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ABSTRACT 
 
This work investigates the reliability of nonlinear elastic and inelastic systems arising in mechanical and 
civil engineering applications due to impacts between structural parts. These systems are modeled by 
single and multi-degree of freedom models with piecewise linear elastic stiffness elements and often 
involve strong inelastic behavior in parts of the system. In order to gain useful insight into the behavior of 
these systems, one degree of freedom piecewise linear elastic and inelastic systems are first analyzed and 
the behavior to long duration transient stochastic excitations is investigated. Using subset simulation 
method, probabilistic response spectra characteristics and estimates of the sensitivity of these spectra to 
uncertainties in system and loading parameters, such as initial modal frequency, stiffness ratios, size of 
gaps, inelastic parameters, damping values, excitation strength and frequency content, are obtained. It is 
shown that the performance of such systems to uncertain stochastic excitation (sinusoid pulse or 
earthquake type) can be enhanced by optimally designing the system parameter values. The methodology 
is used to investigate the reliability of the four-span Kavala bridge (Greece) under stochastic earthquake 
excitations. The bridge deck is supported on columns through elastomeric bearings, allowing impacts to 
occur between the deck structure and the piers. Short duration sinusoid pulse excitations with uncertain 
characteristics as well as white noise stochastic excitations are used to simulate the short and moderate 
duration earthquake excitations and the sensitivity of the reliability to the size of gaps affecting the 
behavior of the bridge is explored. 
  

1. INTRODUCTION 
 
Nonlinear elastic and inelastic systems with 
impacts arise in mechanical and civil engineering 
applications. In mechanical engineering 
applications, the behavior of the systems with 
impacts are often analyzed using single or multi 
degree of freedom mechanical models with 
piecewise linear elastic stiffness elements [1,2]. 
The interest concentrates on the response and 
stability of piecewise linear elastic systems to 
periodic excitation and it has been shown that 
these systems manifest complex nonlinear 
behavior. In civil engineering applications, such 
systems arise in the analysis of bridges with 
seismic stoppers [3-5] or the analysis of pounding 
of adjacent buildings. These systems are 
represented by single and multi degree of freedom 
models with piecewise linear elastic stiffness 
elements that often involve strong inelastic 
behavior in parts of the system.  

The present study focuses on the analysis of 
bridges that involve impacts due to the seismic 
stoppers designed to effectively withstand 
earthquake loads and reduce the size of the piers. 
A simple bridge with seismic stoppers is shown in 
Figure 1. The bridge deck is connected to the piers 
by elastomeric bearings and seismic stoppers are 

added on the pier caps that have a small gap with 
the deck structure so that the elastomeric bearings 
are free to move under ambient or traffic loads, 
while they impact on the stoppers only under 
moderate or strong earthquake loads. Activation of 
the stoppers due to impact results in sudden 
increase of the stiffness of the structure. The gaps 
between the stoppers and the bearings are usually 
selected such that the impact with the stoppers 
occurs before the pier yielding. Assuming a heavy 
undeformed deck of mass M  and representing the 
stiffness of the piers and the elastomeric bearing 
by massless linear or inelastic springs, one can 
construct a single degree of freedom (SDOF) 
simplified model of the bridge as shown in Figure 
2. For the case of stopper activation but no pier 
yielding, the springs are linear and the simplified 
system in Figure 2 behaves as a SDOF piecewise 
linear elastic system. For the case of elastoplastic 
spring representing the inelastic behavior of the 
deck, the system in Figure 2 behaves as a SDOF 
piecewise linear inelastic system. 
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Figure 1: Schematic diagram of single span bridge 
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Figure 2: Simplified SDOF system with bilinear stiffness 

 
 
