc electric field.

Masort?). These phenomena, first explained by Tayfodo Thed" Iresultst.hconﬂr;n E{h;z_ slupte_rlonty of (tjhe l_eaky Q|elecltr|c
not arise in either perfect dielectrics or conductrs.com- mode’ over the perlect dielectric one, indicating gain or 10Ss

plete characterization of a leaky material as far as its electri(-)]c stability with the application of an electric field depending

. . - . on the conductivities and dielectric constants of the two me-
cal properties are concerned requires both its dielectric cons

stant and its conductivity. The success of this idea and thdia as predicted earli€t by linear stability analysis. In the
Y- ?ollowing sections it is shown that such an inversion of sta-

earlier experiments with jets motivated Savifiéo examine " o : . .
: : o L ., bility characteristics as a result of interchanging the inner
the linear electrohydrodynamic stability of an infinite fluid . . . .
and outer bridge fluids can be explained in the context of

cylinder immersed in a Ipngitu@inal e!ectric field. Both fluids leaky dielectric behavior. Finally, they pointed out the differ-
were treated as leaky dielectrics. This allows for the appealy e petween the critical field strength for which the basic

ance of interfacial electric charges in a slightly perturbed jetcylindrical shape of the bridge loses stability to amphora
Whi(.:h generate a net shearing force .along the interface, iQhapes and the field strength required for pinch-off of the
apidmon to_the_normgl forces that arise as a result Of_th%ridge to take place. The clear appearance of fluid motion
d|ﬁereqce in d|electr!c constapts between the two ﬂulds'internal and external to the bridge after departure from the
These induced shearing electrical stresses must be balanc&gﬁc cylindrical shape was achieved, is analogous to the
by mechanical(viscous stresses, which set an otherwise 1o ircyation observed in a drop of leaky dielectric placed in
static fluid in motion. In this fashion he found that a leaky 5, gjectric field It leads to the conclusion that a stability
dielectric requires much lower field strength than a perfecl;,jmawsiS of this problem based on hydrostatics alone may
dielectric for jet stabilization to take place. In addition he produce results of limited validity. Recent experiments
showed that the stability of the cylindrical configuration de- g3n0ard the space shuffleon the stability of liquid bridges
pends on the relative magnitude of the conductivity and diypject to an axial electric field confirmed previous terrestrial
electric constant ratiosrin /ooyt €in/€ou, between the inner  fingings® with isopycnic systems while pointing out certain
and outer fluid. In the present study it will be seen that SUCfbatterns in the dynamics of liquid bridges that do not con-
conditions hold in the case of liquid bridges as well. Finally, form with leaky dielectric behavior; for example, the bulging
he pointed out the importance of the viscous boundary layergf the amphora always occurred nearer the positive electrode
that form on either side of the interface between the twoof the bridge even though the sense of deformation should be
fluids, on the amplification and damping rates of the twoindependent of field orientation.
fluid system, when their viscosities are relatively low. The present study is a hydrodynamical approach to lig-
Gonzalezet al® conducted a hydrostatic analysis on the uid bridge stability that accounts for liquid motion, in the
stability of a liquid bridge of finite length in zero gravity perturbed state, inside the bridge. This motion is generated
treating the two fluids as perfect dielectrics. Starting from thepy the interfacial electric stresses, which are shown to arise
cylindrical shape as the basic state, they constructed a bifugvhether the two fluids are treated as perfect or leaky dielec-
cation diagram relating the values of the bridge aspect ratiarics. However, only in the latter case will free electric charge
the dimensionless field strength, and the dielectric constardppear at the interface. Pinning the ends of the bridge at the
ratio. Thus they computed the point where instability firstdisk surfaces provides a cutoff in the wavelengths allowed in
settles giving rise to an antisymmetric shape, to be referred free jet and makes impossible the analytical solution of the
to as amphora shape hereafter, with respect to the centralgenvalue problei.The detailed nonlinear formulation of
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the dynamical problem is given in Sec. Il, neglecting motion :

in the surrounding medium and focusing on the cylindrical W|

basic state. However, extension of the same formulation can :
be used for the examination of different basic states, e.g., fout
those that due to gravity have amphora shapes and, because Sout
of this, internal fluid motion due to the electric stresses. This :
is left for future investigation. The linear limit of infinitesi- —— - ET__.
mal disturbances is examined next and the governing differ-  —— Ve=LE,

ential equations of the eigenvalue problem that determines
bridge stability are developed, Sec. Ill. Due to the finite size &in
of the bridge and the effect of internal fluid motion the prob- Sin
lem is best tackled numerically. Thus the finite element
method is used for the discretization of the governing equa-
tions inside the two fluids. The resulting set of algebraic % //%/
equations provides the eigenvalues of the two-fluid system as 5
a function of the parameters of the problem: the Ohnesorge

number, Ok= ,u/(p’yR)llz, which can also be viewed as an F!G. 1. Schematic diagram of a liquid bridge immersed in a dc electric field.
inverse Reynolds number of the flow, albeit based only on

the properties of the bridge fluigh, « signify its density and ~

viscosity, andy the interfacial tension that measures the shape. Although the radius of each r&,, is significantly
relative magnitude of viscous and capillary forces, the bridgdarger than the radius of the contact line, it is assumed that
aspect ratioA = 7R/L, the ratio between the two dielectric the latter remains fixed, especially under the small bridge
constantse= e;, /€, the ratio between the conductivities of Perturbations that we consider in this work. Nevertheless, in
the two fluids, S= oy/o, and the dimensionless electric Practice, one can place at each contact area of the rods
field strengthCe = (€0 E2R)/ v (Eq signifies the magnitude ©0-Tings or a disk of suitable material with very small but

of the axially applied electric fie)d The numerical solution Sufficient thickness to prevent spreading of the liquid on the
is outlined in Sec. IV. This procedure is slightly modified in €St of the rod's surface. As a result, the contact line is forced

Secs. IVA and IVB in order to capture eigenvalues corre-0 remain fixed even for larger disturbanc@s®A dc electric

sponding to normal modes that are symmetric and antisymi€ld i applied between the two rods as a means for studying
metric, respectively, with respect to the mid-plane defined bytS effect on bridge stability. Bulk properties of the liquid
the two plates of the bridge. This essentially reduces thédensity,p, viscosity, s, dielectric constants;,, and electric
computational cost by one-half of the original due to theconductivity, o) as well as interfacial propertiesurface
reduction in the computational domain. In Sec. VA a de-tension,y) are uniform and constant under the present iso-
tailed account of the results of the numerical eigenvalue calthermal analysis. In most practical applications the surround-
culation is presented in terms of the frequencies and th#'d material is a gas and, thus it is assumed that it has neg-
amplification/damping rates of the bridge. The stability limit igible density and viscosity, but uniform and finite dielectric
of the bridge is also given, as this is described by the minifonstanteyy, and electric conductivityy oy o
mum value of the aspect ratid, ,;,, required for the cylin- .Small dlsturbances may mma;e .motlon of t.he liquid,
drical bridge to remain stable, and its variation with the prob-Which can be easily detected at its interface with the sur-
lem parameters, in Sec. VB. It will be seen that someounding medium. For aX|symmetr|c~brEjges, this surface
important findings regarding the stability of jets, treated asvaries with the axial distance and timiz,t). Nonaxisym-
leaky dielectrics, in the presence of a longitudinal electricmetric disturbances are not considered here, since it is known
field!® persist in the case of liquid bridges. In addition, gen-that they manifest themselves at very large field strenths.
eral trends of leaky dielectric behavior observed experimenT he physical properties of the liquid and the geometric scales
tally are reproduced. Finally, in Sec. VI the numerical resultsof the bridge affect its motion and stability, as was shown by
are discussed and explained in view of the physics of thdsamopoulo®t al®in the absence of an electric field. In the

