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SUMMARY

A methodology is proposed for estimating damage accumulation due to fatigue in the entire body of a
metallic structure using output-only vibration measurements from a sensor network installed at a limited
number of structural locations. Available frequency domain stochastic fatigue methods based on
Palmgren-Miner damage rule, S-N fatigue curves on simple specimens subjected to constant amplitude
loads, and Dirlik’s probability distribution of the stress range are used to predict the expected fatigue
damage accumulation of the structure in terms of the power spectral density (PSD) of the stress processes.
The PSD of stresses at unmeasured locations are estimated from the response time history measurements
available at the limited measured locations using Kalman filter and a dynamic model of the structure. The
effectiveness and accuracy of the proposed formulation is demonstrated using a multidegree-of-freedom
spring-mass chain model and a two-dimensional truss model arising from structures that consist of
members with uniaxial stress states. Copyright r 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Damage accumulation due to fatigue is an important safety-related issue in metallic structures.
The linear Palmgren-Miner damage accumulation law [1,2] is often used to evaluate fatigue
damage using available methods for cycle counting in variable amplitude measured stress
response time histories and S-N curves obtained from laboratory experiments of simple
specimens subjected to constant amplitude loads. The damage accumulation predictions are
based on time histories measurements taken from a sensor network, consisting usually of strain
rosettes, attached to the structure. Such predictions are only applicable for the locations where
measurements are available. Due to practical and economical considerations, the number of
sensors placed in a structure during operation is very limited and in most cases they do not cover
all critical locations. Moreover, there are locations in the structure that one cannot install
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sensors, such as submerged structures, underwater locations in offshore structures (oil refinery
structures, offshore wind turbines, offshore steel jackets, etc.), heated structural components,
internal points in solid structures, and non-approachable areas of large extended structures.
Available fatigue prediction methods based only on measurements cannot be used to predict
fatigue damage accumulation at such locations where measurements are not available. To infer
damage due to fatigue at structural members where measurements are not available, one needs
to predict the stress response time histories in these structural members using the available
measurements obtained from the sensory system. In certain circumstances, such predictions can
be possible if one combines the available measurements with the information obtained from a
dynamic model (e.g. a finite element model) of the structure.

The methods for fatigue damage accumulation have been extended to treat the case that the
excitations can be represented by a stochastic vector process with known correlation
characteristics. Assuming that the structure behaves linearly and the excitation is modeled by
a Gaussian stochastic vector process, the stress response at any point is a stochastic process that
can be completely defined using the correlation characteristics of the stochastic excitations [3].
The fatigue damage accumulation at a structural location can then be computed using the
characteristics of the stochastic processes of the components of the stress tensor at such a
location. Methods for fatigue damage accumulation for Gaussian narrow-band stress processes
have been introduced using the Rayleigh approximation and extended to handle the case of
wide-band Gaussian stress processes (e.g. [4–16]). Reviews and comparisons of selected spectral
methods for stochastic fatigue analysis based on wide-band Gaussian stochastic processes can
be found in Benasciutti and Tovo [9] and Larsen and Lutes [12]. The formulations depend on
the probability distribution of stress cycles corresponding to different stress levels in a stress
response time history signal and the expected number of peaks per unit time of a stress process.
Results for the expected fatigue damage accumulation predicted by the Palmgren-Miner linear
law have been presented in terms of the spectral moments of the stress process which are readily
obtained from the power spectral density (PSD) of the stress components involved. For the
important case of wide-band processes encountered often in applications, the simulation-
inspired Dirlik approximation [8] is widely used and is considered to be the most accurate
formula for modeling the probability of stress cycles in terms of the spectral moments of the
stress process. It is worth noting that the aforementioned frequency domain methods based on
the stress power spectral densities or spectral moments use no information available from a
sensor network. Instead, their predictive accuracy depends on the assumptions employed for the
excitation characteristics and the models representing the structural behavior. However, these
predictions fail to integrate the information provided by a network of sensors. The sensor
information is expected to update and improve the fatigue predictions, making them consistent
with the available measurements.

