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Abstract. This work investigates the dynamics and reliability of bridge systems with decks supported on columns through elastomeric bearings, while seismic stoppers are used to restrain the motion of the deck during moderate to strong earthquakes. The dynamics of these systems during earthquake shaking can be simulated using models with piecewise linear elastic stiffness elements arising from the motion restrains between the deck and the columns due to the seismic stoppers. These bridge systems also involve strong inelastic behavior due to yielding of the columns under strong earthquakes. In order to gain useful insight into the behavior of these systems, one degree of freedom systems with piecewise linear elastic stiffness characteristics are first analyzed and their behavior to earthquake-like excitations is investigated. The analysis is then extended to nonlinear systems with combined elements having piecewise linear elastic stiffness and inelastic force displacement behavior. Stochastic earthquake excitation models are considered that simulate the strong pulse characteristics of near fault ground motions. The analysis is concentrated on probabilistic response spectra characteristics and the estimation of the sensitivity of these spectra to the values of system and loading parameters, such as initial modal frequency, size of gaps, excitation strength, duration and dominant frequency. The subset simulation method is used to efficiently estimate the probabilistic response spectra. In particular, the sensitivity of the probabilistic response spectra to the size of gaps between decks and seismic stoppers, affecting the behavior of the bridge, is explored and the performance of the bridge system is evaluated.
INTRODUCTION

Nonlinear elastic and inelastic systems with stoppers arise in mechanical and civil engineering applications. In mechanical engineering applications, the behavior of the systems with stoppers are often analyzed using single or multi degree of freedom mechanical models with piecewise linear elastic stiffness elements [1,2]. The interest concentrates on the response and stability of piecewise linear elastic systems to periodic excitation and it has been shown that these systems manifest complex nonlinear behavior. In civil engineering applications, such systems arise in the analysis of bridges with seismic stoppers [3-5] or the analysis of pounding of adjacent buildings. These systems are represented by single and multi degree of freedom models with piecewise linear elastic stiffness elements that often involve strong inelastic behavior in parts of the system. 

The present study focuses on the analysis of bridges that involve seismic stoppers designed to effectively withstand earthquake loads and reduce the size of the piers. A simple bridge with seismic stoppers is shown in Figure 1(a). The bridge deck is connected to the piers by elastomeric bearings and seismic stoppers are added on the pier caps that have a small gap with the deck structure so that the elastomeric bearings are free to move under ambient or traffic loads, while they impact on the stoppers only under moderate or strong earthquake loads. Activation of the stoppers due to impact results in sudden increase of the stiffness of the structure. The gaps between the stoppers and the bearings are usually selected such that the impact with the stoppers occurs before the pier yielding. Assuming a heavy undeformed deck of mass 
[image: image1.wmf]M

 and representing the stiffness of the piers and the elastomeric bearing by massless linear or inelastic springs, one can construct a single degree of freedom (SDOF) simplified model of the bridge as shown in Figure 2(a). For the case of stopper activation but no pier yielding, the springs are linear and the simplified system in Figure 2(a) behaves as a SDOF piecewise linear elastic system. For the case of elastoplastic spring representing the inelastic behavior of the deck, the system in Figure 2(a) behaves as a SDOF piecewise linear inelastic system.
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Figure 1: Schematic diagram of (a) single span bridge and (b) Multispan bridge.

In order to gain useful insight into the behavior of these systems, the response characteristics of the SDOF piecewise linear elastic systems, shown in Figure 2, to short duration pulses are first analyzed. The analysis is then extended to nonlinear systems possessing combined piecewise linear elastic and elasto-plastic restoring force characteristics. The analysis is concentrated on probabilistic response spectra characteristics and the estimation of the sensitivity of these spectra to system and loading parameters, such as stiffness ratio, size of gaps, inelastic parameters, excitation strength and frequency content. It is shown that the performance of such systems to transient excitation can be enhanced by optimally designing the system parameter values. 
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Figure 2: (a) Simplified SDOF system with bilinear stiffness and (b) elastic force-displacement relationship.
1 SDOF elastic System with gap elements
1.1 Formulation
Consider the SDOF model of a bridge, shown in Figure 2(a). The mass of the deck is considered to be 
[image: image6.wmf]M