)’

problem and conclusions are drawn. latter study the combined effect of gravitational and viscous
forces on the stability of a liquid bridge was examined. Here,
Il. GOVERNING EQUATIONS the research effort is focused on how a dc electric field acting

in the axial direction affects both the Plateau stability limit

We are interested in examining the stability of a liquid 3nd the frequency and damping rate of the bridge. To this
bridge that is formed by placing liquid between two station-gngq, the bridge is assumed to oscillate in zero gravity or in a
ary, cylindrical and coaxial rods which are at a distahce neutrally buoyant environment neglecting any density mis-
from each other. In the absence of gravity and of an electrignatches between the two fluids. This flow configuration has
field the bridge takes the shape of a perfect cylinder as longeen realized in various experimental studies, Gonzalez
as the~PIateau stability limit is not exceeded, iles27R, et al,'® and Sankaran and Saviﬂ%among others, and more
whereR is the radius of the circular contact line that the recently aboard the space shuttlehere the effect of buoy-
liquid bridge forms as it wets the two planar surfaces; Fig. 1ancy was practically eliminated. The present investigation
It is well known that capillary forces sustain the cylindrical focuses on calculating the eigenfrequencies and eigenmodes,
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relating them to the physical properties of this system such In the interfacial force balances that primarily govern the
as the conductivity and dielectric constant ratio, and finallydeformation and motion of the free surface, electric stresses
on comparing them against previous theoretit§land ex-  will necessarily arise. Their determination requires the calcu-
perimental findings/~'° The usual cylindrical coordinate lation of the electric field in both the bridge and the sur-
system (, 6,z) is used, which is taken to be coaxial with the rounding medium. At this point it should be stressed that
two rods with its origin located midway between them. both media are taken to be charge free, since their respective
In the following, the full nonlinear formulation is given charge relaxation time€; % &, /oi,, €ou/Tou, are much

describing the dynamics of a liquid bridge that is surroundedmaller than the characteristic time for bridge oscillations
by a passive fluid. The formulation allows for treatment of (bridge radius up to 1 cinwhich is scaled via R3p/y)'2.

the two fluids as either perfect or leaky dielectrics. First theTherefore, Gauss’ law for a charge-free medium that is lin-
conservation equations of mass and momentum for the liquidarly polarizable and uniform, irrespective of being perfect

in the bridge are written in dimensionless form: or leaky dielectric, reduces to calculating the electric poten-
tial in either phase by solving Laplace’s equation:
VZvin,out: 0, (7)
Jdv
(9—£+Q'V_U) =—VP+OhV. 1y, (2 where the electric field, charge and potential are made di-

mensionless by a characteristic fiel:
where the velocity components in cylindrical coordinates are T
v=(u,u,w) and the stress tensor due to viscous forces is E=E,E, Q=(¢.,Eo)Q, Vz(EO—)V,
defined by Newton’s Ianm=[V_v+(V_v)T]. As will be ™
seen in the following, the relaxation time for the electric _
charge in the bulk of the fluids is much smaller than the E=VV, E=
bridge oscillation time. This prevents any free charge from

appearing in the bulk of the liquid and, thus no electrice,,=epneq, €ou=€su€o COrrespond to the permittivities of the
stresses arise in E@2).' Variables have been rendered di- inner and outer fluids, respectively, wigg=8.85x 10~ 2 (in
mensionless with respect to their dimensional counterparts 84KS units) denoting the permittivity of free space. The

Vv, 8

follows: boundary conditions associated with the imposed field set the
_ ~ electric potential to be constant along each rod/fluid interface
z:~zz [= I_ pP—P E extending all the way to the dimensionless radius of the rods,
L’ R’ y' R, /R:
~ 3 . -~ ~
~(pR SN2 b o VOr, £ ml2)= £ ml2, 0<r<R/R (9)

v=uv|— t=t| —3 i

Y pR and enforce symmetry at the common axis of the rods and

o i i i . ) . field uniformity far away from the bridge:
with tildes denoting dimensional quantities. Since there is no

characteristic velocity in this problem, only physical and Vv
geometrical properties appear in the dimensionless number  gr
that arises in the momentum balance, &), the Ohnesorge

number, Ok= u/(pyR)Y2. Alternatively, the inverse Oh can lim
be viewed as a modified Reynolds number of the flow. Dif- .. &
ferent length scales have been used in the radial and axial ) . ~
directions and their ratioA=7R/L, is the second dimen- In most experiments the radius of the two roBs, is about

sionless parameter of this system. It arises, for example, if0 imes as large as the bridge radiis,and this has been

in

(r=0,2)=0, (10a

out

(r,z)—0. (10b)

the dimensionless form of the gradient operator: shown to allow for neglecting end effects in the electric field
at their edge$®'®
d 190 d The boundary conditions on the fluid/fluid interface de-
V=e—te —pteA—. (4 pend on whether the materials are assumed to be perfect or

_ _ _ leaky dielectrics*°If both fluids are assumed to be perfect
The usual no-slip and no-penetration boundary conditionglielectrics, they do not carry any electric charge even at their

apply at both solid surfaces, common interface and they do not allow any current to pass
o(r.z=+1=0. ) through thIS interface, where Gauss'’ law again holds:
en-E"=n-E* atr=f(z), (11

We will take the azimuthal velocity to be zero throughout the

bridge. Also, since we will be considering only axisymmetric Where e=€j,/€,¢. If both fluids are assumed to be leaky

disturbances, the radial velocity and the radial derivative oflielectrics, surface charge will arise at their common inter-

the axial velocity are zero at the centerline, face. Then, the conservation law of surface chakg Il in
Melcher and Tayldf) equates the rate of its accumulation on

©6) the interface tdi) the net flux of charge to the interface from
either phase(ii) the net rate of addition due to surface cur-

ow

ZW_O' r=0.

u
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rent, and(iii) the net rate of charge overtake due to the trans- e —Af,e,
lation of the interface along its normal. Thus the interfacial 0= ~piz (18
charge conservation equation reads
50 ) Afete, 19
. _: ﬁ_y
o = SDE"— 0 EM= SVSK 0 v (pe,ou Pein) D

whereD=1+A2f§ and subscripk denotes partial differen-
at r="f(z1), (12 tiation with respect to that coordinate. For an incompressible
whereS= o, /o4y, Vs is the surface divergence, ardrep- and uniform material, the electric stress tensor is defined

1
resents the surface current density which includes contribuStrattort’) by
tions due to convection and conduc'tiop of surface chérge, Te=EE—3|E[2l with Fo=r7eeoES, (20)
Pe,in @Ndpe oyt represent charge density in the bulk of the two _ )
fluids, andt, is the ratio of charge relaxation time to the Where|E| is the magnitude oE. The curvature of the free

characteristic time for bridge oscillation: interface, has been made dimensionlessfb‘y1 and it is
~ given by
(€out/ oour)
. (13) 1+A2(f2—1f,) 1
" (pRIy)Y? —2H=(—ZZZ)—. (22)

(L+A2f)%2 f

The final boundary condition on the moving surface is the
kinematic condition that equates the velocity of the surface
do the liquid velocity there:

As mentioned already, for materials of interéstsulators
and imperfect conductorsand typical bridge diameters,
—0, wheread, becomes large for conducting materials. In
order to be consistent with the assumption of immediat
charge equilibration in the bulk of the fluid we will take JF

=0. In this case, the net surface charge can be calculated 0" =02 at r="f(z1). (22

posteriorifrom Gauss’ law: ) _ o
, Throughout the motion, the line of contact of the liquid/
Q=en-E"-n-E®" atr=f(z1t). (14 gas interface with each cylindrical rod remains fixed at the
Of course, for both perfect and leaky dielectrics, the irrota—e_dge of eac_h o_r|g|nal contact s_unface. According to th(_a_analy—
sis by Benjamin and Scoff, this is the relevant condition,

tionality of the electric field reduces at the interfaces to re iallv wh h ; in th .
quiring that its tangential component be continuous orESPecially when a sharp corner 1s present in the supporting

equivalently, that the electric potential be continuous there:sOIId surface. Thus

. . = —+1
E'Em:E'EOUI or Vln:\/out at r:f(Z,t). (15) f(t) 1; z tz'”'- (23)
. h | ¢ q Finally, the volume of the liquid bridge must remain constant
Given the values of paramete, ande, Eqs.(7N)—(15) during the motion. Although other cases may be readily ex-

are sufficient to determine the electric field in both fluids, 'famined, the volume is taken here to be that of a perfect

their common interface is known. The latter is determined bycylinder spanning the distance between the rods:

the interfacial stress balance and the kinematic condition.