This study addresses the problem of estimating the expected damage accumulation or
remaining lifetime due to fatigue in the entire body of a structure using output-only vibration
measurements at a limited number of locations provided by a sensor network installed on the
structure. The measurements may consist of response time histories, such as e.g., strain,
acceleration, velocity, displacement, etc. The expected fatigue damage accumulation in the
entire structure is obtained by integrating (a) methods for predicting strain/stress response time
histories and their correlation/spectral characteristics in the entire structure from output-only
measured response time histories available at limited locations in the structure, and
(b) frequency domain methods for estimating fatigue damage accumulation using the spectral
characteristics of the predicted strain/stress response time histories. The idea is to use Kalman
filter (KF) [17] methods to predict the strain/stress response time histories at various locations
within structural components using the measurements available at a limited number of
locations. A schematic diagram of the fatigue lifetime prediction in the entire structure from
limited number of sensors using KF, along with its use in inspection/maintenance decisions, is
shown in Figure 1. Response time history measurements are collected from a limited number of
points S1; . . . ; Sn, whereas stress time history predictions are made at any number of points
P1; . . . ;Pm. For each prediction point P, the fatigue damage accumulation, or remaining fatigue
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lifetime T, is obtained by combining the information in the stress tensor time history s(t) for the
point P, fatigue data sets (e.g. S-N-curves) and a damage accumulation model (e.g. Palmgren-
Miner rule). Such predictions are restricted in this study to the case of linear structures and
excitations that can be adequately represented by Gaussian stationary stochastic processes. The
excitation time histories applied in the structure are considered to be unknown. However, for
several operational conditions of structures, the excitation time histories can be considered to be
samples of a Gaussian stationary stochastic process with unknown intensity and frequency
content. The proposed methodology is thus applicable for the case where the responses can be
modeled by Gaussian stationary processes and the measured response time histories are long
enough so that they can be considered to be samples of stationary processes.

The objective of this study is to formulate the fatigue prediction problem, illustrate the
methodology, and point out its use in evaluating the damage accumulation in the entire
structure from a limited number of vibration measurements. For this, the present approach is
limited to uniaxial stress processes and simplified models of structures. The extension to
multiaxial stress processes can be accomplished by using recent developments in frequency
domain methods for stochastic fatigue based on spectral techniques [18–20]. These methods
reduce the multiaxial stress state to an equivalent uniaxial stress state that can be treated by
available fatigue estimation techniques based on spectral methods. In addition, extension to
non-Gaussian stress processes, known to significantly affect fatigue life predictions [5,21], can
also be accomplished by using recent approximations for the probability distribution of the
stress cycles [22] in terms also of the higher moments of the stress process, such as skewness and
kurtosis. In addition, the proposed method could be extended to handle fracture mechanics
approaches to random fatigue [23], such as stochastic fatigue crack growth problems [24,25],
provided that governing equations for damage evolution are conveniently described with respect
to the PSD or its spectral moments of the stress process at a point [26].

This study is organized as follows. In Section 2, the frequency domain formulation for
predicting damage due to fatigue in structural elements subjected to uniaxial stress state in linear
structures under Gaussian stochastic excitations is reviewed. The formulation is applicable to
Gaussian wide-band stress processes, often encountered in engineering applications, and
damage accumulation due to fatigue depends on the spectral moments of the power spectral
densities of the stress process at a location of a structure. Section 3 presents the formulation for
predicting the strain/stress response time histories and the associated power spectral densities at
all desirable locations of the structure using the KF and the measured time histories at a
limited number of locations in the structure. For this, the state space formulation of the
equations governing the vibrations of a structure is briefly summarized in Section 3.1. Using
the discrete-time formulation of the state space approach, the KF approach for estimating
the power spectral densities of the stresses in the entire body of the structure is presented in

Figure 1. Scheme of lifetime prediction from a limited number of sensors using a KF.
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Section 3.2 and 3.3. The approach considers that the unmeasured excitations can be represented
by Gaussian stationary stochastic processes. Finally, Section 4 demonstrates the effectiveness of
the proposed methodology using a chain-like mass-spring multidegree-of-freedom structure and
‘measured’ data that are simulated from various types of excitations, including white noise and
filtered white noise excitations. Conclusions are summarized in Section 5.