In order to gain useful insight into the behavior 

of these systems, the response characteristics of 
the SDOF piecewise linear elastic systems, shown 
in Figure 2, are first analyzed and the behavior to 
short duration sine pulses as well as longer 
duration transient excitations is investigated. The 
analysis is then extended to nonlinear systems 
possessing combined piecewise linear elastic and 
elasto-plastic restoring force characteristics. The 
analysis is concentrated on probabilistic response 
spectra characteristics and can yield estimates of 
the sensitivity of these spectra to system and 
loading parameters, such as stiffness ratio, size of 
gaps, inelastic parameters, excitation strength and 
frequency content. It is shown that the 
performance of such systems to transient 
excitation can be enhanced by optimally designing 
the system parameter values. Issues related to the 
computational efficiency of the subset simulation 
method [6] and the two-stage subset simulation 
method [7] for computing the probabilistic 
response spectra are addressed. The analysis is 
then extended to investigate the reliability of the 
four-span Kavala bridge, shown schematically in 
Figure 3, located in northern Greece, under 
stochastic short duration sinusoid pulse excitations 
as well as white noise stochastic excitations. The 
sensitivity of the response to the size of gaps is 
explored. 
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Figure 3: Schematic diagram of Kavala bridge 

 

K2

K1

K1x0

x0
x

f

 
Figure 4: Elastic force-displacement relationship 

 
 
2. SDOF SYSTEM DESCRIPTION 
 
2.1 ELASTIC SYSTEM WITH GAP 
ELEMENTS 
 
Consider in Figure 2 the SDOF model of the 
structure, shown in Figure 1, with mass M , 
column stiffness , bearing stiffness  and 
base excitation , assumed same at both left 
and right supports. The equation of motion for the 
model is given by  

cK
( )z t

bK

 
( )Mx Cx f x Mz+ + = −  (1) 

 
where the term  accounts for the overall 
viscous damping on the system. The bilinear 
restore force due to the gap  is shown in Figure 
4 and  is given by 
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where  is the stiffness of the 
system before impact, and 

1 2 /(1cK K κ= + )

2 1 /(1 / 2)K K κ= +

/c bK K

 is 
the stiffness of the system after impact, and 

 is the mass displacement at which 
impact occurs, where  is the column to 
bearing stiffness ratio. By introducing the 
following non dimensional parameters: 
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where 1 1 /ω = Κ Μ  is the initial natural 
frequency of the SDOF before impact, ω and ga  is 
a characteristic frequency and amplitude of the 
excitation, respectively, and Nx  is a characteristic 
displacement, the equation of motion becomes: 
 

( )2
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The non-dimensional column force defined by 

2/( )c c Nf F x Mω= , can be shown to be given by 
 

2
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where /c c Ny xδ=  is the non-dimensional 
deflection (elongation) of the column spring, 
which can be shown to be given with respect to  
as 
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The non-dimensional restoring force in (4) is 
given by 
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2.2 ELASTIC SYSTEM WITH GAP 
ELEMENTS 
 
In this case, the column springs are assumed to 
behave as elastic perfectly plastic elements with 
yield displacement yieldx  and yield force . 
The equation of motion for the system is given by 

yieldF

(1) with the force  depending on the 
restoring force characteristics of the column 
spring. Due to the elastoplastic behaviour of the 
column springs, the force-displacement 
relationship of the equivalent piecewise-linear 
inelastic spring of the SDOF system is shown in 
Figure 5. Figure 6 gives the force-displacement 
hysteretic loop computed using a harmonic 
excitation. Note that 

(F y)

0x  denotes the mass 
displacement at impact, 1x  is the mass 
displacement at the first yield of the column spring 
and 2x  is the mass displacement at the second 
yield of the other column spring. 
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 Figure 5: Elastic force-displacement relationship  
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Figure 6: Hysteretic loop 
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By introducing the non dimensional parameters 

(3), along with  the non-dimensional mass 
displacement 1 1 / Ny x x=  corresponding to the 



position of yield of the first column spring and  the 
non-dimensional mass displacement 2 2 / Ny x x=  
corresponding to the position of yield of the 
second column spring, the equation of motion is 
given by (4), where  is a piecewise linear 
restoring force derived from 

( )F y
( )f x

yield

 given in Figure 
5. The non-dimensional yield displacement and 
yield force of the column spring is 

 and /yield yield Ny x= x /( )yield gf F a M= , 
respectively. The ductility of the column is 
defined by 

 
c

c
yield yield

cx y
x y

μ = =  (8) 

 
where ( )c cx y

( )eld yieldx y

 is the deflection (normalized 
deflection) of the top of the column or, 
equivalently, the elongation of the column spring, 
and  is the respective yield deflection 
(normalized deflection) of the top of the column. 
The ductility of the system is defined by 

yi

 

1 1

,s
x y
x y

μ = =  (9) 

 
where 1 1( )x y  is the displacement (normalized 
displacement) of the mass at the position of first 
yield. 
 