The total (mechanical and electrigatangential stress must B Y 1 (am (w2 B
be zero and the total normal stress must be balanced by the v= R 27 Jo ﬂﬁzf dz dg=. (24)
capillary force. This is compactly written as
| = P1+(Ohrm+ €Coiz"— Coiz2") |- n+2HN=0 IIl. BASIC STATE AND THE EIGENVALUE PROBLEM
at r=f(zt). (16) In order to calculate the eigenvalues and eigenmodes of

this system all equations will be linearized around a steady
The pressure in the outer fluid has been set to zero. In Egstate. To this end, small and volume-preserving disturbances
(16), Cq is the dimensionless electrical Bond number, whichwill be assumed for all dependent variables. Thus the dy-
is the ratio of the electric to the surface tension forces and isamic state of the system is described, in the limit of infini-

defined as tesimal disturbances of amplitude<l, as

~ 2"‘" r 1 r 7 r b

GOUtEOR v Up l_)p

Cer= : (17) Pl | Py P,
’ f f f
s . . . . b

The permittivity of the medium surrounding the bridge is Tl =| 7o | + S Tr: (25)
used in the above definition in accordance with previous ex- =1- =7- =7- ol
perimental studie¥ In all the above equations andt are if :leb i/e”
the unit normal and tangent vectors on the free interface, b P
respectively. According to the Mongepresentation, every LQJ L @] [ Qo]

point on the interface may be described by the position vecwhere subscripb indicates the base state and the subsgript
tor F(z,t)="f(z,t)e,+(z/A)e, and as a result vectorsand the perturbed one. When gravitational effects are negligible
t are given by the base state corresponds to a static cylindrical shape. Then,
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2H,=1,n,=¢,, andt,=e¢,. Therefore, the electric field in gvin - gyout of
both fluids is aligned with the axial direction and Edjl) or a_rp_ ﬁrp =A2(9—Zp(5— 1) atr=fp, (36)
(14) indicate that no charge is accumulated on the fluid/fluid
interface and no tangential electric stresses arise, whetheramd
perfect or a leaky dielectric model is used, respectively. In Pyt o
other words the electric field has no effect on a bridge of _ p 2 9Tp _
perfect cylindrical shape. Thus Qp=(e=S)| 5~ A5 ] atr=f. (37)
) 0 i Equations(35) and(36) constitute the linearized form of the
r Vb ] 1-Cq(e—1)/2 interfacial condition for the electric field pertaining to the
P, 1 cylinc_:jrical bridge situation at ba}se state, which is t_hg one
o 0 considered here. The last equation can be w@spdsteriorj
| 1 0 26 i.e., after the solution of the linear problem, in order to cal-
=mb 1 (26) culate the induced surface charge. It should be pointed out
Teb ) 010 that, as can be seen from E®7) the surface charge is ob-
Vi 0 0 -1 tained as the product o5 €) and the normal component of
L Qo] z the perturbed field evaluated on the side of the bridge fluid.
L 0 } Consequently the surface charge vanishes whem, as is

It i thy that the b . dified f th the case with perfect dielectrics. In the following we use this
IS notewortny that the base pressure 1S modified from %ondition,s= e, in order to identify perfect dielectrics and it

?ne ||r1tth;ahabd§$fnce of E?Iezt.”f f'fl.d by a Iacior tpfﬁ 'StproﬁorY/vill be seen that deviations from it will play an essential role
ional to the difference in dielectric constants of the two flu-; "y stability of leaky dielectrics.

ids, e~1. As e Is raised above unity the base pressure in the The linearized equations for the interfacial force balance,

?r]dgg _detchreask,)es, comngetlrr]ed :o ';h_e ;./allge it would have aJf'he kinematic condition, and the condition that fixes the two
ained in the absence of the electric field. contact lines read

Introducing Eqs(25) and (26) into the governing equa-
tions of the previous section results in a set of linear equag—pP | +(Oh 7+ €Ce|2'L"p— Celfg%t)]'f_‘ﬁ 2H,n,
tions in terms of the perturbed variables. The equations de- B i )

scribing the hydrodynamic aspects of the flow are +[ Pyl +2H,+ €Ceizeh— Ceizepl-0p=0, r=fyp,
V-u,=0, (27) (38)
Wo__y hv nb~eﬂ=nb-v r="fy (39
W___Pp—'—o _'Zmp! (28) = =r at . Yp:» y
vp(r,z=*3m)=0, (29) fo(t,z=*3m)=0, (40)
aw, where n,=—A(df,/dz)e, denotes the perturbed normal
Up=—-=0, r=0. (800 vector at the interface and, is the linearly perturbed sur-

face curvature:
The linearized equations for the calculation of the electrical

X 2
field are 2Hp=—fp—A2<;;2p- 1)
V2VpUt=o, (31)
i ou -~ ~ It can be easily shown by applying the divergence theorem
Vo' (r,=m/2)=0, 0=<r<R//R, (32 on the linearized continuity equatiof27) in conjunction
oy with the kinematic conditiori39), that the linearized volume
—P(r=02)=0, (339  conservation is automatically satisfied by any linear distur-
ar bance that initially preserves the bridge volume. Thus vol-
out ume conservation need not be imposed as an additional in-
lim —"(r,z)—0, (33p  dependent condition that has to be satisfied by the bridge.
P Finally, according to the standard methodology, all perturbed
) variables are expressed as
Vo=Vt atr=f, (34) -
. . .. . . . [ u (r,zyt) 1 U(r,Z)
with the following condition for a perfect dielectric, resulting P —
from Eq. (11): Wp(r,z,t) w(r,2)
. ot V(r,z,t) V(r,z)
Mo Mo oMo gy arr=t, (35 Pplr,2t) | =) Pr.2) fe=, 42
ar ar 0z fp(Z.t) f(z)
or with the following two conditions for a leaky dielectric, Tep(rZ) || Ze(r,2)
resulting from Eqgs(12) and (14), respectively: L Qp(t) | | Q |
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whereo is an eigenvalue of the system and it is complex inmethod is employed. The radial and axial velocity compo-

general,c=o,+io;. After introducing Eq.(42) into the nents as well as the electric potential, the perturbed pressure,

equations for the perturbed variables, an equation set is oland the perturbed shape are represented by biquadratic La-

tained that is similar to the one given above, except for therangian functions®;(r,z), bilinear Lagrangian functions,

substitution for the time derivatives( )/dt— — o (). X;(r,z), and quadratic Lagrangian functiof(z), respec-