2. FREQUENCY DOMAIN METHOD FOR FATIGUE ESTIMATION BASED ON
SPECTRAL MOMENTS

The Palmgren-Miner rule [1,2] is commonly used to predict the damage accumulation due to
fatigue. According to this rule, a linear damage accumulation law at a point in the structure
subjected to variable amplitude stress time history is defined by the formula

D ¼
Xm

i

ni

Ni
ð1Þ

where ni is the number of cycles at a stress level si, Ni is the number of cycles required for failure
at a stress level si, and m is the number of stress levels identified in a stress time history at the
corresponding structural point. Available S-N fatigue curves, obtained from laboratory
experiments on simple specimens that are subjected to constant amplitude loads, are used to
describe the number of cycles Ni required for failure in terms of the stress level si. The number of
cycles ni at a stress level si are usually obtained using available stress cycle counting methods,
provided that the stress time histories are available through measurements. Alternatively, for the
cases where the stress response time histories are not available from measurements, frequency
domain methods based on spectral moments (e.g. [5,9]) can be used to predict the expected
damage due to fatigue using the linear damage law (1). The methodology assumes that the PSD
of the stress process at a structural location is available. For linear systems excited by time-
varying loads that can be modeled by stationary stochastic processes, these power spectral
densities can be straightforwardly computed using available random vibration results [3].

The following section outlines such a frequency domain methodology based on spectral
moments for fatigue estimation for structural members subjected to uniaxial stress state. For
multiaxial stress states, one can apply available methods [18–20] to extend the applicability of
the present methodology. Let s(t) be the uniaxial stress at a point in a structural element. The
stress is considered to be a stationary Gaussian stochastic process. This is the case encountered
in linear structures that are subjected to stationary Gaussian stochastic processes. Let Ss(o) be
the PSD of the stationary Gaussian stochastic stress process s(t) of the uniaxial stress at a
structural location and

lj ¼
Z 1
�1
jojjSsðoÞ do ð2Þ

be the spectral moments of the process. Using frequency domain methods for fatigue estimation
under stochastic excitations and the continuous version of the damage accumulation law (1), the
expected fatigue damage accumulation for a uniaxial stochastic stress process is given by [9]

E½D� ¼
Z 1
0

nðsÞ
N ðsÞ

ds ¼ c�1T E½P �
Z 1
0

sapðsÞ ds ð3Þ

where nðsÞ ¼ T E½P �pðsÞ ds is the number of cycles at stress levels within the stress interval [s,s
1ds], p(s) is the probability distribution of the stress levels,

N ðsÞ ¼ cs�a ð4Þ

is the number of cycles for failure that correspond to a specific constant amplitude stress level s
obtained from available S-N curves, E[P] is the expected number of peaks per unit time for the
stress process, and T the period of observation. The parameters c and a are constants obtained
from fatigue test experiments and depend on the material and the type of the test specimen.
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The expected time of failure due to fatigue (fatigue lifetime) Tlife corresponds to a critical
expected damage value E[D]5Dcr which is often set equal to unity (Dcr 5 1). Using Equation
(3), the fatigue lifetime is given by