, the bending stiffness of the columns is 
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, the bending stiffness of the elastomeric bearings is 
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. Let



[image: image9.wmf]c

b

K

K

k

=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1)

be the column to bearing stiffness ratio. An excitation 
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 is applied at the base of the structure, assumed same at both left and right supports. The equation of motion for the model is given by 
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where the viscous damping term 
[image: image12.wmf]Cx
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 accounts for the overall damping on the system and 
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 is the restoring force, which is piecewise linear due to gap 
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. In the case of elastic columns this restoring force is shown in Figure 2(b) and is given by
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where 
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 is the mass displacement at which contact occurs, given by
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Also, the equivalent stiffness before impact can be obtained by observing that the two left or right springs b and c are connected in series, while the left and right pairs of springs b and c are connected in parallel. This configuration leads to an equivalent spring constant
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which is the stiffness of the system when the gap is open, that is, the absolute displacement of the deck is smaller than 
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 or consequently the relative displacement of the deck with respect to the displacement of the pier cap is smaller than the gap length 
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. Similarly, 
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is the local stiffness of the system after impact, that is, the absolute displacement of the deck is greater than 
[image: image22.wmf]0
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 or consequently the relative displacement of the deck with respect to the displacement of the pier cap is equal to the gap length 
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.

The local modal frequency of the system when the gap is open is defined as 
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where the later form is obtained using 
(5)

. Similarly, replacing  GOTOBUTTON ZEqnNum906716  \* MERGEFORMAT  by 
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 in (7)

, the local “modal frequency” when the right or left gap is closed is defined as
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where the last equality is obtained using (8)

 one can extract the relationship between these two “equivalent eigenfrequencies” of the system
(7)

 and (6)

. Note that by combining the equations 
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1.2 Non - dimensional analysis

Let ω and 
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 be a characteristic frequency and amplitude of the excitation 
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, respectively, and introduce



[image: image31.wmf]2

g

N

a

x

w

=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (10)

as a characteristic displacement of the excitation. The following non-dimensional parameters are introduced to simplify the analysis and reduce the number of independent variables. The non-dimensional initial natural frequency 
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 of the system introduced by
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the non-dimensional time is given by
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the non dimensional displacement 
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 of the system mass normalized by the characteristic displacement 
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 of the excitation and the non-dimensional time 
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the normalized mass displacement 
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 at which contact occurs given by
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where the second part of the equation 
(4)

 and introducing the non-dimensional gap length (14)

 is obtained using  GOTOBUTTON ZEqnNum566348  \* MERGEFORMAT , normalized by the characteristic length 
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 of the excitation, as follows
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Using these dimensionless parameters, the equation of motion becomes in its non-dimensional form:
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where 
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 is the non-dimensional excitation given by
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and 
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 in (13)

 in the form(3)

 and (16)

 is the non-dimensional restoring force derived by 
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The column and bearing spring elongation and forces are next summarized. The non-dimensional elongation of the left column spring is given by
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The non-dimensional elongation of the right column spring is given by
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Similarly, the non dimensional elongation of the left bearing spring is given by
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whereas the non dimensional elongation of the right bearing spring is given by
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It can be readily shown that the non-dimensional left and right column forces are given by
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while using the non-dimensional left and right bearing forces are given by
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According to the non-dimensional analysis, the non-dimensional response of the SDOF system depends on the following parameters: the non-dimensional initial natural frequency 
[image: image57.wmf]1
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 , gap size 
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, stiffness ratio 
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 and damping ratio 
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2 Inelastic system with gap elements
Consider now the case of plasticity at the columns of the structure. In this case, the column springs are assumed to behave as elastic perfectly plastic elements with yield displacement 
[image: image61.wmf]yield
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 and yield force 
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F

. The equation of motion for the system is given by 
(2)

 with the force  GOTOBUTTON ZEqnNum124176  \* MERGEFORMAT  depending on the restoring force characteristics of the column spring. Due to the elastoplastic behaviour of the column springs, the force-displacement relationship of the equivalent piecewise-linear inelastic spring of the SDOF system appears to have four linear branches, instead of two in the elastic case, as it is shown in Figure 3(a). 
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Figure 3: (a) Inelastic force-displacement relationship and (b) hysteretic loop.
The following parameters define the restoring force given in Figure 3(b). where 
[image: image66.wmf]1
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, , is The equivalent stiffness 
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 before impact given by 
(5)