Typically, a distinct eigenvalue corresponds to eachtively:

eigenmode. If the real part of all eigenvalues is positive, the

base state is linearly stable and the distinct values,adnd u N | U

o correspond to the damping rate and frequency of each | W|(r,z)=>, | Wi |®;(r,2),

mode, respectively. On the other hand, if the real part of even Vv =1 v,

one eigenvalue is negative the system is unstable. Clearly the (43)

values of o depend on the parameters of the system __ M _ L

(Oh,A,C.,€,S). Points in the parameter space at which  P(r,2)=2, piXi(r,2), f(2)=2, fiQi(2),

o,=0 are identified as bifurcation points from the perfect =t =t

cylindrical shape. It should also be noted that, if needed, thgere L, M, andN are the number of coefficients in each

methodology followed in this section can be used in order ta,mymation. Galerkin’s procedure is employed in order to

study the stability of more complicated basic states, namelygnsiryct the residual equations. Equatiai) is multiplied

those pertaining to “amphora” shapes induced by gravitypy the trial functionX;, Eqs.(28) and(31) are multiplied by

and entailing internal motion of the fluid. Clearly then, the e trial functiond; , and Eq.(39) is multiplied by the trial

details of the initial bridge configuration will be different f,ction Q. Subsequently, they are integrated over the re-

from those given in Eq(26). Such an examination is not gpective domain. Integration by parts or the divergence theo-

pursued here and is left for a future study. rem are applied, where necessary, in order to reduce second-
order derivatives to first-order ones. Thus the weak form of

IV. NUMERICAL SOLUTION the governing equations is obtained:

Equationg27)—(41) will be reduced to an algebraic gen-
eralized eigenvalue problem for the eigenvalugsand the R :J X,V -7 qdA (44)
corresponding eigenvectors. To this end, the finite-element LAt T

1 _ o _
— Ut —(=P+Oh7pg)e, d)idA+J V®,-(—Pl+Ohz,)dA
A

RMi:J
A

/2 — 2 O')f_
+f q)|2H§r dZ-I—f (Di(_Pb+l)A _E QZdZ‘f‘f

— /2 —ml2

ml2 in out ﬁf_
leq)icel(el'elb_ Ze|b)|r:fb‘/\ AL dz

w2 1 1 —
; o — =72 —- =2
+f /Zq)icel(€ZeI_Ze=Jt)|r:fb'(_':‘rdz_ JO QrTmrzq)ilizq—Tw/Zrdr"_fo gz(P_Tmzz)q)i|§:7—Tw/2rdr! (45)
ay

- ID, gyinout 9D, gyinout nuity, momentum, electric potential, and kinematic equa-
RE;OUI—L(W o 2 e ) tions. In these general expressioé=rdrdz, O=<r<f,
_ =1, —w/l2<z=m/2, and H,=2He °'. Boundary condi-
. fwlZ O 8V'“’°”1 dz tions (30) and (38) have been incorporated in EG5) and
). o o Eqgs.(333, (33b) have been incorporated in E@6). It is the
b coupling through the interfacial balances atf,, that brings
1 gyinoufz=m/2 about the influence of the electric field on bridge oscillations
+ 0 P 0z 12 /Zr dr, (46) and stability. In Eq(45), if we concentrate on the interfacial

terms and ignore, for the moment, the contribution due to the
disturbance in the curvature then the line integrals involving
/2 - interaction between the base state and the correction to the
RKi:f W/ZQi(_O'f_U)dZ. (47 normal vector at the interface due to the disturbance,
A(ofldz)e,, along with the line integral involving interac-
tion between the perturbed electric stresses and the base nor-
The residualsR;, Rui, Rg;, andRy; correspond to conti- mal vector,g,, give
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/2 of 72 &Vn aVOUt
f—w/2¢i(_Pb+l)A " 72)% 97 f—ﬁlzq)ir g — dz
~'b
w2 . &f_ 2 (?Vn 07_
+ ®,Cq(erm,— 72|, _ -A(——)e dz - , A2
J—'n'/Z iCel(€7elb™ Teib)|r f, 9z &2 = 777/2<I),r o A 7 (1—¢) . dz (50
~'b
+ J”IZ quCel(f_Tﬁ—?g?t)h:f ‘e dz Instead, for a leaky dielectric, use of E@®6) reduces the
— 72 === b same contributions to
_ f ml2 ®.C gVin L g - 2 o avin - gyout g
-7 aice Gra-ae| a2 w9 | el S-S z
r=fy r="fy
[ el [ segi)as )
= dir —A“—|(1-9) dz (51
for a perfect dielectric$= €), whereas for a leaky dielectric . ar Jz =1,

they read . .
In an effort to improve the accuracy of eigenvalue calcula-

tions for the case of very large conductivities of the bridge
— fluid compared with the surrounding mediu®;-o°, as is

f”’z ®,(-Py+1)A| — a_f) e,dz the_ case .with certain pairs of ﬂluids often uged in experi.men—
—al2 Jz tal investigations, e.g., water/air or castor oil-eugenol bridges
i b suspended in silicone dit*®in Egs. (49) and (51) we set
n i ®.C in _outy -A( _ —)e d S—e~S and S—1~S, respectively, and subsequently we
f—W/Z Ceilezein™ zemwlr=r, az)=* apply the interfacial conditiofi36) in order to introduce the
i term
—in _—out .
+ f_W/ZQiCeI(€ZeI Tel )|r:fb e dz aVSUt_ Zﬂ
_ ar Jz
/2 FAVAL .
=f O,Cq W(l_f)gr‘F(E_S) instead of
— /2 .
_ _ v of
A P_,2%p
1 ov" d T AT S
X(K o _AE) e, dz. (49) ar 9z
r="fp thus eliminatingS from the problem formulation while intro-

ducing O(1) quantities in the numerical formulation which
are easier to approximate.

The rest of the essential conditions will be dealt with in the  Equations(43)—(51) constitute a generalized eigenvalue
next subsections. At this point it is important to note that inproblem of the form
the case of perfect dielectricS= ¢, the only surviving stress Ax= oBx (52)
component on the perturbed surface is the normal one. When == ==
leaky dielectrics are considered both normal and tangentiahere A and B are coefficient matrices andis the eigen-
electric stresses are acting on the two fluid interface, as aector corresponding to the eigenvalaeAn IMSL routine
result of the perturbed electric field. This feature of leaky(DGVLRG) may be used in order to calculate all the com-
dielectrics was also pointed out by Sawvifiéin the context of  plex eigenvalues and eigenvectors of the discretized equa-
jet electrohydrodynamic stability and will be seen to play antions for given values of the problem parameters. Owing to
essential part in the determination of the stability characterthe large storage and CPU time requirements associated with
istics of a liquid bridge also. calculating all the eigenvalues via the IMSL routine, the Ar-

In Eq. (46) the plus and minus signs in front of the line noldi method was used which calculates a restricted number
integral atr=f, correspond to the inner and outer fluids, of the eigenvalues depending on their magnitude. This ap-
respectively. In general, a different electric potential is dejroach follows closely the variation of the Arnoldi method as
fined in the inner and the outer fluid. However, continuity of developed by Lehoucq and Sctivho have incorporated
potentials at the fluid/fluid interface, E(4), eliminates the several improvements in the original Arnoldi algorithm and
outer potential there, for example, and one may treat thenade it available through the internet. We typically calcu-
electric potential as a single variable in both fluids. On thelated up to 100 eigenvalues with the Arnoldi method. In this
other hand, this variable must have a discontinuous normdhashion the computation of eigenvalues of3800x<3300
derivative at this interface. This discontinuity can be easilydouble precision matrix and, when needed, the correspond-
incorporated in the finite element formulation, through theing eigenvectors required about 50 min in CPU time as op-
line integral atr =f,, in Eq. (46). For a perfect dielectric and posed to 3.5 h using the standard IMSL routine on a SG
for an initially cylindrical bridge, Eq(35) reduces the con- Origin 200 that calculates the complete set of eigenvalues.
tributions to this line integral from the two fluids to The calculation of the eigenvectors follows the procedure
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described in Ref. 8. On the other hand, the computationahxial momentum balance there. On the other hand, the natu-
effort and requirements may be reduced by a factor of 2 oral condition(54) atz=0 eliminates the line integral involv-
more and the accuracy may be increased by calculating sepmg 7, from the radial momentum balance in E@5).
rately the symmetric and antisymmetric modes of the systenSimilarly the electric potential is symmetric at the midplane:
In fact, the results of the numerical investigation presented in —
Sec. V were obtained in this fashion. In the process, proper 9dV/dz=0, z=0. (57)
boundary conditions must be setzat 0, so that only half of
the domain is discretizetD<r<R,/R, 0<z<x/2). These
conditions are explained in detail in Secs. IVA and IV B for
symmetric and antisymmetric modes, respectively.