Tlife ¼
Dcr

�D
ð5Þ

where �D is the expected damage rate given by

�D ¼ c�1E½P �
Z 1
0

sapðsÞ ds ð6Þ

For Gaussian stochastic stress processes, the probability distribution of the stress range
Ds ¼ 2s, taken to be twice the random amplitude at stress level within [s,s1ds] in a stress
process, is given by the Dirlik formula [8,27,28] as

pðDsÞ ¼
1

2
ffiffiffiffiffi
l0

p d1
h

e
� Ds

2h
ffiffiffi
l0

p
1

d2Ds

2r2
ffiffiffiffiffi
l0

p e
�ðDsÞ

2

8r2l01
d3Ds

2
ffiffiffiffiffi
l0

p e�
ðDsÞ2

8l0

" #
ð7Þ

where d1, d2, d3, h and r are specific algebraic functions of the spectral moments l0, l1, l2, and l4,
given by

d1 ¼
2ðxm � a22Þ

11a22
; d2 ¼

1� a2 � d11d2
1

1� r
; d3 ¼ 1� d1 � d2 ð8Þ

h ¼
1:25ða2 � d3 � d2rÞ

d1
; r ¼

a2 � xm � d2
1

1� a2 � d11d2
1

ð9Þ

xm ¼
l1
l0

l2
l4

� �1
2

¼ a1a2; a1 ¼
l1ffiffiffiffiffiffiffiffiffi
l0l2

p ; a2 ¼
l2ffiffiffiffiffiffiffiffiffi
l0l4

p ð10Þ

This is a semi-empirical probability density, which is a mixture of one exponential and two
Rayleigh distributions. It has been derived by fitting the shape of a rainflow range distribution
via minimizing the normalized error between the rainflow ranges and the above density model.
The spectral moments l0, l1, l2, and l4 constitute a base for the construction of the approximate
closed-form Dirlik formula for the probability density of the stress range. The Dirlik formula
constitutes an extension of the Rayleigh distribution to non-narrow band processes. It is widely
used for fatigue estimation under wide-band Gaussian stationary applied stress. Extension to
non-Gaussian stress processes requiring the skewness and kurtosis of the stress process are
available in the work by Wang and Sun [22].

Using results from random vibration theory, the expected number of cycles E[P] per second
for a stochastic process is given by the spectral moments of the process in the form

E½P � ¼
1

2p

ffiffiffiffiffi
l4
l2

s
ð11Þ

Starting with (6) and noting that pðsÞ ¼ pðDsÞ=2 ¼ pð2sÞ=2, then substituting (11) and the
Dirlik formula (7) into (6) and finally carrying out the integration in (6) analytically, the
expected damage rate simplifies to [9]

�D ¼ ð8pcÞ�1
ffiffiffiffiffi
l4
l2

s
la=20 d1haGð11aÞ12a=2G 11

a
2

� �
ðd2jrja1d3Þ

h i
ð12Þ

where d1, d2, d3, h and r are defined in (8)–(10).
It is clear from the aforementioned formulation and equations (5) and (12) that the expected

fatigue damage rate �D and, consequently, the fatigue accumulation during a time interval T or
the fatigue lifetime Tlife at a point in the structure depends only on the spectral moments li,
i5 0,1,2,4, of the stress process s(t). Using the definition of the spectral moments in (2), the
spectral moments and the fatigue predictions at a point of a structure eventually depend only on
the PSD Ss(o) of the stress process s(t). It should be noted that the fatigue damage rate in (12) is
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based on Dirlik’s approximation for the probability distribution of the stress ranges. In the
literature, several spectral-based approximations [4–7,9–16] have been proposed to compute
fatigue lifetime in terms of the spectral moments of the stress process. These methods can also be
used as alternatives to Dirlik’s approximation to compute fatigue. The fatigue lifetime estimates
will depend on the method used. In this study, the approximation (12) is chosen as one of the
several alternative approximations to illustrate the method proposed for fatigue predictions at
unmeasured locations.

