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Abstract

This work presents a strategy for integrating a class of model reduction techniques into a finite element model updating
formulation. In particular a Bayesian model updating approach based on a stochastic simulation method is considered in the present
formulation. Stochastic simulation techniques require a large number of finite element model re-analyses to be performed over the
space of model parameters during the updating process. Substructure coupling techniques for dynamic analysis are proposed to
reduce the computational cost involved in the dynamic re-analyses. The effectiveness of the proposed strategy is demonstrated with
identification and model updating applications for finite element building models using simulated seismic response data.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Model updating using measured system response has a wide range of applications in areas such as structural
response prediction, structural control, structural health monitoring, and reliability and risk assessment. [1–7]. For a
proper assessment of the updated model all uncertainties involved in the problem should be considered. In fact, there
always exist modeling errors and uncertainties associated with the process of constructing a mathematical model of
the structure and its future excitation. Thus, the ability to quantify the uncertainties accurately and appropriately
is essential for a robust prediction of future responses and reliability of structures [8,9]. In this context a fully
probabilistic Bayesian model updating approach provides a robust and rigorous framework for model updating due to
its ability to characterize modeling uncertainties associated with the underlying structural system [10,11]. Bayesian
probabilistic tools for identifying uncertainty models as well as performing robust prediction analysis are usually based
on asymptotic approximations [9,12–14] or stochastic simulation algorithms [15–20]. Asymptotic approximation
methods in the Bayesian framework involve solving an optimization problem for finding the most probable model,

∗ Corresponding author. Tel.: +56 32 2654383; fax: +56 32 2654115.
E-mail address: hector.jensen@usm.cl (H.A. Jensen).

http://dx.doi.org/10.1016/j.cma.2014.06.032
0045-7825/ c⃝ 2014 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2014.06.032&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2014.06.032
http://www.elsevier.com/locate/cma
mailto:hector.jensen@usm.cl
http://dx.doi.org/10.1016/j.cma.2014.06.032


302 H.A. Jensen et al. / Comput. Methods Appl. Mech. Engrg. 279 (2014) 301–324

as well as estimating the Hessian of the logarithm of the posterior probability density function. On the other hand
stochastic simulation algorithms involve generating samples for tracing and then populating the important uncertainty
region in the parameter space. The application of asymptotic approximation methods faces several difficulties when
the chosen class of models is unidentifiable based on the available data [9,21]. Since stochastic simulation algorithms
are more general than asymptotic approximation approaches a stochastic simulation algorithm is considered in the
present study. In particular the transitional Markov chain Monte Carlo method is implemented here because of its
generality and versatility [17]. Such algorithm requires in general a large number of re-analysis to be performed
over the space of model parameters. Thus, the computational demands depend on the number of re-analysis and the
time required for performing each re-analysis. It is noted that alternative Bayesian model updating techniques can
also be used for the identification process. For example the Hybrid Monte Carlo method, which is quite efficient
for solving high-dimensional Bayesian model updating problems [17], or the population-based Markov chain Monte
Carlo method [20] are certainly alternative choices. The implementation and comparison of different identification
tools in the context of model reduction techniques will be the focus of a future work.

The present work proposes to use an efficient model reduction technique to alleviate the computational burden
involved in the implementation of the transitional Markov chain Monte Carlo method in the framework of finite
element model updating using dynamic response data. Specifically, a class of model reduction techniques known
as substructure coupling for dynamic analysis is considered in the present implementation [22]. Such technique can
be used to carry out system analysis in a significantly reduced space of generalized coordinates. The methodology
is quite useful to efficiently handle the computational effort in system re-analyses that arise from finite element
model variations caused by perturbations in the value of the uncertain parameters [23]. Such variations require that
the assembly process of the finite element model be repeated in each re-analysis. Clearly, the objective of methods
involving dynamic re-analyses of finite element models with varying properties is to control the number of re-analysis
of the system.

In this regard, the main objective of this work is to present a strategy for integrating a class of model reduction
techniques into a finite element model updating formulation in order to reduce the computational cost involved
in the dynamic re-analyses of large scale linear models, including localized nonlinearities. The model reduction
technique involves dividing the structural system into a number of linear and nonlinear substructures obtaining
reduced-order models of the linear substructures, and then assembling a reduced-order model for the entire structure.
It is demonstrated that substantial computational savings are achieved under certain parametrization schemes arising
often in finite element model updating formulations.

The organization of this contribution is as follows. Essential aspects of Bayesian finite element model updating
using dynamic data are presented in Sections 2 and 3. The mathematical background of the substructure coupling
technique for dynamic analysis is outlined in Section 4. The integration of the model reduction technique with the
Bayesian model updating approach is discussed in Section 5. The effectiveness of the proposed scheme, in terms of
computational efficiency and accuracy is demonstrated in Section 6 with damage identification and model updating
applications for finite element building models using simulated seismic response data. The contribution closes with
some conclusions and final remarks.

2. Finite element model updating using dynamic response data

2.1. Bayesian formulation

Consider a finite element model class M of a structural system parameterized by a set of model parameters
θ ∈ Θ ⊂ Rn p . The plausibility of each model within a class M based on data D is quantified by the updated joint
probability density function p(θ |M, D) (posterior probability density function). By Bayes’ Theorem the posterior
probability density function of θ is given by

p(θ |M, D) =
p(D|M, θ) p(θ |M)

p(D|M)
(1)

where p(D|M) is the normalizing constant which makes the probability volume under the posterior probability
density function equal to unity, p(D|M, θ) is the likelihood function based on the predictive probability density
function for the response given by model class M , and p(θ |M) is the prior probability density function selected for
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the model class M which is used to quantify the initial plausibility of each predictive model defined by the value of
the parameters θ , allowing in this manner prior information to be incorporated. In what follows it is assumed that D
contains input dynamic data and output responses from measurements on the system. Specifically, let un(t j , θ) denote
the output at time t j at the nth observed degree of freedom predicted by the proposed structural model, and u∗

n(t j )

denote the corresponding measured output. The prediction and measurement errors en(t j , θ) = u∗
n(t j ) − un(t j , θ) for

n = 1, . . . , No, and j = 1, . . . , NT , where No denotes the number of observed degrees of freedom and NT denotes the
length of the discrete time history data, are modeled as independent and identically distributed Gaussian variables with
zero mean [9,24,25]. This assumption implies stochastic independence of the prediction errors for different channels
of measurements and for different time instances. This formulation is based on the maximum entropy principle which
yields a multi-dimensional Gaussian distribution for the prediction errors [13,26]. In this context it is noted that
different prediction error model classes can be used as well [27]. Using the above probability model for the prediction
error it can be shown that the likelihood function p(D|M, θ) can be expressed in terms of a measure-of-fit function
J (θ |M, D) between the measured response and the model response at the measured degrees of freedom. Such function
is given by [9,13,14,25]

J (θ |M, D) =
1

Nt No

No
n=1

Nt
j=1

[u∗
n(t j ) − un(t j , θ)]2. (2)

2.2. Model parameter estimation

For a large number of available data (Nt N0 is large) or for a uniform prior distribution for the model parameters it
has been found that the most probable model parameters are obtained by minimizing J (θ |M, D) over all parameters
in Θ that it depends on [13]. Under the previous assumption the posterior probability density function p(θ |M, D) is
in general concentrated in the neighborhood of a lower dimensional manifold in the parameter space. In this context
it is useful to classify a Bayesian model class M into one of the three distinct categories: globally identifiable, locally
identifiable, and unidentifiable, depending on whether the set of most probable model parameters is a singleton,
finite or uncountable, respectively, in the parameter space Θ [13,28,29]. Thus, the problem of estimating the model
parameters may be potentially ill-posed, that is, there may be more than one solution. For globally identifiable cases
asymptotic approximations of the Bayesian predictive integrals have been used in a number of applications with
sufficient accuracy [9,13,14]. In this case the posterior distribution of the model parameters is very peaked and
is asymptotically approximated by a multi-dimensional Gaussian distribution centered at the most probable value
of the model parameters. When the posterior probability density function is not very peaked or has a flat region,
the validity of using asymptotic approximations is doubtful. To avoid these difficulties a simulation-based Bayesian
model updating technique is adopted in this study. Such technique, which efficiently generates samples asymptotically
distributed as the posterior probability density function, is described in Section 3.