The accuracy of_ the numeri_cal results has been verifie%_ Antisymmetric modes
by calculating the eigenvalues in the absence of an electric
field and comparing them with those calculated by Tsa- Antisymmetric shapes of liquid bridges arise when the
mopouloset al® and with those calculated by Borkar and interface shape, the radial velocity component, and the elec-
Tsamopoulo¥' in the limit of very small Ohlarge Ré num-  tric potential assume the same numerical value, but with op-
ber. Convergence of eigenvalues has been verified by refingosite sign above and below the mid-plane. For example:
ment of the mesh in both the and zdirections. Twelve
elements were found to be sufficient in the radial direction in ~ Ulz=+8z=~Ulz=-az,  2=0. (58)
each phase, appropriately packed around the fluid/fluid intersjnce all three variables are continuous functions, it follows
face. Extending the outer domain R /R=10 was found to  that
be sufficient, so that the calculations are not affected by its
actual location. A ratio oR,/R=80/5 was used in the ex- v
perimental investigation of Gonzalet al1® whereas the ra- an T o
tio between the diameter of the outer glass containment, four (59

cm, and the diameter of the rings containing the bridge in thgn this case the bridge shape is described by a summation of

apparatus described in Refs. 18, 19, 4.7 mm, is roughly 10.. . "
Furthermore, 16 elements are required in the axial directioﬁr:nes' Due to the essential conditions, H§S) and(32) on

(in the half of the domainin order to achieve at least four t _ﬁ eletcgnc p.(:ttentlazl szltztOt,handqg/Z, rgspectl\(/:ely, bE.q.(46)E
significant digits of accuracy in the first mode, especially for W Not be wnitten at afl at these boundaries. ©ombining £4s.

small values of Oh. Accuracy drops to three significant digits(sg) and(27) yields

Therefore, the last line integral a=0 will be discarded
from Eq. (46), and this equation will not be written at all at
z= /2 due to the essential condition, E&2).

M — IV —
==f=0 at z=0 and for n=1,2,....

for higher eigenmodes. Finally, it was also found thatAas oW

approaches zero, accuracy decreases. Therefore, eigenvalues o7 = Tmzz~ 0, (603
obtained in that limit are reported here up to the computed

accuracy. z=0. (GOb)
A. Symmetric modes Also due to Eqs(58) and(59),

plane of the bridgez=0, when — =— (61)

Shapes of liquid bridges are symmetric about the mid- (;ﬂ (ﬂ
0z z=+Az 0z zzfAz’

ofl9z= 0, z=0. (53 . .
and in the limit ofAz—0,

According to the analysis by Tsamopoulesal® the eigen- —
vectors then correspond to the odd modes, so that shapes are 9°U _
described by an infinite summation of cosines. Moreover, the ~ 9z2 '

radial component of the velocity must be symmetric and the o ] )
axial component must be zero at the midplane: Substitution of Eqs(59), (60), and(61) into the radial com-

ponent of the momentum equation reduces itof/Jr(z

z=0. (62)

duldz=w=0 at z=0. (54 =0)=0, which upon integration gives
Using Eqgs.(27) and (54) it may also be shown that P—const 7=0 63)
Tmr=°W/9z2=0 at z=0. (55)

Without loss of generality, this constant is taken to be equal
Finally, introducing Eqs(54) and (55) in the axial compo- to zero. Again, in order to solve in the upper half of the
nent of the momentum balance results in domain, the essential conditions at the upper plate (3,
— allow for discarding both of the momentum balances there.
9P/9z=0, z=0. (56) Similarly, atz=0 the essential conditiof59) allows for dis-
In order to solve in the upper half of the domain the essentiatarding the radial momentum balance there. On the other
conditions at the upper plate, EQ9), allow for discarding hand, natural conditiori60b) along with Eq.(62) at z=0

both momentum balances there altogether. Similarlyz at eliminate the line integral involving R—r,,,) from the
=0 the essential conditiob4) allows for discarding the axial momentum balance in E¢45).
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FIG. 2. Schematic representation of the first two axisymmetric eigenmodes; (@) Oh
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V. RESULTS AND DISCUSSION

A. Eigenfrequencies and damping /growth rates of the 204
liquid bridge

15 4
Using the above described numerical methodology an %

extensive parametric study was conducted aiming at identi- |, |
fying the dynamic characteristics of a bridge of finite length

in the limit of infinitesimally small disturbances. To this end, 5

the real(damping rate,o,>0, or growth rate,o,<0) and

imaginary partgfrequency,o;) of the first four eigenvalues 0 . [ . - :

were monitored. They correspond to the volume preserving (b) ° ’ Yoont B 2 o %

yaricose eigenmodes with 1.’ 2, 3’.and 4 extrema in the.hallzlG. 3. Evolution of the(@) real and(b) imaginary parts of the eigenvalues
interval (Og_ZS ml2), re_spectlverFlg. 2 shows a S(_:hemfatlc corresponding to the first four eigenmodes,j=1....4, with increasing
representation of the first two modes for the entire bridge on-1; s=100, e=80, A=2, C,,e=0.6.

As a first step toward connecting the results of this study

with those available in the literature, the effect ofsREOh

is examined on the linear dynamics of a bridge characterizedse to an overdamped pair of two real positive ones indicat-
by the following dimensionless quantitied:=2, e=80, S  ing pure damping. Such a trend has also been identified by
=100, andeC,,=0.6. These are simply taken as representaTsamopoulot al.? in their study on the stability of liquid
tive values chosen in order to exemplify general trends. Situbridges when the density mismatch between the interior and
ations corresponding to specific pairs of fluids inside andexterior fluids is neglected and in the absence of an electric
outside the bridge will be considered at the end of this secfield, and by Strani and Sabettaor viscous drop oscilla-
tion. Figures 8a), 3(b) show the dependence of the dampingtions.

rate and frequency on OR. In general, higher modes cor- Figures 4a), 4(b) show the effect of the electric field
respond to bridges with more distorted shapes which, for thiintensity, as this is expressed throu@h,, on the damping
reason, are damped faster. Similarly, surface tension is momate and oscillation frequency of the bridge=2, Oh=0.1,
effective with disturbancies of smaller wavelength leading toe=80, andS= 100. The almost linear increase of bathand
higher frequencies for the higher modes. In the limit aso; with C, indicates the tendency of the field to stabilize the
Oh -« the damping rate of the four modes approachesridge. It will be seen in the following how this behavior is
asymptotically zero as predicted by inviscid thedSanz affected by the particular choice &@ande. This monotonic
and Die2” and boundary layer thed®in the absence of an dependence is a consequence of the stretching of the bridge
electric field. As Oh! becomes smaller, OH<5, viscous surface induced by the repulsion forces between electric
damping increases logarithmically, a behavior also observedharges that are induced on the fluid/fluid interface due to the
numerically by Strani and Sabettdor viscous oscillations  field. In addition, the values obtained when the electric field
of free or supported drops. It should also be mentioned thais turned off,C.=0, agree very well with those shown in
besides the fact that here>0.5, the presence of an electric Fig. 2 and Table Il in Ref. 8 when the gravitational Bond
field further stabilizes the already stable bridge, given thenumber is zero. The produ€l, e is used here as well as in
particular value foiS as will be discussed later. The frequen- the following graphs, representing a dimensionless electric
cies of the four modes approach a constant value in the limifield based entirely on properties of the bridge fluid.