,  ,the local stiffness  GOTOBUTTON ZEqnNum906716  \* MERGEFORMAT , given by (6)

, after impact and before yielding of the columns, the equivalent stiffness
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when one of the columns has yielded, and finally the stiffness of the whole structure when both the columns are in the plastic zone 
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 is the displacement of the deck at which contact occurs, 
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 is the displacement of the deck at which the first column yields, given by
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 is the displacement of the deck at which the second column yields given by
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By introducing the non dimensional parameters presented in equations 
(15)

, along with  the non-dimensional mass displacement (10)

 -  GOTOBUTTON ZEqnNum988337  \* MERGEFORMAT  given by
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corresponding to the position of yield of the first column spring and the non-dimensional mass displacement 
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 given by
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corresponding to the position of yield of the second column spring, the equation of motion is given by 
(16)

, where  GOTOBUTTON ZEqnNum750991  \* MERGEFORMAT  becomes
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The non-dimensional yield displacement and yield force of the column spring is given by 
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and
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respectively. The ductility of the column is defined by
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where 
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 is the deflection (normalized deflection) of the top of the column or, equivalently, the elongation of the column spring, and 
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 is the respective yield deflection (normalized deflection) of the top of the column. The ductility of the system is defined by
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where 
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()

xy

 is the displacement (normalized displacement) of the mass at the position of first yield. 
According to the non-dimensional analysis, the non-dimensional response of the inelastic SDOF system depends on the following parameters: the non-dimensional initial natural frequency 
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 , gap size 
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, stiffness ratio 
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, damping ratio 
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 and yield displacement 
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3 reliability under Sort duration base excitation
The response and reliability of the piecewise linear system under sort duration base excitations is examined. Sort duration pulse excitations are commonly used in order to represent near fault strong ground motions. In order to evaluate the response and reliability of the piecewise linear system in the current work, the mathematical representation of near fault ground motions proposed by Mavroeidis and Papageorgiou [6,7] is used, which adequately describes their impulsive character. The expression of the acceleration for this specific mathematical model is given by
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where 
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 is the amplitude of the signal, 
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 is the prevailing frequency of the signal, 
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 is the parameter that defines the oscillatory character of the signal with 
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 is the phase and 
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 specifies the time of the envelope’s peak.

This mathematical representation of near fault strong ground motions is used as base acceleration. Dividing the equation 
(37)

 by  GOTOBUTTON ZEqnNum789979  \* MERGEFORMAT  and using the normalized time
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then the normalised form of the acceleration in (16) is given by
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Four characteristic realizations of the normalised acceleration given by the mathematical model are shown in Figure 4. It should be noted that the parameter 
[image: image103.wmf]g

 affects the duration of the normalized excitation.
In order to investigate the effect of the input parameter uncertainties on the system response, the parameters of the excitation model must be considered to be uncertain. These uncertain parameters are the amplitude 
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 of the pulse, the prevailing frequency of the excitation, the phase 
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 of the pulse and finally the parameter 
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. This can be done by modeling the aforementioned parameters with random variables. Assuming that 
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, the equation of the normalized input acceleration takes the form
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where 
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 are the random variables controlling the uncertainty in the excitation amplitude 
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 and the dominant frequency of the excitation, while the normalized parameters defined in (10), (11) and (12) the parameter 
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Figure 4: Sinusoid pulses for  (a) ν=0, γ=1, (b) ν=0, γ=2, (c) ν=0, γ=3, (d) ν=π/2, γ=2.

4 numerical results
Next the response spectra of the elastic and inelastic SDOF system under the sort duration sinusoid pulse given in 
(40)

 with respect to the normalized gap length  GOTOBUTTON ZEqnNum727357  \* MERGEFORMAT  and the normalized system natural frequency 
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. The response characteristics for deterministic sine pulse excitations, giving insight into the effect of the system characteristics on the response spectra can be found in [8]. 