2.3. Model class selection

The Bayesian probabilistic framework can also be used to compare alternative candidate model classes and se-
lect the optimal model class based on the available data [16,17,25]. To this end, consider a set M = {M (1), M (2),

. . . , M (nm )
} of nm model classes for representing a finite element model. Given data D, the posterior probability of

each model class, i.e., P(M (i)
|M, D), i = 1, . . . , nm is

P(M (i)
|M, D) =

P(D|M (i))P(M (i)
|M)

nm
i=1

P(D|M (i))P(M (i)|M)

(3)

where P(M (i)
|M) is the prior probability, and P(D|M (i)) is the evidence of the model class M (i). The optimal model

class is selected as the one that maximizes P(M (i)
|M, D). For the case where no prior information is available the

prior probability can be assumed to be equal, that is, P(M (i)
|M) = 1/nm . Thus, the selection among the model classes

is based solely on their evidence values. The estimation of model class evidences, in the context of a simulation-based
approach, is discussed in the following section.
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3. Simulation-based approach

3.1. Formulation

An efficient method called transitional Markov chain Monte Carlo is implemented in this work for Bayesian model
updating and model class selection [17]. Validation calculations have shown the effectiveness of this approach in
a series of practical Bayesian model updating problems [17,30–32]. The method can be applied to a wide range of
cases including high-dimensional posterior probability density functions, multimodal distributions, peaked probability
density functions, and probability density functions with flat regions. In what follows the basic ideas of the transitional
Markov chain Monte Carlo method are briefly discussed. The method iteratively proceeds from the prior to the
posterior distribution. It starts with the generation of samples from the prior distribution in order to populate the space
in which also the most probable region of the posterior distribution lies. For this purpose a number of non-normalized
intermediate distributions p j (θ |M, D), j = 1, . . . , J , are defined as

p j (θ |M, D) ∝ p(D|M, θ)α j p(θ |M) (4)

where the parameter α j increases monotonically with j such that α0 = 0 and αJ = 1. The parameter α j can be inter-
preted as the percentage of the total information provided by the dynamic data which is incorporated in the j th iteration
of the updating procedure. The first step ( j = 0) corresponds to the prior distribution and in the last stage ( j = J )
the samples are generated from the posterior distribution. The idea is to choose the values of exponents α j in such a
way that the change of the shape between two adjacent intermediate distributions be small. This small change of the
shape makes it possible to efficiently obtain samples from p j+1(θ |M, D) based on the samples from p j (θ |M, D). The
value of the parameter α j+1 is chosen such that the coefficient of variation for {p(D|M, θk

j )
α j+1−α j , k = 1, . . . , N j }

is equal to some prescribed target value. The upper index k = 1, . . . , N j in the previous expression denotes the sample
number in the j th iteration step (θk

j , k = 1, . . . , N j ).

3.2. Sample generation

Once the parameter α j+1 has been determined, the samples are obtained by generating Markov chains where the
lead samples are selected from the distribution p j (θ |M, D). Each sample of the current stage is generating by applying
the Metropolis–Hastings algorithm [33,34]. The lead sample of the Markov chain is a sample from the previous step

that is selected according to the probability equal to its normalized weight w̄(θk
j ) = w(θk

j )/
N j

l=1 w(θ l
j ), where

w(θk
j ) represents the plausibility weight which is given by w(θk

j ) = p(D|M, θk
j )

α j+1−α j . The proposal probability
density function for the Metropolis–Hastings algorithm is a Gaussian distribution centered at the preceding sample
of the chain and with a covariance matrix equal to a scaled version of the estimate covariance matrix of the current
intermediate distribution p j (θ |M, D). The procedure is repeated until the parameter α j is equal to 1 ( j = J ). At
the last stage the samples (θk

J , k = 1, . . . , NJ ) are asymptotically distributed as p(θ |M, D). The previous algorithm
also provides an estimate of the evidence for the model class. In fact, it can be shown that the product of the mean

of the weights w(θk
j ), k = 1, . . . , N j , that is, 1/N j

N j
k=1 w(θk

j ) for all levels ( j = 1, . . . , J − 1) of the transitional
Markov chain Monte Carlo method is an estimator of the evidence which is asymptotically unbiased. For a detailed
implementation of the transitional Markov chain Monte Carlo method, including proofs concerning the statistical
properties of the estimators the reader is referred to [17].

4. Model reduction technique

4.1. Basic ideas

The proposed Bayesian model updating technique is in general computationally very demanding due to the large
number of dynamic finite element analyses required during the updating process. In fact, the model updating technique
based on the transitional Markov chain Monte Carlo method involves drawing a large number of samples (of the
order of thousands) for populating the important region in the uncertain parameter space. Recall that for each sample
generated by the simulation algorithm, a dynamic finite element analysis is needed. This is due to the fact that the
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evaluation of each plausibility weight w(θk
j ), k = 1, . . . ., N j , j = 0, . . . , J , implies the calculation of the likelihood

function which requires a dynamic analysis. Consequently, the computational demands may become excessive when
the computational time for performing a dynamic finite element analysis is significant. To cope with this difficulty a
model reduction technique for linear systems is considered in the present formulation. In particular a method known as
substructure coupling or component mode synthesis is implemented here [22,23,35]. Sub-structuring involves dividing
the structure into a number of substructures obtaining reduced-order models of the substructures and then assembling
a reduced-order model of the entire structure. More specifically, after the division of the structure into substructures
the model reduction technique involves two basic steps: definition of sets of substructure modes; and coupling of the
substructure-mode models to form a reduced-order system model. In what follows, each of these steps is discussed in
detail for the linear components of the structural system.

4.2. Normal and constraint modes

In the present formulation it is assumed that the linear components of the structural model satisfy the equation of
motion

Mü(t) + Cu̇(t) + Ku(t) = f(t) (5)

where M, C, and K are the N × N mass, damping and stiffness matrices of the finite element model, respectively, u(t)
is the vector of dynamic displacements, and f(t) is the excitation vector. As previously pointed out the first step of
the model reduction technique is the definition of sets of substructure modes. In order to define the set of substructure
modes the following partitioned form of the mass matrix Ms

∈ Rns
×ns

and stiffness matrix Ks
∈ Rns

×ns
of the

substructure s, s = 1, . . . , Ns is considered

Ms
=


Ms

ii Ms
ib

Ms
bi Ms

bb


, Ks

=


Ks

ii Ks
ib

Ks
bi Ks

bb


(6)

where the indices i and b are sets containing the internal and boundary degrees of freedom of the substructure s,
respectively. The boundary degrees of freedom include only those that are common with the boundary degrees of
freedom of adjacent substructures, while the internal degrees of freedom are not shared with any adjacent substructure.
In this framework all boundary coordinates are kept as one set us

b(t) ∈ Rns
b and the internal coordinates in the set

us
i (t) ∈ Rns

i . The corresponding equation of motion of the undamped substructure s can be written as

Ms üs(t) + Ksus(t) = fs(t) (7)

where us(t)T
= ⟨us

i (t)
T , us

b(t)
T
⟩ ∈ Rns

is the displacement vector (physical coordinates) of dimension ns
= ns

i + ns
b

and the vector fs(t) contains the externally applied forces as well as the reaction forces on the substructure due to its
connection to adjacent substructures at boundary degrees of freedom.