of large Oh'!, whereas they decrease sharply as Ohe- The effect ofe and S on bridge dynamics is shown in
comes smaller than, roughly, 5.0. This effect is more intens&igs. 5a), 5(b), 6(a), and &b), respectively; in Figs. &),

for higher eigenmodes. It is anticipated that for some smalb(b), A=2, Oh=0.1,S=20, andC.,e= 0.6, whereas in Figs.
but finite value of Oh?! the complex eigenvalues will give 6(a), 6(b), A=2, Oh=0.1, e=80, andC,,e=0.6. The effect
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. . S . _ FIG. 5. Evolution of the(@) real and(b) imaginary parts of the eigenvalues
of increasing the permittivity ratie is to decrease the damp corresponding to the first four eigenmodes,j=1....4, with increasing;

ing rate, Fig. %), until a constant positive value is reached s-29,c_e=0.6, A=2, Oh=0.1.
asymptotically for large values af An interesting effect of
increasinge is observed in the imaginary part of the eigen-

values, representing the frequency of bridge oscillations, Fig. . . .
5(b). In particular, the frequency of the fourth mode is of the damping rate for all four modes with decreasiig

slightly increasing rather than decreasing as the inner ta—.h's 'z mostlyt?ue tfofthf des;[sblllzmg ?ﬁzgt. ofdsurface tjen—
outer permittivity ratio is increasing. This is probably due to slon. As a matier of 1act, as e aspect ralios decreased
the stronger effect of the normal force on the bridge due t(PeIOW 0.42 the damping rate of the eigenvalue corresponding

the electric stresgradial component of the force in E¢19) to :[thg_l_ftlrstFas[)\/rQrgitzrli:h mt?,\(lje becolmes nggautv N |_nd|cat||ng
or (49)] which intensifies bridge oscillations. Similar is the Instability. Tor : € two complex conjugate eigenval-
effect of € on the eigenvalues wheB<1. ues of the first mode turn real, one positive and one negative.

As shown in Figs. &), 6(b), the effect of increasingis Only the latter one, indicating instability, is shown in Fig. 7.

to stabilize the bridge by increasing the damping rate. In fact’,o‘ similar behavior is exhibited by the first symmetnc mode
as the conductivity ratio acquires large positive values thé(yhenA<0'1' In fact as\ further decreases higher as_ymmet-
real part of the eigenvalues increases until it reaches a plé'-c and symmetric modes' become.unstable. Evaluation of the
teau approaching an asymptotic value in the ligit © with exact value of aspect ratit fpr which suc.h' qugs become

€ constant. A similar behavior is exhibited by the imaginaryunStable_ Was_not _purs_ued since _the stability I_|m|t of a cylin-
part. WhenS=e, the leaky dielectric model reduces to a drical bridge is pnmanly_determlne_d by the first mode and
perfect dielectric one and the eigenvalues obtained b)Bhe accuracy of calculations deteriorates whierbecomes
Gonzalezet al® are recovered. excessively small.

The effect of the aspect ratid on bridge stability is
shown in Figs. Ta), 7(b) in terms of the variation of the
damping rate and frequency, respectively. The well known As mentioned above, an important measure of the effect
fact that a longer bridge, of a cylindrical shape with smallerof the applied electric field on bridge stability is the critical
A, is less stable than a shorter one of the same volume wheralue of the aspect ratid\ ,;,, below which the bridge loses
subjected to an axial electric field, is reflected in the decreasstability to the first varicose mode. An extensive discussion

B. Bridge stability
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on the effect ofS and e on the stability of a liquid bridge of obvious and will be better demonstrated in Sec. VI. Thus
finite length as well as specific conditions for which applica-when (S—¢€)>0 the tangential stress stabilizes the first
tion of an axial field can actually be destabilizing, as itsmode and consequently the bridge, reducing, below 0.5.
intensity increase@ncreasingCy), are given in the follow-  Similarly, whenS>1 ande>1 the normal electric stress has
ing. A numerical search was conducted on the evolution of stabilizing effect on the bridge. The opposite happens when
Amin @s a function of the problem parameters and it wagS—e€)<0 and S—1)(e—1)<0. The overall effect of the
found that the stabilization or destabilization of the electricelectric field on the bridge is a result of the combined effect
bridge, in other words whether the minimum aspect ratio forof these two stress components. Figure 8 shows the evolution
bridge stability A ., lies below or above 0.5 which is the of A, with increasing strength of the axial fieldC,,, for
value obtained in the absence of the electric field, depends ddranging between 30 and 0.6set to 10 and Oh to 0.1. As
the factors §—¢€) and (S—1)(e—1) as suggested by Sincreases from its value corresponding to perfect dielec-
Saville'® for the case of a cylindrical jet in the presence of antrics, S=e, application of the field has a stabilizing effect
electric field that is aligned with its axis of symmetry. Upon forcing A i, below 0.5, withA ,, decreasing as the devia-
closer examination of Eq$48)—(51) it becomes evident that tion of S—e from zero grows larger. As soon & e be-
(S—€) signifies the action of the tangential stress due to the&eomes negative the tangential stress has a destabilizing ef-
perturbed electric field on the bridge. On the other hand, théect, whereas $—1)(e—1) is stabilizing as long asS
factor (S—1)(e—1) signifies the effect of the normal elec- remains above unity. Thus there is a critical valueSdfe-

tric stress on the bridge. This was first pointed out in Ref. 153ween 2 and 9 for which application of the electric field
for a cylindrical jet, its validity for the case of a bridge is not actually destabilizes the bridge and this destabilization be-
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electric field intensityCye, for different values of the conductivity ratia)
254 S=0.2,(b) S=0.49,(c) S=0.5,(d) S=1, (e) S=2, €=0.5, Oh=0.1.
2,0