4. RELIABILITY ANALYSIS 
 
The response to white noise stochastic base 
excitation is next considered. The levels  with 
fixed probability of not been exceeded by the 
response are obtained. These levels as a function 
of one of the systems parameters such as 

b

1η  or δ  
represent the probabilistic response spectra. In 
Figures 7 through 8 the behavior of the 
probabilistic elastic and inelastic displacement 
response spectra that have 10-3 probability to be 
exceeded are shown as a function of the system 
parameters 1η  and δ . For the calculation of the 
probabilistic response spectra, corresponding to 
fixed failure probability, the subset simulation 
method [6] is used for 500 samples for computing 
the intermediate 10  failure levels. 1−

It is observed that the normalized period of 
excitation 1η  at which resonance occurs depends 
on the gap value δ . For the elastic system, as the 
gap reduces from δ →∞  to 0δ =  values, the 
system shows a hardening behavior and the peak 
of the probabilistic response spectra moves to the 
left from 1 1η ≈  to 1 2 /T 1Tη =  values. For the 
inelastic system the resonance peak is affected by 
the softening behavior of the column elastoplastic 
elements which can dominate the hardening effect 
caused by the impact. 
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Figure 7: Mass displacement levels for 310−  failure 

probability versus non-dimensional period for the elastic 
system 
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Figure 8: Mass displacement levels for 310−  failure 

probability versus non-dimensional period for the inelastic 
system 
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Figure 9: Mass displacement levels for  failure 

probability versus non-dimensional gap length for the elastic 
system 
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Figure 10: Mass displacement levels for  failure 

probability versus non-dimensional gap length for the 
inelastic system 
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4. RELIABILITY OF KAVALA BRIDGE 
 
The methodology is used to investigate the 
response and reliability of the four-span Kavala 
bridge [8], located in northern Greece, under 
earthquake excitations. A schematic diagram of 
the bridge is shown in Figure 3. The bridge deck is 
supported on columns through elastomeric 
bearings. The bridge system involves piecewise 
linear stiffness elements that arise from impacts 
between the deck and the columns during 
moderate to strong earthquake shaking, while the 
columns of the bridge are allowed to behave 
inelastically. A multi degree of freedom finite 
element models of the bridge, involving inelastic 
elements and piecewise linear stiffness elements, 
is used to simulate its behavior. In order to have a 
better insight of the effect of such non-linearities, 
a 2-D model of the four-span Kavala bridge is 
constructed. An 18 degrees of freedom finite 
element model is constructed using one beam 

element for each spam and column, as well as 
spring elements to model the stiffness of the 
elastomeric bearings. 
 
4.1 WHITE NOISE BASE EXCITATION 
 
White noise stochastic excitations are used to 
simulate moderate duration earthquake 
excitations. The vulnerability of such bridge 
structure to these types of earthquake excitations 
is explored. Finite element analysis software 
OpenSEES [9] is used to perform the deterministic 
and stochastic dynamic analysis. 

The probabilistic response spectra of the 
normalized deck displacement and the left pier 
force to white noise base excitation are shown in 
Figures 11 and 12 as a function of the normalized 
gap length δ . The behavior of the probabilistic 
response spectra levels for the deck displacement 
corresponding to fixed failure probability levels of 

110 , 10 2− −  and 310−  show an increasing tendency 
for small values of the normalized gap length, 
whereas for greater values the failure level 
remains constant. This is due to the fact that for 
small values of the normalized gap length there is 
contact at the stopper mechanism and therefore the 
deck displacement reduces. As the normalized gap 
length increases, there is no contact at the stopper 
mechanism and this results in the independency of 
the deck response to the gap length. 