4.2.1. Fixed-interface normal modes
The normal modes are eigenvectors and can be classified according to the interface boundary conditions specified

for the substructure [22]. Specifically, the fixed-interface normal modes are obtained by restraining all boundary
degrees of freedom and solving the eigenproblem

Ks
ii8

s
ii = Ms

ii8
s
ii3

s
ii (8)

where the matrix 8s
ii contains the complete set of ns

i fixed-interface normal modes, and 3s
ii is the corresponding

matrix containing the eigenvalues. The fixed-interface normal modes are normalized with respect to the mass matrix
Ms

ii and stiffness matrix Ks
ii satisfying 8s

ii
T Ms

ii8
s
ii = Is

ii and 8s
ii

T Ks
ii8

s
ii = 3s

ii .

4.2.2. Interface constraint modes
On the other hand the constraint modes are defined as the static deformation of a structure when a unit displacement

is applied to one coordinate of a specified set of constraint coordinates while the remaining coordinates of that set are
restrained, and the remaining degrees of freedom of the structure are force-free [22]. In this context the interface
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constraint modes are obtained by setting a unit displacement on the boundary coordinates us
b(t) and zero forces in the

internal degrees of freedom. The set of modes is given by
Ks

ii Ks
ib

Ks
bi Ks

bb

 
9s

ib
Is

bb


=


0s

ib
Rs

bb


(9)

from where the interface constraint-mode matrix 9s
c is defined as

9s
c =


9s

ib
Is

bb


=


−Ks

ii
−1Ks

ib
Is

bb


(10)

where 9s
ib ∈ Rns

i ×ns
b is the interior partition of the constraint-mode matrix. Based on the previous fixed-interface

and constraint modes, a displacement transformation matrix is defined in the following section to introduce a set of
generalized coordinates.

4.3. Craig–Bampton method

The displacement transformation of the Craig–Bampton method [22,35] employs a combination of fixed-interface
normal modes and interface constraint modes, and takes the form

us(t) =


us

i (t)
us

b(t)


=


8s

ik 9s
ib

0s
bk Is

bb

 
vs

k(t)
vs

b(t)


= 9s vs(t) (11)

where 8s
ik ∈ Rns

i ×ns
ik is the interior partition of the matrix 8s

ii of the ns
ik kept fixed-interface normal modes (ns

ik ≤ ns
i ),

vs(t) represents the substructure generalized coordinates composed by the modal coordinates vs
k(t) of the kept fixed-

interface normal modes and the boundary coordinates vs
b(t) = us

b(t), 9
s

∈ Rns
×n̂s

is the Craig–Bampton transfor-
mation matrix with n̂s

= ns
ik + ns

b and all other terms have been previously defined. The substructure mass matrix
M̂s

∈ Rn̂s
×n̂s

and stiffness matrix K̂s
∈ Rn̂s

×n̂s
in generalized coordinates vs(t) are given by

M̂s
= 9s T Ms9s, K̂s

= 9s T Ks9s . (12)

Next, the vector of generalized coordinates for all the Ns substructures

v(t)T
= ⟨v1(t)T , . . . , vNs (t)T

⟩ ∈ Rnv (13)

where nv =
Ns

s=1 n̂s is introduced. Based on this vector, a new vector q(t) that contains the independent gener-
alized coordinates consisting of the fixed-interface modal coordinates vs

k(t) for each substructure and the physical
coordinates vl

b(t), l = 1, . . . , Nb at the Nb interfaces is defined as

q(t)T
= ⟨v1

k(t)
T , . . . , vNs

k (t)T , v1
b(t)

T , . . . , vNb
b (t)T

⟩ ∈ Rnq (14)

where nq =
Ns

s=1 ns
ik +

Nb
l=1 nl

b, and nl
b is the number of degrees of freedom at the interface l (l = 1, . . . , Nb).

These two vectors are related by the transformation

v(t) = Tq(t) (15)

where the matrix T ∈ Rnv×nq is a matrix of zeros and ones that couples the independent generalized coordinates q(t)
of the reduced system with the generalized coordinates of each substructure. The assembled mass matrix M̂ ∈ Rnq×nq

and the stiffness matrix K̂ ∈ Rnq×nq for the independent reduced set q(t) of generalized coordinates take the form

M̂ = TT

M̂1 0 0

0
. . . 0

0 0 M̂Ns

 T, K̂ = TT

K̂1 0 0

0
. . . 0

0 0 K̂Ns

 T (16)

where the matrices M̂s and K̂s, s = 1, . . . , Ns are given in Eq. (12). Note that the vectors v(t) and q(t) do not contain
internal degrees of freedom. They contain fixed-interface modal coordinates and physical coordinates at the interfaces.
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The number of fixed-interface normal modes to be used in the reduced-order model can be established by using differ-
ent criteria. In particular, a criterion based on the agreement between modal frequencies obtained from the complete
finite element model and the ones computed from the reduced model is implemented in the present formulation. The
specific implementation is discussed in detail in Section 6 (Numerical Examples).

It is noted that the number of interface degrees of freedom involved in the transformation (15) may become
very large specially for three dimensional finite element models. In this regard further reduction in the generalized
coordinates can be achieved by replacing the interface degrees of freedom by a reduced number of interface modes.
This particular feature of the model reduction technique is not considered in the present formulation. The reader is
referred to [23,36] for a detailed description on how to define a reduced set of interface degrees of freedom.

4.4. Dynamic response

The dynamic response of the finite element model of the original unreduced system is obtained by the modal
solution in the present implementation. In this approach it is assumed that the response can be represented by a linear
combination of the mode shapes as

u(t) =

m
r=1

υrηr (t) = ϒη(t) (17)

where u(t) is the displacement vector of the original structure, m is the number of modes considered, ηr (t), r =

1, . . . , m are the modal responses, υr ∈ RN , r = 1, . . . , m are the eigenvectors associated with the eigenproblem of
the undamped equation of motion of the original system, ϒ is the matrix of mode shapes, and η(t) is the vector of
modal response functions. For classically damped systems the modal responses satisfy the differential equation

η̈r (t) + 2ξrωr η̇r (t) + ω2
r ηr (t) = υT

r f(t), r = 1, . . . , m (18)

where ωr , r = 1, . . . , m are the natural frequencies of the system, ξr , r = 1, . . . , m are the corresponding damping
ratios, and f(t) is the force vector applied on the original system. In the previous modal equations it has been assumed
that the eigenvectors are normalized with respect to the system mass matrix. The solution for the modal responses
can be obtained by any suitable step-by-step integration scheme [37]. The natural frequencies ωr , r = 1, . . . , m are
obtained by solving the eigenproblem of the reduced-order system model

(K̂ − ω2
r M̂)υ pr = 0, r = 1, . . . , m (19)

where υ pr , r = 1, . . . , m are the mode shapes of the reduced-order system. Introducing a constant matrix T̄ ∈

RN×nu (nu =
Ns

s=1 ns) to map the vector ū(t)T
= ⟨u1(t)T , . . . , uNs (t)T

⟩ ∈ Rnu of the physical coordinates for all
substructures to the independent physical coordinates u(t) of the original unreduced system, the physical mode shapes
υr of the structure can be recovered from the mode shapes υ pr as υr = T̄9Tυ pr where the matrix 9 ∈ Rnu×nv is
a block diagonal matrix defined in terms the Craig–Bampton transformation matrices of all substructures, that is,
9 = blockdiag(91, . . . ,9Ns ). It is noted that the previous representation of the solution for the original finite ele-
ment model can be extended in a straightforward manner for the general case of non-classically damped systems. In
those cases the equation of motion is recast into a first-order 2N state-space form, and the solution is represented as a
linear combination of complex mode shapes [38,39].