intensity of the electric field increaseg$Nayyar and
Murthy?’). At the same time, however, it points out an im-
portant difference between leaky and perfect dielectric mate-
rials, which has also been confirmed experimentAIly,
namely that the application of the electric field can deterio-
rate bridge stability whe®<e.
A similar set of numerical results is shown in Fig. 9%&s
0.0 increases from 0.2 to 2 withset to 0.5 and Oh to 0.1. In this
® A case, whergis much smaller tham, the destabilizing effect
FIG. 7. Evolution of the(a) real and(b) imaginary part of the eigenvalues Of the tangential stress dominates over the stabilizing effect
corresponding to the first four eigenmodes,j =1....4, with increasing\; of the normal one and application of an electric field desta-
Ce1€=0.6, €=80, 5=100, Oh=0.1. bilizes the bridge. ASincreases, somewhere in the interval
0.45 and 0.49, a critical value &is attained beyond which
) ) ] o _ the effect of the tangential stress dominates and the bridge is
comes more intense &, increases. This effect is intensi- gtapilized aseC,, increases. This behavior persists -
fied whenS drops below unity since the normal stress alsogreases beyond 1. In fact wh&becomes larger than, ap-
becomes destabilizing in this case. The above set of eigensoximately, 10, the field tends to stabilize the entire range of
value calculations essentially verifies for leaky dielectrics theaspect ratiosA, something that was also observed by
well known result for perfect dielectrics that both the critical gayillel® in the context of jet stability. A more specific com-
wave number at which instability arises as well as the initialy5rison with analytical resuftsas well as with experimental
growth rate of the most unstable disturbance decrease as tRgservation®1? is given in the following paragraphs. An
interesting aspect of the results presented in Figs. 8 and 9 is
that the stability criteria obtained in the present study agree
with those provided by the analysis of SavitfeThis is due
to the fact that the effect o and € on bridge stability is
determined through the interfacial conditions governing the
electric field, as will be demonstrated clearly in Sec. VI,
which are common in Saville’s analy$isand in the present
study. It should also be noted that Oh does not affect the
location of the bifurcation points signifying the transition
from the cylindrical bridge to an amphora, or in other words
the location ofA ., which can also be obtained via static
analysis as was seen for the case of perfect dielecftics.
Consequently, the stability characteristics of the bridge are
0’30,0 ol 02 03 04 0s 0.6 qualitatively represented by the criteria presented in Ref. 15,
u however, the actual location of the bifurcation poins,;,,
o o ) o is not necessarily the same as the one predicted in Ref. 15
FIG. 8. Variation of the minimum aspect ratid,;,, for a cylindrical

shaped bridge to be stable under varicose instabilities with increasing ele(‘s—Ince the latter StUdy Ignores the boundary Iayers near the

tric field intensity,Ce, for different values of the conductivity rati@) S twWO cylindrical rods supporting t_he bridge. o
=30, (b) S=10, (c) S=9, (d) S=2, () S=0.5, =10, Oh=0.1. We now turn to the comparison of the predictions pro-

S 1,5

0.5

0,0

0,8
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0,16 prediction but the qualitative agreement between our ap-
proach and Saville’s is obvious despite the fact that in the

—e— castor oil-eugenol/silicon oil
£ latter study a small Oh number was assumed for both the

- —=— water/ai . . ) .
o1z watenat inner and the outer bridge fluids. The case of water(air
~80, Re~sOh '~400, S—) was also examined numeri-
C o008 cally and it resulted in a much slower increase ®fvith
el

increasingeCy, (Fig. 10; 0<¢eC,<0.6. This is in agree-

ment with the prediction by Savilté that whene~80 the

0,04 - value ofCg, that is required for complete stabilization of the

bridge is 0.0064 7)=0.0628 or, in terms ofeC,, 5. It

should also be noted that application of the perfect dielectric

model for the eugenol-castor oil/silicone oil and the water/air

bridges predicts a much weaker stabilization of the bridge

(larger A,y than the leaky dielectric model discussed

. : L . ) ) " above; for example, for eugenol-castor oil/silicone oil

increasing electric field intensity;.,, for a bridge with castor oil-eugenol . L. . . .

and silicon oil occupying the inner and outer fluids, respecti&ly-oo, brldges appllcatlon of the perfect dielectric model gives

€=2.0, Oh=0.3) and a water/air bridgéS—, e=80.0, Oh=0.0025. Amin=0.49 when eC,=0.6. This also corroborates the
proposition by Savill¥® that leaky dielectrics require a much

) _ _ . lower field for their stabilization.
vided by the model presented here with previous experimen- 1o hair silicone oil/castor oil-eugenol with silicone oil
tal investigations of liquid bridge stability. As was first ob- occupying the inner portion of the bridge is obtained by in-

served experimentally by Sankaran and SaVillén terchanging the inner and outer bridge fluids in the experi-

terrestrial experiments, through the use of isopycnic Systems, antal setu : . : T
o p described in the previous paragraph. This is a
and subsequently verified by Burcham and Sailiboard a air of fluids that is more compatible with the theory devel-

zﬂzcz ?:t;l:gliiytir?y g;(ic?r?;}?mg‘ t‘:ecg;?;r (?ilnguouetﬁ(r)lﬂrl::g(stucr); gped in the present study since the silicone oil used in Ref.
9 g onginaily 9 17 is much more viscous than castor oil. Hence, to a first

and silicone, respectively, application of an electric field can, | roximation. viscous effects in castor oil can be neglected
destabilize the bridge. Thus when silicone is used as th PP ' 9 '

inner fluid of the bridge the latter is destabilized when an onsequently, besides the bridge stability limity, , which

electric field is applied. This result is a specific feature of thedoes not depend on Oh, the damping or growth rates that are

leaky dielectric model. In the same context it was concludec?bt"’mefj for such apairare expected to be more useful for a
comparison against experimentally observed rates than the

in Ref. 18 that bridge stability depends on the sign of the btained for th it sil | forming th i

factor (S—e€). In order to test these results in the presentgn.gs Oﬂ é?lj”eu or the Caﬁe Wi | s! |cotn Otl orm!ggd t? Og er

study bridge stability is investigated for the castor oil- rage fluid. Lsing the physical constants provided by an-
karan and Savilt€ we obtain the following values for the

eugenol/silicon oil pair of inner and outer bridge fluids, re—d_ ionl  the sili i | |
spectively, in Fig. 10. Geometrical characteristics of thel!MeNSIONIESS parameters of the silicon olljcastor ol eugeno

bridge as well as properties for the two materials are obP"d9€:€= €in/€u=0.54,5=0.005, Ok=100. For this set of
tained from Ref. 18R=0.24cm e=2.0 Re=Oh 1=0.3 parameter values aneC,=0.108, A i, was calculated nu-

and S>1. Due to the very large value & and in order to merically to be 0.56. The experimentally measured value in
avoid numerical error the case 6f-% was examined nu- Re€f. 18 iSL/2R=2.05, which becomea =0.76 in terms of
merically; more information on the modification of the nu- the definition for the aspect ratio adopted in the present
merical procedure in order to accommodate this limit isStudy- Figure 11 shows the effect of varying field intensity
given in Sec. IV. In Fig. 10C,, is plotted versus the maxi- Cel ON A.min for a silicone bridge Surrou.nded'by a mixture of
mum slenderness ratj.,= m(2A ;) in order to compare castor-oil and eugenol. Clearly, the bridge is destabilized as
our results with the experimental observations of Sankara#€ intensity of the field is increased, a behavior that is ob-
and Savillé® (Fig. 2 in their articlg. Clearly there is at least Served in the experiments of Sankaran and Satited is
qualitative agreement between the two graphs8s, in-  compatible with the leaky dielectric model as opposed to the
creases beyond the value obtained in the absence of an elderfect dielectric model which does not predict bridge desta-
tric field, B~3.14, there is an abrupt increase in the corre-ilization upon application of an electric field. The validity
sponding value ofC,, until a plateau is reached. In this of the leaky dielectric model for the castor oil eugenol/
plateau even the slightest increase in the electric fielgilicon oil bridges was verified experimentally in the micro-
strength results in a significant stabilization of the bridge, egravity environment aboard a space shdttso. However,
behavior indicated by the experimental observati§ridin  there are certain observations that do not conform with the
fact whenCq=0.15 A ,;;=~0.03 (Bmax=52) which amounts leaky or the perfect dielectric models such as the inability of
to an almost complete stabilization of the bridge. It is inter-an ac field, oscillating at frequencies much higher than
esting to note that Saviltein his analysis predicts that com- needed to nullify charge relaxation, to stabilize castor oil
plete stabilization of a jet witk=2 andS— is achieved bridges in the dielectric gas sulphur hexafluortd&F,, or
whenC,~0.03(4w)=0.37. Due to the increasing numerical the fact that the amphoras were always oriented with their
errors as\ ., decreases, we did not attempt to reproduce thidulge nearer the positive electrdfielespite the fact that the