The power spectral densities of the stress response processes at a point can be calculated from
measurements. However, there is a limited number of points that can be instrumented in the
structure. For the points where measurements are not available, one has to make predictions of
the stress process and subsequently the PSD of the stress process at a location, given the
measurements at other locations. This issue of predicting the power spectral densities of the
stress processes in the entire body of the structure using measurements at limited locations is
addressed at the next Section 3. Once these measurements and predictions of the stresses are
estimated at measured and unmeasured locations, the power spectral densities and the
corresponding damage accumulation or lifetime due to fatigue are obtained, using (5) and (12),
everywhere in the structure. In this way, fatigue damage accumulation maps for the entire
structure are constructed from the limited number of ambient vibration measurements.

3. RESPONSE PREDICTIONS IN THE ENTIRE STRUCTURE USING AMBIENT
VIBRATION MEASUREMENTS

The objective of this section is to predict the stress response at all points in a structure using the
measurements at a limited number of locations. This is achieved using an approach that is
outlined in the next two subsections based on the commonly used KF method [17] for full state
estimation of a linear system using limited number of measurements.

3.1. Equations of motion and state space formulation

Consider the dynamic response of a linear structural system subjected to deterministic and
random excitations. Using a spatial discretization method, such as finite element analysis, the
equations of motion are given by the following set of N second-order differential equations

M €qðtÞ1C _qðtÞ1KqðtÞ ¼ LuuðtÞ1LwwðtÞ ð13Þ

where qðtÞ 2 RN�1 is the displacement vector, M, C and K 2 RN�N are the mass, damping and
stiffness matrices, respectively, uðtÞ 2 RNu;in�1 and wðtÞ 2 RNw;in�1 are the applied deterministic
and stochastic excitation vectors of dimension Nu;in and Nw;in, respectively, and Lu 2 RN�Nu;in and
Lw 2 RN�Nw;in are matrices comprised of zeros and ones that map the Nu;in and Nw;in deterministic
and stochastic excitation loads to the N output DOFs. Throughout the analysis, it is assumed
that the system matrices M, C and K are symmetric. Let yðtÞ 2 RNmeas be the vector that collects
all measurements at different locations of the structure at time t. These measurements are
generally collected from sensors, such as accelerometers, strain gauges, etc. For convenience and
without loss of generality, it is assumed in the analysis that sensors placed in the structure
measure the strains.

Introducing the state vector xT ¼ ½qT _qT� 2 R1�2N , the equation of motion can be written in
the state space form

_x ¼ Acx1BcuðtÞ1GcwðtÞ ð14Þ

while the measured output vector yðtÞ is given by the observation equation

yðtÞ ¼ Hx1DuðtÞ ð15Þ
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where the state transition matrix Ac, and the matrices Bc and Gc are given by

Ac ¼
0 I

�M�1K �M�1C

" #
2 R2N�2N ð16Þ

Bc ¼
0

�M�1Lu

" #
2 R2N�Nu;in and Gc ¼

0

�M�1Lw

" #
2 R2N�Nw;in ð17Þ

respectively, H 2 RNmeas�2N is the observation matrix and D ¼ 0 2 RNmeas�2Nu;in for strain
measurements.

3.2. Kalman filter approach

As measurements are available in digitized form, the presentation of the KF is next given in
discrete time. Using the sampling rate 1/Dt, the discrete-time state space model corresponding to
(14) and (15) is

xk ¼ Axk�11Buk�11Gwk�1 ð18Þ

y
k
¼ Hxk1Duk1vk ð19Þ

where xk ¼ xðkDtÞ and y
k
¼ yðkDtÞ, k ¼ 1; . . . ;Ns, are the digitized state and output vectors,

A ¼ eAcDt is the state transition matrix for the discrete formulation, B and G are the matrices
arising from Bc and Gc after converting the state space model (14) from continuous to discrete
time. The random variables wk and vk represent the stochastic excitation and the measurement
noise, respectively. They are assumed to be independent, white and following normal
probability distributions pðwkÞ � N ð0;QÞ and pðvkÞ � N ð0;RÞ, where Q and R are the
stochastic excitation and the measurement noise covariances assumed to be constant,
independent of time.