On the other hand, the probabilistic force 
spectra, shown in Figure 12, increase for 
intermediate values of the normalized gap δ . This 
is due to the fact that for small values of the 
normalized gap length there is contact at the 
stopper mechanism and this results to higher 
forces at the piers. For greater values of the 
normalized gap length the failure levels of the pier 
forces remain the same, as there is no impact at 
the stopper mechanism and therefore the 
normalized gap length does not affect the 
response. 
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Figure 11: Deck displacement for different failure levels 
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Figure 12: Column force for different failure levels 

 
 
4.2 PULSE BASE EXCITATION 
 
Next a mathematical representation of near-fault 
ground motions, proposed by Mavroeidis and 
Papageorgiou [10], [11], is used to estimate the 
probability of failure of Kavala bridge under such 
earthquake excitations. The analytical expressions 
for the ground acceleration time histories are: 
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if 0 02 2p p

t t t
f f
γ γ

− ≤ ≤ +  and  otherwise, 

where  is the amplitude, 

( ) 0a t =

pA f  is the prevailing 
frequency, ν  is the phase,  is a time shift and 0t γ  
defines the oscillatory character of the generated 

signal. In the present work the parameters A  and 
γ  are considered uncertain. Specifically,  is 
considered to follow a normal distribution with 
mean value 

A

200Aμ =  and standard deviation 
50Aσ = , whereas parameter γ  is considered to 

follow a uniform distribution in the interval 
. A realization of an acceleration time 

history generated by 
[1.05 3]

(10) with random values of 
the parameters  and A γ  is shown in Figure 13. 
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Figure 13: Acceleration time history 

 
 
The response to stochastic near-fault ground 

motion base excitation is next considered. The 
levels  with fixed probability of not been 
exceeded by the response are obtained. For the 
calculation of the probabilistic response spectra, 
corresponding to fixed failure probability, the 
subset simulation method [6] is used for 2000 
samples for computing the intermediate 

b

110−  
failure levels. 

The probabilistic response spectra of the 
normalized deck displacement and the left pier 
force to white noise base excitation are shown in 
Figures 14 and 15 as a function of the normalized 
gap length δ . It is clearly seen that resonance 
phenomena appear for certain values of the 
normalized gap length in both the probabilistic 
response spectra of the deck displacement and pier 
force. It is also worth noting that these phenomena 
appear for different value of the normalized gap 
length. This is due to the strongly non linear 
behavior of the system in the area of the values of 
the normalized gap length for which impact occurs 



at the stopper mechanisms of the three piers of the 
bridge structure. 
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Figure 14: Deck displacement for different failure levels 
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Figure 15: Column force for different failure levels 

 
 

5. COMPARISON BETWEEN SUBSET 
SIMULATION AND TWO STAGE SUBSET 
SIMULATION 

 
Next, a comparison between subset simulation 
method (SS) and the two stage subset simulation 
method (TSSS) for bilinear systems [7] is 
presented in order to investigate the efficiency of 
these two methods for this specific non linear 
system. The probabilities of failure as a function 
of exceedance levels for the mass displacement of 
the elastic system are given in Figure 16 for the 
two methods, using 500 samples for computing 
the  intermediate failure levels, and for 
several runs of the two algorithms. Besides the 

smallest computational effort required by the two 
stage subset simulation method, its accuracy 
seems to be better for these type of systems, as it 
can be inferred by comparing the scatter of the 
multiple simulation curves. 

110−

 
 

0 0.5 1 1.5 2 2.5 3
10-4

10-3

10-2

10-1

100

b

P
(F

)

 

 

SS
TSSS

 
Figure 16: Comparison between subset simulation (SS) and 

two stage subset simulation (TSSS) 
 
 
6. CONCLUSIONS  
 
Single degree of freedom mechanical systems with 
piecewise linear elastic and elastoplastic behavior 
exhibit complex nonlinear behavior when 
subjected stochastic excitations. It is shown that 
the performance of piecewise linear elastic and 
inelastic SDOF systems to transient excitation, 
such as short sinusoid pulse, earthquake-like and 
stochastic excitations, depends, among other 
system parameters, on the gap sizes which affect 
the deterministic and probabilistic response 
spectra. Studies on multi-degree-of-freedom 
model of a four-span Kavala bridge also show that 
the response spectra are affected by the size of the 
gap between the deck structure and the seismic 
stoppers of the pier cap. The design of the gap is 
critical in assessing the behavior of the bridge 
under transient earthquake excitation. The 
response and reliability characteristics of such 
systems can be enhanced by optimally designing 
the system parameter values. The proposed 
analysis framework is useful for investigating the 
vulnerability of such bridge systems to earthquake 
excitations. 
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