4.1 Case I: Uncertainty in 
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First the case of uncertain phase 
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 is considered, where the excitation parameter 
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 follows a uniform distribution in the interval [0, π/2] and all the other excitation parameters are deterministic. Due to the uncertainties of the excitation and therefore of the response, the results are presented in terms of the probabilistic response spectra. The response spectra are plotted as a function of the normalized system frequency 
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In Figure 5(a) and (b) are shown the response of the mass displacement 
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 for different values of the parameter 
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 for the elastic and the inelastic system, respectively. The gap size is chosen to be 
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. In Figure 6(a) and (b) are presented the response spectra of the maximum column force for the elastic system and the system ductility of the inelastic system, respectively.
It is clear from these figures that the uncertainty in 
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Figure 5: Mass displacement for (a) elastic system and (b) inelastic system.
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Figure 6: (a) Column forces for elastic system and (b) ductility of inelastic system.

In Figure 7(a) and (b) are shown the probabilistic response spectra of the mass displacement 
[image: image164.wmf]y

 of the elastic and inelastic system respectively, with respect to the normalized gap length 
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 for different values of the parameter 
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. The non-dimensional initial natural frequency 
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 is chosen to be 
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. In Figure 8(a) and (b) are presented the probabilistic response spectra of the maximum column force for the elastic system and the system ductility for the inelastic system. It is seen that the mass displacement exhibits increasing behavior as 
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 increases, until it reaches a high enough value beyond which there is no impact at the stopper mechanisms, and therefore the system responds linearly. Note that the straight line in Figure 7(a), given by
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divides the displacement response spectra in two areas. The left area is the one for which the gap has closed at least once and therefore the system responds non-linearly. That is the non dimensional gap length is small enough so that there is at least one impact for each value of 
[image: image171.wmf]d

. When the value of the non dimensional gap length is not small enough for impact to occur, the system responds linearly and therefore there is no change in the response amplitude as the value of 
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 increases. Similar trends can be observed at the column force response spectra in Figure 8(a), as well as in Figures 7(b) and 8(b) for the inelastic response spectra. It is worth pointing out that for large enough gap values, the response of the elastic or the inelastic system does not depend on the gap length since impact between the deck and the column does not occur and so probabilistic response spectra curves remain constant. 
It is worth noting in Figures 7(a) and 8(a) that the values of the response spectra increase as the value of 
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 increases form 1 to 2 to 3 for the range of 
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 values for which the system behaves nonlinear. This is due to the fact that higher values of 
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 lengthen the duration of the excitation and increase the number of excitation cycles, resulting in higher responses. A more complex behavior is shown in Figures 7(b) and 8(b) for the inelastic system. Specifically, higher values of 
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 do not give higher values of the response spectra for the corresponding values of 
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Figure 7: Mass displacement for (a) elastic system and (b) inelastic system.

[image: image180.emf]0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5



f

c

 

 



=1, Min



=1, 10%



=1, Mean



=1, 10%



=1,Max



=2, Min



=2, 10%



=2, Mean



=2, 10%



=2,Max



=3, Min



=3, 10%



=3, Mean



=3, 10%



=3, Max

[image: image181.emf]0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

4





s

 

 



=1, Min



=1, 10%



=1, Mean



=1, 10%



=1, Max



=2, Min



=2, 10%



=2, Mean



=2, 10%



=2, Max



=3, Min



=3, 10%



=3, Mean



=3, 10%



=3, Max


Figure 8: (a) Column forces for elastic system and (b) ductility of inelastic system.

Next the case of uncertain parameter 
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 is considered, where the parameter 
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 follows a uniform distribution in the interval 
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 and all the other parameters are deterministic. The elastic and inelastic probabilistic response spectra are plotted as a function of the normalized system frequency 
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In Figure 9(a) and (b) are shown the probabilistic response spectra of the mass displacement 
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 with respect to the normalized natural frequency 
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 for different values of the parameter 
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 for the elastic and the inelastic system, respectively. The gap length 
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 is chosen to be 
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. In Figure 10(a) and (b) are presented the probabilistic response spectra of the maximum column force for the elastic system and the system ductility of the inelastic system, respectively. It can be seen that the value of the parameter 
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 of the excitation affects the value of the normalized frequency 
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 for which the peak of the response spectra occurs. This is due to the fact that this parameter affects the phase of the sinusoid excitation and therefore affects the value of the non dimensional frequency at which resonance occurs.
[image: image194.emf]0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