KF is used to estimate the state x̂k of the system described by (18) using the measurements in
the vector y

k
in (19). Specifically, in the prediction step, an apriori state estimate x̂�k of the state

vector xk of the system is estimated from equation [29,30]

x̂�k ¼ Ax̂k�11Buk�1 ð20Þ

In the correction step, the measured value y
k
is used to calculate a posteriori state estimate x̂k,

weighting the measured and estimated signals by the KF gain factor Kk. This is formulated by
the equation

x̂k ¼ x̂�k 1Kk½yk
� Hx̂�k � Duk� ð21Þ

where the Kalman gain factor is given by

Kk ¼ PkHT½HPkHT1R��1 ð22Þ

and, for steady state response, the error covariance matrix Pk � P ¼ E½e�k ðe
�
k Þ

T�, where e�k ¼
x� x̂�k is the a priori error estimate, satisfies the discrete time Riccati equation:

P ¼ APAT � APHTðHPHT1RÞ�1HPAT1GQGT ð23Þ

Let sk be a vector containing the digitized stresses at time t ¼ kDt at various locations of the
structure. Using structural mechanics theory, these stresses in the vector sk are related to the
state vector through a linear transformation sk ¼ �xk, where S is the transformation matrix that
associates the state vector to the desired stresses in the entire structure. Consequently, an
estimate of the stresses ŝk is related to the state vector estimate x̂k through the transformation:

ŝk ¼ �x̂k ð24Þ

In this study, the response prediction vector sk is restricted to stresses at elements subjected to
uniaxial stress states required in lifetime fatigue estimation as described in Section 2.

Using the definition of the cross PSD (CPSD), the KF equations (20) and (21), the fact that
B5 0 in (20) for the case of stochastic excitations and D5 0 in (21) for strain measurements, the
CPSD SŝðoÞ of the stress response vector ŝk can readily be obtained with respect to the CPSD
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SyðoÞ of the measurement vector y
k
in the form

SŝðoÞ ¼ �SxðoÞ�T ¼ � Z�1ðjoÞKSyðoÞKT Z�T ðjoÞ�T ð25Þ

where ZðjoÞ is the matrix given by

ZðjoÞ ¼ IejoDt � ðI � KH ÞA ð26Þ

and I is the identity matrix. Equation (25) relates the power spectral densities of the components
of the stress vector sk at various structural locations with the power spectral densities of the
measured quantities involved in y

k
available at the limited number of measured locations. This

relation depends on the model (e.g. a finite element model) used to represent the behavior of the
structure and the assumption that the excitation vector is broadband so that the excitations can
be modeled by zero mean stationary white noise processes with spectral density described by
E½wkwT

l � ¼ Qdkl, where dkl is the Kronecker delta.
It should be noted that to apply (23), an estimate of the zero-lag covariance matrix R of the

measurement noise and the zero-lag covariance matrix Q of the unknown input stochastic
vector process has to be provided. The values of the covariance matrix R which have to be
chosen, affects the estimates of the CPSD matrix SŝðoÞ in (25). However, an optimal estimate of
the covariance matrix Q can be obtained using the strain measurements yðtÞ and the relation
between the covariance matrix Qyy of the measurement vector yðtÞ and the covariance matrix Q
of the excitation process. Let Qyy � QyyðQÞ denote the relation between Qyy and Q. Using (19)
with D5 0 for strain measurements, this relation is given by

Qyy ¼ HQxxHT ð27Þ

where Qxx is given by the discrete time Lyapunov equation for the system (18) in the form

AQxxAT � Qxx1GQGT ¼ 0 ð28Þ

The optimal values of the entries of the covariance matrix Q can be obtained by minimizing the
difference between the covariance matrix Qyy � QyyðQÞ predicted by the linear model given Q
and the covariance matrix Q̂yy ¼ ð1=NsÞ

PNs
k¼1 y

k
yT

k
obtained from the measurements in y

k
,

k ¼ 1; � � � ;Ns. That is, the optimal value Qopt is obtained by minimizing the objective function