L
0,00 A S
2 3 4 5 6
B

max

FIG. 10. Variation of the maximum slenderness rggg,= 7/2/A in , With
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FIG. 11. Variation of the minimum bridge aspect ratio,,,, with increas-
ing electric field intensityeC,,, for a bridge with silicon oil and castor -
oil-eugenol occupying the inner and outer fluids, respectively;0.005, 084 T 4 ) .
€=0.54, Oh=100. ;7 oI T T 1 v
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bridge deformation scales with the square of the field 044" 2 Tt ~ao ¥
. . v /. T
strength and therefore the deformation should be indepen AR i 7
dent of the field orientation. These are phenomena whost - \
nature is not yet understood and require further investigation o

VI. INTERPRETATION OF RESULTS AND
CONCLUDING REMARKS

As a means to obtain a better understanding of the pat:

tern of behavior regarding the variation of,,;, with the

problem parameters we resort to the contribution of electric

stresses to the momentum equation. Thus(&9). yields the

following form for the electric stresses contribution in the

momentum balance, multiplied kfy-1) in order to indicate a
force acting on the bridge from the surrounding fluid,

2

[ ey
[
[
[

X( _Aﬁ)gz

Closer examination of the right hand side of E64) reveals
two different types of electric force. The first term represents

Jf |
- (9_ ezdz

of |
_) €, dz

e|(€7'e|b 7'e|b)|r fy’ A(_ 97

eI(fTeI 7'e|)|r f’ g dz

{ (e=1)e+(S—e)

1 gV

X ar dz

r=fy

(64)

the normal force exerted on the bridge due to the differenc
in permittivity constants between the two materials. The last™

0,0

(b)

Stabilizing couple of
tangential stresses

Bridge liq
Destabilizing eouple of I
tangentia

Stabilizing normal stress

Axis of sym Destabilizing normal stress

—~
o
-~

FIG. 12. Variation in the Iongltudlnal directiorz, of f Nloz — — -

aNMar - - - -, dVar — —.—-— as evaluated at the bridge interface
for the elgenvector corresponding to the first mo@:S= 10, (b) S=0.5,
=80, eC,=0.6, Oh=0.1, A=2. (c) Schematic representation of the stabi-
lizing or destabilizing normal and tangential forces acting on the upper half
of a bridge whose interface is represented by the mode depicted,(in).

Eq. (36)] as a parameter for leaky dielectrics or the factor
(e—1) [see Eq.35)] for perfect dielectrics, given the shape
of the interface. First, the eigenvector corresponding to the
first eigenmode, which is the most unstable one, is calculated

gnd is normalized so that(z)>0 in the interval 6<z

< /2, Figs. 1Za), 12(b). Figure 1Zc) depicts the type of

term is always tangential to the interface, indicating a sheaformal and tangential stress that act in a stabilizing or desta-
force, and is present only when leaky dielectrics are considbilizing fashion on the portion of the interface depicted in
ered. The behavior of these terms depends solely on the sbigs. 12a), 12b). Examining the variation of the eigenvec-
lution of Laplace’s equation in the two media subject totor along the interface =1, it turns out that the tangential

boundary conditior{36) or (35), with the factor §—1) [see

derivative
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TABLE |. Effect of electric properties of the inner and outer fluids on bridge stab#ity.is a limiting value
of S below which application of an electric field destabilizes the bridge. It depends on the specific values
acquired bye andC, .

Normal electric stress-(S—1)(e—1),
(S—1)(e—1)>0—Stabilization (A ,;,<0.5), (S—1)(e—1)<0—Destabilization (\ ,,;,>0.5)
Tangential electric stress (S—e)

(S— €)>0—Stabilization (A ,,;,<0.5), (S—€)<0—Destabilization (\ ;;;>>0.5)

e<l e=1 e1
S>1 S>e¢ S>e¢
Tangential stress Stabilizing Tangential stress Tangential stress Stabilizing
Normal stress-Destabilizing Stabilizing Normal stress-Stabilizing
Overall effect-Stabilizing Over all effect-Stabilizing
S=1 S= € (Perfect Dielectrics
Tangential stress Stabilizing Normal stress-Stabilizing
e<S<1 S=e=1 (same fluid 1<S<e
Tangential stress Stabilizing No effect Tangential stressDestabilizing
Normal stress-Stabilizing Normal stress-Stabilizing
Overall effect-Stabilizing S<Sg,it Destabilization
S= € (Perfect Dielectrics S=1
Normal stress-Stabilizing Tangential stress Destabilizing
S<e S<e S<1
Tangential stressDestabilizing Tangential stress Tangential stress Destabilizing
Normal stress-Stabilizing Destabilizing Normal stress-Destabilizing
S< Sg,it Destabilization Overall effect-Destabilizing
GVin [ gyout magnitude ofS and e with respect to unity, as was pointed
7 | =32 out by Saville®

When leaky dielectrics are considered the tangential
is negative around the interface crest wi#n1, while the  stress component enters the force balance in(64). The
opposite is true wherB<1. The normal_derivative to the term—(df/dz) acquires negative and positive values around
interface on the side of the bridge fluidj\("/dr), changes the location of maximum displacement of the interface in
sign from positive to negative asincreases around the crest such a way that, wheB8> ¢, the shear forces corresponding
of the interface whets>1, whereas the change in sign oc- to this term on either side of the crest point away from it
curs in the opposite direction whé&@x 1. The exact opposite tending to eliminate large displacements and stabilizing the
is true for the normal derivative on the side of the fluid bridge. In the same fashion this term has a destabilizing ef-
surrounding the bridge,d{/°"Ydr). The same observations fect whenS<e. The same argument is true for the normal
hold for the case of perfect dielectrics usiagnstead ofS. derivative of the electric potential evaluated on the side of
Finally, the derivative of the perturbation of the interface, the bridge fluid V" or, whenS< 1. Namely, the stabilizing
df/dz, is positive before the crest turning negative as itor destabilizing action of the latter term depends on the fac-
crosses it approaching the fixed point attached to the uppdor (S—e€) with a positive value indicating stabilization.
rod. Turning to the case witB>1, in order to determine its effect

In this fashion, examining the normal component of theon bridge stability we first employ interfacial conditid86)
stress in Eq(64), which is the only remaining stress compo- according to which the term multiplyingSt- €) in Eq. (64)
nent in the case of perfect dielectrics, we can explain thés equal to
findings of Gonzalezet all® regarding the stability of an
electric bridge when both fluids are treated as perfect dielec- (

1 gvout af) 1

ar 0z

trics. More specifically, the tangential derivative of the elec- —.
tric potential around the crest of the interface behaves like S
—(e—1), or —(S—1) for leaky dielectrics, and consequently
its contribution to the force on the interface due to the nor-When S>1 the normal derivative of the electric potential,
mal stress component is like (e—1)?, or like —(S—1)(e  evaluated on the side of the outer bridge fluid, crosses zero to
—1) for leaky dielectrics. In fact, it will always be negative positive values around the interface crest in such a way as to
for perfect dielectrics, tending to eliminate the crest of theresult in a shear force that, for positi&- e, points away
interface thus stabilizing the bridge and maintainiNg,,  from the crest stabilizing the bridge. Consequently, for the
below 0.5, as predicted in Ref. 16. In the case of leaky dientire range of values & (below or above unitythe action

electrics the action of this term will depend on the relativeof the shear force on the interface is determined by the factor
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(S—¢€), a feature first pointed out in Ref. 15, with positive The authors also wish to thank an anonymous referee for
values indicating stability and\ ., remaining below 0.5 his/her insightful and helpful comments.
while the opposite is true wheB<e.
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