2

4

6

8

10

12



1

y

 

 



=0, Min



=0, 90%



=0, Mean



=0, 10%



=0, Max



=



/2, Min



=



/2, 10%



=



/2, Mean



=



/2, 90%



=



/2, Max

[image: image195.emf]0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

2

4

6

8

10

12



1

y

 

 



=0, Min



=0, 90%



=0, Mean



=0, 10%



=0, Max



=



/2, Min



=



/2, 10%



=



/2, Mean



=



/2, 90%



=



/2, Max


Figure 9: Mass displacement for (a) elastic system and (b) inelastic system.
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Figure 10: (a) Column forces for elastic system and (b) ductility of inelastic system.
In Figure 11 (a) and (b) are shown the probabilistic response spectra of the mass displacement 
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 of the elastic and inelastic system respectively, with respect to the normalized gap length 
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 for different values of the parameter 
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. The non-dimensional initial natural frequency 
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 is chosen to be 
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. In Figure 12(a) and (b) are presented the probabilistic response spectra of the maximum column force for the elastic system and the system ductility for the inelastic system. It can be seen that the response exhibits the quite the same behavior as in the previous case of uncertain parameter 
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 with respect to the normalized gap length.
[image: image204.emf]0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

1

2

3

4

5

6



y

 

 



=0, Min



=0, 90%



=0, Mean



=0, 10%



=0, Max



=



/2, Min



=



/2, 10%



=



/2, Mean



=



/2, 90%



=



/2, Max

[image: image205.emf]0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

1

2

3

4

5

6



y

 

 



=0, Min



=0, 90%



=0, Mean



=0, 10%



=0, Max



=



/2, Min



=



/2, 10%



=



/2, Mean



=



/2, 90%



=



/2, Max


Figure 11: Mass displacement for (a) elastic system and (b) inelastic system.
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Figure 12: (a) Column forces for elastic system and (b) ductility of inelastic system.
It can be seen from these figures that the uncertainty in 
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 affects the variability of the response. This variability depends on the value of the parameter 
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 and the value of the initial normalized natural frequency 
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 of the system. A large variability is observed for small values of 
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. The peak of the response spectra and their variability depend on the value 
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. Similar trends are observed for the column forces of the elastic system and the ductility of the inelastic system. 
As in the previous case of uncertainty in 
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, it should be observed that in this case of uncertainty in 
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 there are values of the system parameters 
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 and the gap size 
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 for which the response spectra quantities are less sensitive to the uncertainty in 
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. Such regions are clearly shown in Figures 11 and 12 for 
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 probabilistic response spectra curves for values of 
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 approximately close to 1.8 for the elastic system and for values of 
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 approximately close to 1 for the inelastic system. 

4.2 Case II: Uncertainty in 
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 and 
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Next the response spectra of the elastic and inelastic SDOF system under the sort duration pulse given in 
(40)

 with respect to the normalized gap length and the normalized system natural frequency are presented assuming that both  GOTOBUTTON ZEqnNum727357  \* MERGEFORMAT  and 
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 are uncertain. The value of the damping coefficient and the stiffness ratio remain the same as before. The uncertainty of the parameters is also quantified by the probability distributions defined in Section 4.1.
In Figure 13(a) and (b) are presented the probabilistic response spectra of the mass displacement 
[image: image227.wmf]y

 with respect to the normalized natural frequency 
[image: image228.wmf]1

h

, for the elastic and the inelastic system respectively. In Figure 14(a) and (b) are presented the probabilistic response spectra of the maximum column force for the elastic system and the system ductility of the inelastic system, respectively. The same response parameters are presented in Figure 15(a) and (b), and Figure 16(a) and (b) with respect to the normalized gap length. It is observed that the probabilistic response spectra curves have the same behavior as in the cases of one uncertain parameter but with much greater variability. Compared to the probabilistic response spectra for one parameter shown in Figures 5 to 12, the variability in the response spectra curve for two uncertain parameters covers a range that includes the ranges of variability of the response spectra for one parameter 
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 or 
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 obtained previously.
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Figure 13: Mass displacement for (a) elastic system and (b) inelastic system.
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Figure 14: (a) Column forces for elastic system and (b) ductility of inelastic system.
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Figure 15: Mass displacement for (a) elastic system and (b) inelastic system.
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Figure 16: (a) Column forces for elastic system and (b) ductility of inelastic system.