5. Model updating based on the reduced system

5.1. Problem formulation

In the present formulation it is assumed that the stiffness matrix of the original system depends linearly on the model
parameters θ and that the mass matrix is constant, independent of θ . It is noted that this case is often encountered in
many practical applications such as model updating, structural optimization and damage detection techniques. This
linear dependence implies that at the substructure level the stiffness matrix as well as its partitions admit a similar
characterization. In particular the following two cases are considered here. In the first case it is assumed that the
stiffness matrix of a substructure s does not depend on the model parameters. In this case the stiffness matrix is
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written as Ks
= Ks

0. The corresponding normal and constraint modes are computed once for that substructures. In the
second case it is assumed that the stiffness matrix of a substructure s depends only on one model parameter, say θ j
( j th component of θ ). Specifically, let S j be the set of substructures that depends on θ j . Then the stiffness matrix of a
substructure s ∈ S j can be written as Ks

= K̄sθ j , where the matrix K̄s is independent of θ j . Of course the partitions
of the stiffness matrix Ks admit the same parametrization (see Eq. (6)). From this representation it is easy to show
that the eigenvalues and eigenvectors associated with the fixed-interface normal modes are given by 3s

ii = 3̄
s
iiθ j and

8s
ii = 8̄

s
ii where the matrices 3̄

s
ii and 8̄

s
ii are the solutions of the eigenproblem

K̄s
ii 8̄

s
ii = Ms

ii 8̄
s
ii 3̄

s
ii (20)

where the matrices 8̄
s
ii and 3̄

s
ii are independent of θ j . In addition, the interface constraint modes are also independent

of θ j since 9s
ib = −Ks

ii
−1Ks

ib = −K̄s
ii

−1K̄s
ib. Therefore a single substructure analysis is required to provide the exact

estimate of the normal and constraint modes for any value of the modal parameter θ j . This is a very important result
since the computationally intensive re-analyses for estimating the normal modes of each substructure for different
values of θ j involved in the identification procedure are completely avoided.

5.2. Reduced stiffness matrix

Based on the previous results it is simple to verify that the reduced stiffness matrix of the substructure s, con-

sidering the full set of interface degrees of freedom, takes the form K̂s
=

ˆ̄K
s
θ j where ˆ̄K

s
= 9s T K̄s9s . Thus, the

reduced matrix ˆ̄K
s

is a constant matrix independent of the model parameters θ . Consequently the stiffness matrix of
the Craig–Bampton reduced system can be written as

K̂ = K̂0 +

Nθ
j=1

ˆ̄K jθ j (21)

where Nθ is the number of independent model parameters and the matrices K̂0 and ˆ̄K j , j = 1, . . . , Nθ are defined as

K̂0 = TT

K̂1
0δ10 0 0

0
. . . 0

0 0 K̂Ns
0 δNs 0

 T, ˆ̄K j = TT


ˆ̄K

1
δ1 j 0 0

0
. . . 0

0 0 ˆ̄K
Ns

δNs j

 T (22)

where δs0 = 1 if the substructure s does not depend on the model parameters θ and δs0 = 0 otherwise, δs j = 1
if the substructure s depends on the parameter θ j and δs j = 0 otherwise, and all other terms have been previously

defined. Note that the assembled matrices ˆ̄K j , j = 1, . . . , Nθ are independent of the value of θ and therefore these
matrices are computed and assembled once. This results in substantial savings since there is no need to re-compute
and re-assemble these matrices during the identification process.

5.3. Final remarks

It is stressed that the efficiency of the above formulation in terms of the number of substructure analyses required is
based on the assumption that the stiffness matrix of the substructures depend only on one model parameter. For a more
general case, the normal and constraint modes have to be recomputed in each iteration of the identification process.
Some guidelines on how to proceed in a more efficient manner for the general case are indicated in the Conclusions

section. In summary, the assembled matrices K̂0 and ˆ̄K j , j = 1, . . . , Nθ involved in the reduced system are computed
once and therefore there is no need to perform re-analyses of each substructure during the identification process. Of
course, the eigenproblem of the reduced order system model (Eq. (19)) needs to be solved for different values of θ in
order to compute the corresponding dynamic response of the original unreduced system.

Finally, it is noted that the previous formulation can be extended in a direct manner to linear models with localized
nonlinearities. In these cases the model reduction technique is used to obtain reduced-order models of the linear
substructures. These reduced-order models together with the nonlinear substructures are assembled in order to form
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Fig. 1. Isometric view of the finite element model.

a reduced-order model for the entire structure. This procedure is illustrated in the following section (example 2) for
one particular class of problems. Some comments regarding the generalization of the methodology to different class
of problems and different types of localized nonlinearities are presented in the Conclusions section.

6. Numerical examples

Two example problems are considered in this section. The first application deals with a linear system while the
second application considers a linear model with localized nonlinearities. The objective of the first example is to
evaluate the effectiveness of the proposed model reduction technique in a linear model identification problem. On the
other hand, the goal of the second application is to evaluate the performance of the proposed technique in a nonlinear
model updating problem that considers a base-isolated structural system.

6.1. Example 1: updating of linear model

6.1.1. Model description
The structural system shown in Fig. 1 is considered in this example. It consists of a ten floors three-dimensional

reinforced concrete building model. Material properties of the reinforced concrete structure have been assumed as
follows: Young’s modulus E = 2.34 × 1010 N/m2; Poisson’s ratio ν = 0.3; and mass density ρ = 2500 kg/m3. The
height of each floor is 3.5 m leading to a total height of 35.0 m for the structure. The floors are modeled with shell
elements with a thickness of 0.3 m and beam elements of rectangular cross section of dimension 0.3 m × 0.6 m from
floors 1 to 5 and 0.25 m×0.5 m from floors 6 to 10. Each floor is supported by 48 columns of rectangular cross section
of dimension 0.8 m × 0.9 m. The corresponding finite element model, denoted herein as reference model, has approx-
imately 40,000 degrees of freedom. A 2% of critical damping for the modal damping ratios is introduced in the model.

6.1.2. Identification problem
For the identification problem the structure is divided into a number of substructures and it is assumed that a stiff-

ness reduction is concentrated in one or more substructures producing changes in the stiffness characteristics of those
substructures. In particular the structural model is subdivided into six substructures as shown in Fig. 2. Substructures
1, 3 and 5 are composed by the column elements of the first, second and third floor, respectively. Substructures 2
and 4 correspond to the slabs and beam elements of the first and second floor, respectively, and substructure 6 con-
tains the upper floors structural components (columns, beams and slabs). For illustration purposes three model classes
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Fig. 2. Substructures of the finite element model used for identification.

M (i), i = 1, 2, 3 are introduced to monitor the updated process, which is defined in terms of a stiffness reduction of
20% of the nominal stiffness value in the x direction of the columns of the first floor. Model class M (1) contains one
parameter (θ1) related to the stiffness of the columns of the first floor. On the other hand, model class M (2) contains
two parameters (θ2, θ3) associated with the stiffness of the columns of the first and second floor, respectively. Finally,
model class M (3) contains three parameters (θ4, θ5, θ6) associated with the stiffness of the columns of the first, sec-
ond and third floor, respectively. Note that the model class M (2) can monitor changes associated with the stiffness
reduction in either substructures 1 and 3. Likewise model class M (3) can monitor changes associated with the stiffness
reduction in substructures 1, 3 and 5.

