ΠΛΗΡΟΦΟΡΙΕΣ ΜΑΘΗΜΑΤΟΣ

MM0109 ΤΥΡΒΗ- ΒΙΟΜΗΧΑΝΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

Κατηγορία Μαθήματος: Μεταπτυχιακό
Τύπος Μαθήματος:
Κωδικός Γραμματείας: Ε11500
Εξάμηνο:
0° (Εαρινό)

Διάρκεια:

ECTS Units:
6
Τομέας:
Ενέργειας, Βιομηχανικών Διεργασιών και Αντιρρυπαντικής Τεχνολογίας
Κατεύθυνση:
Ενέργεια, Βιομηχανικές Διεργασίες & Τεχνολογία Αντιρρύπανσης
Διδάσκων:
Σταπουντζής Ερρίκος

Σκοπός

A rigorous mathematical approach to the treatment of turbulent flows (first part) followed by physical explanation of the most commonly encountered  turbulent flow phenomena  and appropriate quantification (second part). Aims to supply the student  with necessary analytical tools for understanding the complexity of turbulent flow and engineering tools for solving practical problems.

Περιεχόμενα

1.  INTRODUCTION.  

 Examples of turbulent flows,  Nature and characteristics of turbulence,  Origin, maintenance and  decay of  turbulence,  Methods of analysis :  Introduction to Mathematical models,  Numerical  models,  Experimental work.

 2.  OVERVIEW OF RELEVANT MATHEMATICS - TOOLS. 

 Partial differential equations. Tensors, vectors, scalars.  Transformations of coordinates.  Statistical tools and their relevance: Averaging, Fluctuations, PDFs, Space  and  time correlations, Random processes, Wave number and frequency spectra, Coherence function, Structure function, Definition  and method of computation of turbulence scales.

3.  FLUID MECHANICAL BACKGROUND. 

Fluid dynamics, - velocity field, Conservation of mass,  Rate of relative displacement - deformation - vorticity, The stress tensor,  Equations of motion,       Conservation of energy,  Transport processes , Boundary conditions

4.  ANALYTICAL TREATMENT OF TURBULENCE, DERIVATION OF RELEVANT EQUATIONS.  Reynolds decomposition, The equations of motion, incompressible flow, Continuity equation, Momentum equation, Kinetic energy equation for the mean flow, Turbulent kinetic energy, Reynolds stress transport equations, Vorticity equation, Pressure fluctuations, Scalar transport equations :  Mean enthalpy,      Mean square scalar or temperature fluctuations,  Scalar or temperature flux equations

5. HOMOGENEOUS TURBULENCE, ISOTROPIC TURBULENCE.  

Kinematics and dynamics of homogeneous turbulence, Isotropic turbulence, Kinematics of isotropic turbulence,  spectral functions, further functions, triple velocity products, Dynamics of isotropic turbulence, Isotropic spectral relations, Expressions for velocity spectra, Decay of turbulence, Grid turbulence.

6.  SIMPLE TURBULENT FLOWS AND TURBULENT SHEAR FLOWS.

Boundary-free shear flows.  Analysis and applications. Turbulent wakes, Turbulent jets, Free shear layers, Mixing layers. Wall bounded shear flows ,  Mixing length analysis in the inertial sublayer,  Intermittency.

7.  SPECIAL PROBLEMS - APPLICATIONS 

Turbulent Diffusion, Lagrangian methods for analysis of concentration fluctuations - Industrial and Environmental  case studies.   Effects of rotation on turbulence,  Effects of buoyancy on turbulence,  Drag reduction in turbulent flows, Forces on Airfoils and Bluff bodies due to Turbulent Flows. Experience and hands on usage of home made and commercial software (CFD and Εngineering Codes).

Αναλυτικό Πρόγραμμα Σπουδών του Μαθήματος (Syllabus)
Βιβλιογραφία

Batchelor, G. K., 1953. The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge.

Batchelor, G. K., 1967. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge.

Bradshaw, P., 1971. An Introduction to Turbulence and Its Measurement. Pergamon Press, New York.

Corrsin, S., 1963. Turbulence: experimental methods. Handbuch der Physik, Fluid Dynamics II, eds. Flugge & Truesdell, pp. 524-90. Springer, Berlin.

Favre, A., Kovasznay, L. S. G., Dumas, R., Caviglio, J., Coantic, M., 1976. La Turbulence en Mecanique des Fluides. Gauthier- Villars, Paris.

Frisch, U., 1995. Turbulence. Cambridge University Press, Cambridge.

Hinze, J. 0., 1975. Turbulence: an Introduction to Its Mechanisms and Theory. McGraw- Hill, New York.

Landahl, M. T., Mollo-Christensen, E., 1986. Turbulence and Random Processes in Fluid Mechanics. Cambridge University Press, Cambridge.

Landau, L. D., Lifshitz, E. M., 1987. Fluid Mechanics. Pergamon Press, Oxford.

Lesieur, M., 1990. Turbulence in Fluids. Stochastic and Numerical Modelling. Kluwer, Dordrecht.

Leslie, D. C., 1973. Developments in the Theory of Turbulence. Clarendon Press, Oxford. McComb, w. D., 1990. The Physics of Fluid Turbulence. Oxford Science Publications,  Oxford.

Monin, A. S., Yaglom, A. M., 1971 (vol. 1),1975 {vol. 2). Statistical Fluid Mechanics. MIT Press, Cambridge, MA.

Rodi, W., 1984, Turbulence Models and Their Application in Hydraulics, Elsevier.

Rotta, J.C. 1972, Turbulente Stroemungen, Teubner, Stuttgart

Schlichting,  H., 1968, Boundary Layer Theory, McGraw Hill.

Tennekes, I. I., Lumley, J. L., 1972. A First Course in Turbulence. MIT Press, Cambridge, MA.

Townsend, A. A., 1976. The Structure of Turbulent Shear Flow, 2nd edition. Cambridge  University Press, Cambridge.

Tritton, D. J., 1988. Physical Fluid Dynamics. Clarendon Press, Oxford.

Van Dyke, M., 1982. An Album of Fluid Motion. Parabolic

Γλώσσα Διδασκαλίας
Αγγλική
Μέθοδος Διδασκαλίας
Lectures
Αξιολόγηση
Τελικές Εξετάσεις:
50%
Τεχνικές Αναφορές Εργαστηρίων:
30%
Ασκήσεις:
20%
Φόρτος Εργασίας (σε ώρες)

Παρακολούθηση

Παραδόσεις:
45
Εργαστήρια:
15
Παρουσιάσεις:
15

Εκπόνηση

Τεχνικές Αναφορές Εργαστηρίων:
20
Ασκήσεις:
10