4.3 Case III: Uncertainty in 
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Finally the probabilistic response spectra of the elastic and inelastic SDOF system under the sort duration pulse given in 
(40)

 with respect to the normalized gap length and the normalized system natural frequency are presented assuming that all the parameters of the pulse excitation are uncertain. The value of the damping coefficient and the stiffness ratio remain the same as before. The uncertainty of the parameters is quantified as follows. The parameters  GOTOBUTTON ZEqnNum727357  \* MERGEFORMAT  and 
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 follow the same uniform distributions in the intervals [0, π/2] and [1, 3] as in the previous cases. The frequency of the excitation 
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 follows a uniform distribution in the interval [0.2, 1.5] whereas the amplitude of the pulse 
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 follows a lognormal distribution with mean value equal to 20 and variance equal to 66. The subset simulation method [9] is used in order to calculate the probabilistic response spectra levels that correspond to different values of the probability of exceedance by the system response. The curves of the probabilistic response spectra correspond to the levels with fixed probability 
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 of being exceeded.
In Figure 17(a) and (b) are presented the probabilistic response spectra for the mass displacement with respect to the normalized natural frequency 
[image: image251.wmf]1

h

, for the elastic and the inelastic system respectively. In Figure 18(a) and (b) are presented the probabilistic response spectra for the column forces and the system ductility with respect to the normalized natural frequency 
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h

, for the elastic and the inelastic system respectively. In Figure 19(a) and (b) are presented the response spectra of the b levels for the mass displacement with respect to the normalized gap length for the elastic and the inelastic system respectively. Note that the black line in Figure 19(a) divides the Figure in two parts. On the left side the gap length is small enough so that at least one contact has occurred and therefore the system responds non linearly, whereas on the right side the gap length is large enough so that no contact occurs and therefore the system responds linearly. Finally in Figure 20(a) and (b) are presented the response spectra of the column forces of the elastic system and the system ductility for the inelastic system. As the gap length increases and no contact occurs, the forces are constant and considerably smaller than the forces for smaller gap lengths.
Comparisons of the results for four uncertain parameters with the results of the previous Figures 13 to 16 for two uncertain parameters can be directly made by noting that the probabilistic response spectra levels in Figures 17 to 20 with 
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 probability of being exceeded correspond to the 10% probability of exceedance response spectra curves drawn in Figures 13 to 16. Such comparisons show that the extra two uncertain parameters increase the levels with 
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 probability of being exceeded by the response and thus increase the variability in the response spectra due to the uncertainties in the four input parameters. 
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Figure 17: Mass displacement for (a) elastic system and (b) inelastic system.
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Figure 18: (a) Column forces for elastic system and (b) ductility of inelastic system.
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Figure 19: Mass displacement for (a) elastic system and (b) inelastic system.
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Figure 20: (a) Column forces for elastic system and (b) ductility of inelastic system.

5 CONCLUSIONS 

The dynamics and reliability of SDOF systems representing simplified models of bridges with stoppers subjected to short pulse earthquake excitations was considered. These SDOF systems, with restoring forces build from piecewise linear elastic and elastoplastic elements, exhibit complex nonlinear behavior which depend on the characteristics of the systems and the size of gaps between the deck and the seismic stopper on the column. A non-dimensional simplified analysis was presented to reduce the number of parameters controlling the system response. The uncertainty in the excitations parameters, such as dominant frequency, duration, phase, and amplitude, of the near-field strong pulse earthquake motion considerably affects the response resulting to large variability of the response spectra. In particular, the size of gap between the deck and the stoppers considerably affects the behavior of these systems and the level of response variability. The response and reliability characteristics of such systems can be enhanced by optimally designing the system parameter values. The proposed analysis framework is useful for investigating the vulnerability of such bridge systems to near field earthquake excitations.
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