6.1.3. Simulated response data
The identification process is based on simulated data. To this end the original unreduced finite element model is

excited horizontally (in the x direction) with the Santa Lucia ground-motion record recorded during the 2010 Chilean
earthquake. The input ground acceleration time history is shown in Fig. 3. It corresponds to a ground motion of
moderate intensity. The measured responses are simulated by first calculating the acceleration response in the x di-
rection at floors 1, 2, 3 and 4 of the original structure with a stiffness reduction of 20% (in the x direction) of the
columns of the first floor. Then, a Gaussian discrete white noise sequence with standard deviation equal to 10% of
the root-mean square value of the corresponding acceleration time histories is added. The responses are computed at
the center of mass of the floors. One hundred seconds of data with sampling interval 1t = 0.05 s are used, given
a total of Nt = 2000 data points. The simulated responses provide the data for the identification process. Simulated
accelerations are plotted in Fig. 4 for the first four floors.

6.1.4. Reduced model
The effectiveness of the model reduction technique for the specific problem considered in this example is

investigated in this section. For each substructure it is selected to retain all fixed-interface normal modes that have
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Fig. 3. Santa Lucia ground-motion record (2010 Chilean earthquake).

Fig. 4. Simulated acceleration time histories.

frequency less than ωmax = αωc, where α is a multiplication factor and ωc is a cut-off frequency. The cut-off frequency
is selected to be the 12th modal frequency of the reference finite element model. Table 1 shows the fractional error
(in percentage) between the modal frequencies using the complete finite element model and the modal frequencies
computed using the reduced model as a function of the number of fixed-interface normal modes. Representative
values of α for substructures 1, 3 and 5 range from 18 to 20, from 4 to 6 for substructures 2 and 4, and from 1 to 5
for substructure 6. The different ranges are due to the fact that the spectral properties of the substructures are quite
different. For example the lowest frequencies corresponding to substructures 1, 3 and 5 are substantially higher than
the lowest frequencies of substructures 2 and 4. Three scenarios, which are defined in Table 2, are considered in
Table 1. It is observed that the fractional errors are quite small for scenarios No. 2 and No. 3. In fact, the fractional
error for the lowest 12 modes fall below 0.1% for both scenarios. Contrarily, an error up to almost 4% for the 12th
modal frequency is obtained for scenario No. 1. Based on the results of Table 1 the reduced-order model obtained
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Table 1
Fractional modal frequency error between the modal frequencies of the full model and the reduced model for different
scenarios. Full set of interface degrees of freedom case.

Frequency number ω (full FEM) (rad/s) Fractional error (%)
Scenario no. 1 Scenario no. 2 Scenario no. 3

1 5.7817 1.828 × 10−3 1.634 × 10−4 3.174 × 10−5

2 5.8213 2.229 × 10−3 5.944 × 10−5 3.436 × 10−5

3 6.0658 9.933 × 10−3 1.638 × 10−4 5.345 × 10−5

4 17.0956 1.080 × 10−1 3.175 × 10−3 1.974 × 10−3

5 17.3154 9.864 × 10−2 9.086 × 10−3 2.005 × 10−3

6 18.0777 5.416 × 10−1 8.993 × 10−3 3.105 × 10−3

7 32.2909 3.447 × 10−1 1.487 × 10−2 1.102 × 10−2

8 33.3774 3.415 × 10−1 3.738 × 10−2 1.204 × 10−2

9 34.8733 2.436 × 100 3.751 × 10−2 1.584 × 10−2

10 49.7860 3.441 × 10−2 2.295 × 10−2 2.225 × 10−2

11 52.4705 5.287 × 10−2 3.207 × 10−2 2.565 × 10−2

12 54.9341 3.962 × 101 3.423 × 10−2 2.585 × 10−2

Table 2
Number of fixed-interface normal modes (Internal-DOF) per substructures and total number of fixed-interface normal modes for different scenarios.

Substructure Scenario no. 1 Scenario no. 2 Scenario no. 3
α Internal-DOF α Internal-DOF α Internal-DOF

1 α = 18 48 α = 18 48 α = 19 96
2 α = 4 33 α = 4 33 α = 5 40
3 α = 18 48 α = 18 48 α = 19 96
4 α = 4 33 α = 4 33 α = 5 40
5 α = 18 48 α = 18 48 α = 19 96
6 α = 1 8 α = 3 155 α = 4 340

Total Internal-DOF 218 365 708

Total interface degrees of freedom 864

with scenario No. 2, in terms of the number of fixed-interface normal modes, is considered for the identification
process. The comparison with the lowest 12 modes seems to be reasonable since validation calculations show that
the contribution of the higher order modes (higher than the 12th mode) in the dynamic response of the model is
negligible.

Then, a total of 365 generalized coordinates, corresponding to the fixed-interface normal modes, out of
approximately 39,136 degrees of freedom (DOF) of the original model are retained for all six substructures as shown
in Table 2. Thus, about two orders of magnitude reduction in the number of interior degrees of freedom is achieved in
this case. It is important to note that the selection of the fixed-interface modes per substructure, necessary to achieve a
prescribed accuracy, can be done off-line, before the identification procedure takes place. On the other hand it is seen
that the total number of interface degrees of freedom is equal to 864. In conclusion, the number of degrees of freedom
of the reduced model, corresponding to scenario No. 2, considering the full set of interface degrees of freedom is 1229
(nq = 1229 in relation to the general formulation). A further reduction in the number of generalized coordinates may
be achieved by replacing the interface degrees of freedom by a reduced number of interface modes. It turns out that
a large percentage of interface modes needs to be retained in order to obtain a small fractional error for the lowest
12 modes in this case (of the order of 0.1%). This is reasonable since a relatively small number of column elements
support each floor. Consequently all interface degrees of freedom are retained in the reduced-order model. In spite of
this fact a significant reduction in the number of generalized coordinates is obtained with respect to the number of the
degrees of freedom of the original unreduced finite element model. In fact, an almost 97% reduction is obtained in
this application. Finally, it is noted that the model classes M (i), i = 1, 2, 3 previously defined are characterized from
the unchanged or nominal structure (θi = 1, i = 1, 2, 3, 4, 5, 6) corresponding to this reduced-order model.
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Fig. 5. Posterior histogram of model parameter θ1 for model class M(1). Mean estimate: θ̄1 = 0.80.

Fig. 6. Posterior histograms of model parameters θ2 and θ3 for model class M(2). Mean estimates: θ̄2 = 0.79, θ̄3 = 1.03.

6.1.5. Results of identification process

The model updating is performed using the transitional Markov chain Monte Carlo method [17] with 1000 samples
per stage. The prior probability density function for the model parameters θi , i = 1, 2, 3, 4, 5, 6 are independent
uniform distributions defined over the interval [0.5, 1.5]. The reference structure (unchanged) is characterized in
terms of the model parameters with values equal to one, i.e. θi = 1, i = 1, 2, 3, 4, 5, 6. Figs. 5–7 show the histograms
defined by the posterior samples of the model parameters corresponding to model classes M (i), i = 1, 2, 3. In
addition, the value of the nominal system parameters are also indicated in the figures.

It is seen that the agreement between the actual system and the model characterized by the posterior samples is
excellent for model class M (1). The model parameter θ1 is distributed around the actual value θ1 = 0.8. In fact the
mean estimate of this parameter is equal to θ̄1 = 0.80. Similar results are obtained for model classes M (2) and M (3).
That is, these model classes are able to identify the stiffness reduction of the columns of the first floor. Actually the
mean value of the model parameters θ2 and θ4 is equal to 0.79. These results are reasonable since model classes
M (2) and M (3) also monitor the stiffness of the substructure that contains the actual change (substructure 1). On the
other hand it is observed that the parameters related to the stiffness of the columns of the second and the third floor are
distributed around their actual values θ3 = θ5 = θ6 = 1.0. This is consequent since the stiffnesses of these columns are
unchanged. To get insight into the identification process, Fig. 8 shows how the samples in the (θ2–θ3) space converge
for model class M (2). From the different steps of the transitional Markov chain Monte Carlo method it is observed
that the data is strongly correlated along a certain direction in the parameter space. Such correlation shows that an
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Fig. 7. Posterior histograms of model parameters θ4, θ5 and θ6 for model class M(3). Mean estimates: θ̄4 = 0.79, θ̄5 = 1.01, θ̄6 = 1.02.

Table 3
Bayesian model class selection results.

Model class Log
evidence

M(1)
−335

M(2)
−425

M(3)
−576

increase in the stiffness of the columns of the first floor is compensated by a decrease in the stiffness of the columns of
the second floor during the identification process, which is reasonable from a structural point of view. Thus, all points
along that direction correspond to structural models that have almost the same response at the measured degrees of
freedom. In summary, the predictive capabilities of the identification methodology are not compromised by the use of
the reduced-order model.

The issue of model class selection is next explored. Results of Bayesian model class selection are shown in Table 3.
The evidence clearly favor model class M (1), which is unsurprising as it contains the parameterized substructure with
actual change in the stiffness properties (substructure 1). Note that model classes M (2) and M (3) also contains the
parameterized substructure 1. However, among all model classes the proposed updating methodology favor the model
class M (1) with the least number of parameters which is consistent with theoretical results for model class penaliza-
tion for over parametrization available for Bayesian model class selection [25,40]. This result is clear by comparing
the evidence of model classes M (2) and M (3). Thus, model classes M (2) and M (3) are not favored by the proposed
methodology.
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Fig. 8. Plots of the samples in the (θ2–θ3) space generated at different steps of the transitional Markov chain Monte Carlo method when updating
model class M(2).

6.1.6. Computational cost

The number of finite element runs for each model class depends, among other things, on the number of transitional
Markov chain Monte Carlo stages (steps) which in this case is equal to 8 for all three model classes. For comparison
purposes, the computational effort for obtaining one dynamic response of the original unreduced finite element
model is approximately 16 s. Multiplying this time by the total number of dynamic analyses required during the
identification process the computational effort for each model class is expected to be of the order 4384 min (3 days).
In contrast, for the reduced-order models the computational demands for running each of the three model classes are



316 H.A. Jensen et al. / Comput. Methods Appl. Mech. Engrg. 279 (2014) 301–324

Fig. 9. Building model with base isolation system.

reduced to less than 4 h. Thus, a drastic reduction in computational efforts (more than one order of magnitude) is
achieved without compromising the predictive capability of the proposed identification methodology. The previous
computational efforts are based on the consideration of some parallelization features of the identification process. In
particular eight transitional Markov Chain Monte Carlo samples are run simultaneously in the present implementation
taking advantage of the available four-core multi-threaded computer unit.

6.2. Example 2: updating of linear model with localized nonlinearities

6.2.1. Structural model
A base-isolated structural system is considered in the second example. For this purpose the structural system de-

scribed in the previous example is equipped with a total of 48 rubber bearings in its isolation system. The isometric
view of the combined system (superstructure and base-isolation system) is shown in Fig. 9. The total mass of the
platform is equal to 6.0 ×105 kg. The isolation devices (rubber bearings) consist of layers of rubber and steel, with
the rubber being vulcanized to the steel plates. Fig. 10 shows a schematic representation of a rubber bearing, where
De represents the external diameter of the isolator, Di indicates the internal diameter, Hr = tr nr is the total height
of rubber in the device, where tr is the layer thickness and nr is the number of rubber layers. The nominal values
of the isolator parameters are set equal to D̄e = 0.85 m, H̄r = 0.14 m, and D̄i = 0.10 m. These devices are able,
in principle, to support the superstructure vertically, to provide the horizontal flexibility together with the restoring
force, and to supply the required hysteretic damping. The force displacement characteristics of the isolator elements
are modeled by a biaxial hysteretic behavior. An analytical model which is based on a series of experimental tests is
used in the present application. A general description of the analytical model is provided in a subsequent section.

6.2.2. Response of the combined system
In general, base-isolated buildings are designed such that the superstructure remains elastic. Hence, the superstruc-

ture is modeled as a three dimensional linear elastic system while the base is assumed to be rigid in plane and it is
modeled using three degrees of freedom. Let ue(t) be the N th dimensional vector of relative displacements of the
superstructure with respect to the base, and Me, Ce, Ke be the corresponding mass, damping and stiffness matrices,
respectively. Also, let ub(t) be the vector of base displacements with three components and Ge be the matrix of earth-
quake influence coefficients of dimension N × 3, that is, the matrix that couples the excitation components of the
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Fig. 10. Schematic representation of a rubber bearing.

vector üg(t) to the degrees of freedom of the superstructure. The equation of motion of the superstructure is expressed
in the form

Meüe(t) + Ceu̇e(t) + Keue(t) = −MeGe[üb(t) + üg(t)] (23)

where üb(t) is the vector of base accelerations relative to the ground. On the other hand the equation of motion for
the base platform is written as

(GT
e MeGe + Mb)(üb(t) + üg(t)) + GT

e Meüe(t) + Cbu̇b(t) + Kbub(t) + frb(t) = 0 (24)

where Mb is the mass matrix of the rigid base, Cb is the resultant damping matrix of viscous isolation components, Kb
is the resultant stiffness matrix of linear elastic isolation components, and frb(t) is the vector containing the nonlinear
forces activated on the isolators. If the dynamic response of the superstructure is represented by a linear combination
of its mode shapes, that is, ue(t) = ϒeηe(t), where ϒe is the matrix of mode shapes of the superstructure and ηe(t) is
the corresponding vector of modal response functions, the combined equation of motion of the base-isolated structural
system can be written as

I ϒT
e MeGe

Ge
T Meϒe Mb + Ge

T MeGe

 
η̈e(t)
üb(t)


+


Ceη 0

0 Cb

 
η̇e(t)
u̇b(t)


+


Keη 0

0 Kb

 
ηe(t)
ub(t)


= −


ϒT

e MeGe

Mb + Ge
T MeGe


üg(t) −


0

frb(t)


(25)

where the matrices Ceη and Keη are given by

Ceη =


2ξe1ωe1

·

2ξeiωei
·

2ξemωem

 , Keη =


ω2

e1
·

ω2
ei

·

ω2
em


in which ωer , r = 1, . . . , m, are the natural frequencies of the original system, ξer,r = 1, . . . , m, are the correspond-
ing damping ratios and m ≪ N is the number of modes considered. Note that the natural frequencies and mode shapes
of the original model of the superstructure are obtained from the reduced-order system model (see Section 4.4). It is
noted that the combined equation of motion (superstructure and base-isolation system) constitutes a nonlinear system
of equations due to the nonlinearity of the isolation forces. The solution of the equation of motion (25) is obtained in
an iterative manner by using any suitable step-by-step nonlinear integration scheme [37].

6.2.3. Base-isolation system
An analytical model that simulates measured restoring forces under bidirectional loadings is used in the present

application to describe the nonlinear behavior of the isolators. The model is based on a series of experimental tests
conducted for real-sized rubber bearings [41]. On the basis of the test results the analytical model assumes that the
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restoring force on a rubber bearing is composed of a force directed to the origin of the isolator and another force
approximately opposite to the direction of the movement of the isolator, that is, fisolator(t) = −û(t) felastic(t) −

d(t) felastoplastic(t), where fisolator(t) represents the forces activated on the isolator in the x and y direction, û(t) is
the unit directional vector of the isolator displacement vector u(t) in the x and y direction, felastic(t) is the non-
linear elastic component of the force, d(t) is the direction of the movement of the isolator, and felastoplastic(t) is
the elastoplastic component of the force. The direction of the movement d(t) is defined in terms of the isolator
displacement vector by means of the nonlinear differential equation [42,43]

ḋ(t) =
1
α

∥u̇(t)∥

ˆ̇u(t) − ∥d(t)∥n d̂(t)


, u(0) = 0, d(0) = 0 (26)

where u̇(t) is the velocity vector and ˆ̇u(t) and d̂(t) are the unit directional vectors of u̇(t) and d(t), respectively, and
∥ · ∥ indicates the Euclidean norm. Note that the isolator displacement vector u(t) can be obtained directly from the
base displacement vector ub(t). The parameters α and n are positive constants that relate to the yield displacement and
smoothness of yielding, respectively. Based on a set of loading tests carried out for real-size bearings the parameters
α and n are estimated as 0.2Hr and 0.7, respectively, where Hr is the total height of rubber, as indicated before. Next,
the elastic component of the force felastic(t) and the elastoplastic component felastoplastic(t) are approximated as

felastic(t) =


0.35Aγ (t) if 0 ≤ γ (t) ≤ 1.8
0.35Aγ (t) + 0.2A(γ (t) − 1.8)2 if γ (t) ≥ 1.8

(27)

and

felastoplastic(t) = 0.125A + 0.015Aγ (t) + 0.012Aγ (t)3 (28)

where A = π/4(D2
e − D2

i ) is the cross sectional area of the rubber and γ (t) = ∥u(t)∥/Hr is the average shear-strain.
It is noted that the linear component of the isolators forces represented by the matrix Kbub(t) and the nonlinear forces
activated on the isolators given by the vector frb(t) in Eq. (25) can be obtained directly from the characterization
of the force on each isolator (fisolator(t)). Validation calculations have shown that the analytical model is able to
accurately simulate the test results for both bidirectional and unidirectional loading [42]. For a detailed description
and implementation of the analytical model that describe the nonlinear behavior of the isolators the reader is referred
to [42,43].

6.2.4. Model updating problem
The structural system previously described is used for model updating using simulated response data. In partic-

ular the external diameter of the isolators De and the total height of rubber in the devices Hr are estimated. These
parameters are parameterized as De = θ1 D̄e and Hr = θ2 H̄r , where D̄e = 0.85 m and H̄r = 0.14 m are the cor-
responding nominal values. Note that these parameters control the value of the parameters α and A of the hysteretic
model affecting the nonlinear behavior of the isolators. In addition, the stiffness of the columns of the first floor of the
superstructure in the x direction is also estimated. This property is parameterized by the dimensionless parameter θ3.
In this application the superstructure is divided into two linear substructures as shown in Fig. 11.

Substructure 1 is composed by the column elements of the first floor while substructure 2 contains the rest of
the superstructure components. In this context the base isolation system, that is, the isolation devices and the base
platform, can be considered as a nonlinear substructure. As in the previous example, it is assumed that the base-
isolated structural system is built and response data are available to update the isolator parameters and the stiffness of
the columns of the first floor. The model updating is based on measurements of the ground acceleration at the support
of the isolation system, the acceleration response in the x direction at the base platform and the acceleration response in
the x direction at the first and the second floor. To this end the original unreduced finite element model of the combined
system (superstructure and base-isolation system) is excited horizontally (in the x direction) with the Santa Lucia
ground-motion record used in the previous example. The actual base-isolated system used to generate the simulated
measured data is characterized as follows. The isolator parameters are set equal to De = 0.78 m, Hr = 0.17 m, and
Di = 0.10 m, and the stiffness of the superstructure columns of the first floor in the x direction is either kept fixed to
its nominal value or is reduced by 20% with respect to its nominal stiffness value, depending on the model updating
case considered (see later Section 6.2.5). It is noted that this model is more flexible than the nominal system since the
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Fig. 11. Linear substructures of the superstructure finite element model used for model updating.

Fig. 12. Simulated acceleration time histories at the base platform, first floor, and second floor.

isolators have smaller external diameters and larger heights. Once the acceleration responses at the various locations
are computed, a Gaussian discrete white noise is added with standard deviation equal to 10% of the root-mean
square value of the corresponding acceleration time histories. One hundred seconds of data with sampling interval
1t = 0.05 s are used, given a total of Nt = 2000 data points. Simulated accelerations are plotted in Fig. 12 for the
base platform and for the first and the second floor. For illustration purposes Fig. 13 shows a typical displacement—
restoring force curve of one of the isolators. The nonlinear behavior of the isolators is clear from the figure.

The simulated response data shown in Fig. 12 provides the data for the model updating process. The actual
implementation of this process is carried out by using a reduced-order system model which is defined as follows.
For each linear substructure of the superstructure it is selected to retain all fixed-interface normal modes that
have frequency less than a given cut-off frequency. As in the previous example, the cut-off frequency is set to be
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Fig. 13. Typical displacement—restoring force curve of one of the isolators.

proportional to the 12th modal frequency of the original unreduced superstructure finite element model. Validation
calculations show that retaining 48 generalized coordinates for substructure 1 and 174 generalized coordinates for
substructure 2 is adequate in the context of this application. In fact, with this number of generalized coordinates the
fractional error (in percentage) between the modal frequencies using the complete finite element model and the modal
frequencies computed using the reduced-order model fall below 0.1% for the lowest 12 modes. Then, a total of 222
generalized coordinates, corresponding to the fixed interface normal modes, out of 39,712 DOF of the original model
are retained for the two linear substructures in this application. The number of interface degrees of freedom is equal
to 288 in this case. The total number of degrees of freedom of the reduced model represents more than 98% reduction
with respect to the unreduced model in this case.

6.2.5. Model updating results
Two cases are considered for the model updating problem. In the first case only the isolator parameters are identified

with the provided data. To this end the dimensionless parameter θ3 is set equal to 1, that is, there is no reduction in
the stiffness of the first floor superstructure columns. Simulated measured data for this case are generated for θ3 = 1.
In order to test the capabilities of the updating process in the framework of the combined system the identification of
the isolator parameters as well as the stiffness properties of the superstructure are considered simultaneously in the
second case. In the first case independent uniform prior distributions are assumed for the parameters θ1 and θ2 over the
range [0.5, 1.4]. As previously pointed out these parameters affect the nonlinear behavior of the isolators. The number
of samples at the different iteration steps of the transitional Markov chain Monte Carlo method is taken as 1000, that
is N j = 1000, j = 1, . . . , m. The updating process converges in six stages (steps) in this case. The samples from the
posterior probability density function are displayed in terms of the parameters θ1 and θ2 in Fig. 14.

The value of the nominal model parameters is also indicated in the figure. The large prior uncertainty about the
parameters θ1 and θ2 (uniformly distributed over the range [0.5, 1.4]) is significantly reduced which is visible from
the decreased range of the posterior samples. In fact the samples of the external diameter are distributed around the
actual value of 0.78 m (θ1 = 0.92) while the samples of the total height of rubber are spread around the actual value
of 0.17 m (θ2 = 1.20) as shown in the corresponding histograms of these parameters (Fig. 15). The results of Fig. 14
also suggest that the data for the updated isolation model result in uncertainties that are correlated along a certain
direction. The correlation structure is consistent with the fact that the base isolation system becomes stiffer as the
rubber diameter is increased. Contrarily, the isolation system becomes more flexible as the height of the rubber is
increased [43]. Therefore, an increase in the rubber diameter is compensated by an increase in the height of the rubber
during the updating process, and all points along that direction correspond to isolation system models that have similar
base drift responses.
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Fig. 14. Samples of the posterior probability density function in the (θ1–θ2) space generated at the last step of the transitional Markov chain Monte
Carlo method.

Fig. 15. Posterior histograms of model parameters θ1 and θ2. Mean estimates: θ̄1 = 0.92, θ̄2 = 1.20.

In the second case, the stiffness of the superstructure columns of the first floor in the x direction are identified
together with the isolator parameters. Simulated data for this case are produced for θ3 = 0.8 (actual value). An
independent uniform prior distribution defined over the interval [0.5, 1.5] is assumed for θ3. Fig. 16 shows how the
samples of the parameters θ1, θ2 and θ3 converge during the updating process in terms of their histograms. After
seven steps of the transitional Markov chain Monte Carlo method the parameters associated with the isolation system
and the superstructure are distributed around their actual values θ1 = 0.92, θ2 = 1.20 and θ3 = 0.80. Actually, the
mean estimate of these parameters are equal to θ̄1 = 0.92, θ̄2 = 1.22 and θ̄3 = 0.79. From the different steps of
the identification process it is clear that the posterior marginal distribution of the parameter related to the external
diameter of the isolators is very peaked. Thus this parameter is identifiable to almost a unique value. This result
is reasonable since this parameter has a significant effect on the global behavior of the combined system (isolation
system and superstructure) [43]. On the other hand, the posterior marginal distributions of the parameters associated
with the total height of rubber in the isolators and the stiffness of the first floor columns of the superstructure show
some degree of dispersion around their mean estimates. This results is also observed in Fig. 17 where the projection
of the samples in the (θ2–θ3) space are shown. From this figure the support of the unidentifiable domain is quite clear.
Furthermore, there is no a clear interaction between these two parameters. This is consequent from a structural point
of view since numerical validations have shown that the response of the base platform is not very sensitive to the total
height of rubber in the isolators over the range considered here. Similarly, numerical simulations have demonstrated
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Fig. 16. Posterior histograms of model parameters θ1, θ2 and θ3. Mean estimates at step 7: θ̄1 = 0.92, θ̄2 = 1.22, θ̄3 = 0.79.

that the overall response of the combined system is relatively insensitive to the 20% stiffness reduction of the first floor
superstructure columns. The previous results illustrate some important advantages of Bayesian updating procedures
over traditional techniques that try to identify one best model when there is limited amount of data available. In this
case the identification problem emerges as ill-conditioned without a unique solution for some parameters which can
be tackled very efficiently by Bayesian model updating.

Finally, the computational demand for the updating process of the reduced-order combined system (isolation
system and superstructure) is approximately 20 h. On the other hand the computational efforts using the unreduced
finite element model is estimated to be almost six days. Thus, as in the previous example, the computational demands
are drastically decreased by using the reduced-order model without compromising the predictive capabilities of the
proposed updating procedure.
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Fig. 17. Samples of the posterior probability density function in the (θ2–θ3) space generated at the last step of the transitional Markov chain Monte
Carlo method.

7. Conclusions

A methodology that integrates a model reduction technique into a finite element model updating formulation using
dynamic response data has been presented. In particular, a method based on fixed-interface normal modes and interface
constraint modes of the linear substructures comprising the system with localized nonlinearities is considered in this
work. In general, the method produces highly accurate models with relatively few substructure modes. The finite
element model updating is carried out by using a simulation-based Bayesian model updating technique. Specifically,
the transitional Markov chain Monte Carlo method is implemented in the present formulation. It is demonstrated
that under certain substructuring schemes, often encountered in finite element model updating problems, the fixed-
interface normal mode of each linear substructure and the characteristic interface modes are computed only once from
a reference finite element model. In this manner the re-assembling of the reduced-order system matrices from linear
substructures and interfaces modes is avoided during the updating process. Results show that the computational effort
for updating the reduced-order model is decreased drastically by one or two orders of magnitude with respect to the
unreduced model, that is, the full finite element model. Furthermore, the drastic reduction in computational efforts
is achieved without compromising the predictive capability of the proposed identification methodology. Therefore it
is concluded that the proposed approach is potentially an effective and useful tool for a certain class of Bayesian
finite element model updating problems. Future research efforts aim at expanding the proposed formulation and
increasing even further the computational savings. Specific issues to be considered include: the implementation of
surrogate normal and constraint modes in order to consider more general cases as well as to reduce the number of
reduced-order system re-analyses; and the implementation of the proposed scheme in a fully parallel environment
to efficiently distribute the different computational tasks in available multi-core CPUs. Finally, the generalization of
the proposed approach to different class of problems and different types of localized nonlinearities represents another
future research effort.
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[31] B. Goller, M. Broggi, A. Calvi, G.I. Schuëller, A stochastic model updating technique for complex aerospace structures, Finite Elem. Anal.

Des. 47 (2011) 739–752.
[32] P. Angelikopoulos, C. Papadimitriou, P. Koumoutsakos, Bayesian uncertainty quantification and propagation in molecular dynamics

simulations: a high performance computing framework, J. Chem. Phys. 137 (2012) 1441103-1–1441103-19.
[33] N. Metropolis, A. Resenbluth, M. Resenbluth, A. Teller, E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys.

21 (6) (1953) 1087–1092.
[34] W. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1) (1970) 97–109.
[35] R.R Craig Jr., M.C.C. Bampton, Coupling of substructures for dynamic analysis, AIAA J. 6 (5) (1965) 678–685.
[36] M.P. Castanier, Y.C. Tan, C. Pierre, Characteristic constraint modes for component mode synthesis, AIAA J. 39 (6) (2001) 1182–1187.
[37] J. Bathe, Finite Element Procedures, Prentice Hall, 2006.
[38] A.E. Sepulveda, H.L. Thomas, Improved transient response approximation for general damped systems, AIAA J. 34 (6) (1996) 1261–1269.
[39] H.A. Jensen, A.E. Sepulveda, Design sensitivity metric for structural dynamic response, AIAA J. 35 (9) (1998) 1286–1693.
[40] S.F. Gull, Bayesian inductive inference and maximun entropy, in: J. Skilling (Ed.), Maximum Entropy and Bayesian Methods, Kluwer,

Dordrecht, Boston, MA, USA, 1989.
[41] S. Minewaki, M. Yamamoto, M. Higashino, H. Hamaguchi, H. Kyuke, T. Sone, H. Yoneda, Performance tests of full size isolators for super

high-rise isolated buildings, J. Struct. Eng. AIJ 55(B) (2009) 469–477.
[42] M. Yamamoto, S. Minewaki, H. Yoneda, M. Higashimo, Nonlinear behavior of high-damping rubber bearings under horizontal bidirectional

loading: full-scale tests and analytical modeling, Earthq. Eng. Struct. Dyn. 41 (13) (2012) 1845–1860.
[43] H.A. Jensen, D.S Kusanovic, M. Papadrakakis, Reliability-based characterization of base-isolated structural systems, in: European Congress

on Computational Methods in Applied Sciences and Engineering, Vienna, Austria, 2012.

http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref3
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref4
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref5
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref6
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref7
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref9
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref10
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref11
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref12
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref13
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref14
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref15
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref16
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref17
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref18
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref19
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref20
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref21
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref22
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref23
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref24
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref25
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref26
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref27
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref28
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref29
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref31
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref32
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref33
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref34
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref35
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref36
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref37
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref38
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref39
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref40
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref41
http://refhub.elsevier.com/S0045-7825(14)00218-7/sbref42

	Model-reduction techniques for Bayesian finite element model updating using dynamic response data
	Introduction
	Finite element model updating using dynamic response data
	Bayesian formulation
	Model parameter estimation
	Model class selection

	Simulation-based approach
	Formulation
	Sample generation

	Model reduction technique
	Basic ideas
	Normal and constraint modes
	Fixed-interface normal modes
	Interface constraint modes

	Craig--Bampton method
	Dynamic response

	Model updating based on the reduced system
	Problem formulation
	Reduced stiffness matrix
	Final remarks

	Numerical examples
	Example 1: updating of linear model
	Model description
	Identification problem
	Simulated response data
	Reduced model
	Results of identification process
	Computational cost

	Example 2: updating of linear model with localized nonlinearities
	Structural model
	Response of the combined system
	Base-isolation system
	Model updating problem
	Model updating results


	Conclusions
	Acknowledgments
	References