J ðQÞ ¼ trjjQyyðQÞ � Q̂yy jj2=trjjQ̂yy jj2 ð29Þ

with respect to the elements in Q. The optimal value Qopt of Q is then substituted in (23) to
completely define the Riccati equation (23). The solution P of the Riccati equation is substituted
in (22) to find K, which is needed in (25). It should be noted that the optimal estimate of Q, as
described above, assumes that the stochastic excitations in the vector process wk are sufficiently
broadband so that they can be adequately approximated by white noise processes. It should be
noted that the size of the matrix Q increases as the number of excitation degree-of-freedom
(DOF) increases. This increases the number of entries in Q to be estimated by minimizing
equation (29) and may create identifiability problems. This problem can partly be alleviated by
increasing the number of sensors placed in the structure.

3.3. Estimation of power spectral densities of stresses

The CPSD matrix SyðoÞ of the sampled measurement vector y
k
, involved in (25), can be

obtained using available signal processing techniques, such as the Welch technique [31,32]. Once
SyðoÞ has been estimated from the measurements, equation (25) can be used to estimate the
CPSD SŝðoÞ of the stress response vector ŝk.

Alternatively, the PSD SŝðoÞ of the stress response vector ŝk can be obtained by using
equations (20) and (21) for the KF to provide estimates x̂k of the system state vector which are
then used in equations (24) to estimate the stress vector ŝk. Finally, available signal processing
techniques such as the Welch technique are used to compute the PSD SŝðoÞ from the sampled
stress response vector ŝk.

The length of the sampled time history should be sufficiently large in order for the estimates
to be accurate and also short enough to guarantee that the frequency content and the intensity
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of the response time histories do not change significantly with time. For very long ambient
vibration time histories with time-varying frequency content and intensity, it might be necessary
to apply the methodology over shorter time segments ensuring approximately the time
invariance of the frequency content and intensity within each segment.

Once the CPSD matrix SŝðoÞ of the stress vector process ŝk containing the stresses at all
desirable structural locations is obtained, the diagonal elements diag½SŝðoÞ� of the matrix SŝðoÞ
contain the PSD estimates required for fatigue predictions at these structural location using
equations (2), (5) and (12).

4. APPLICATIONS

4.1. Spring-mass chain-like model

The applicability and effectiveness of the methodology is first illustrated using simulated
‘measurements’ from a simple class of N-DOF spring-mass chain-like model fixed at the two
ends as shown in Figure 2. The model is used to represent a structure consisting of a series of bar
and body elements as shown in Figure 3. The structure consists of N bodies with the ith body
having mass mi. The i�1 and the i bodies are connected by elastic bar elements which provide
the stiffness to the system. The number of bar (or spring) elements of the chain model is N11.
The material of the bar elements is considered to be steel. For steel bar elements, the values of
the fatigue constants in equation (4) are taken to be c5 4.06� 1088 and a5 9.82. The ith bar
element has length Li, cross-sectional area Ai and modulus of elasticity Ei. For simplicity, each
bar element is represented by a spring element with stiffness ki ¼ EiAi=Li as shown in Figure 2.
In addition, the nodal mass mi in Figure 2 includes the effect of the i body mass and the lumped
mass arising from the bar elements connected to node i. The i component qiðtÞ of the vector qðtÞ
corresponds to the displacement of the node i of the model. The system is subjected to an
unmeasured excitation applied at node r. For the selected structure, the stress state at critical
bar locations is uniaxial so that the fatigue prediction methodology can be directly applied.

Fatigue predictions from the KF methodology are based on a nominal model of the structure
that corresponds to nominal stiffness values ki ¼ k0;i. The measurements that are collected from
the actual structure are generated from a reference model introduced to simulate the actual
behavior of the structure. To study the effects of the model error on the accuracy of the KF
method for fatigue predictions, the reference model is selected to be different from the nominal
model. Specifically, the reference model corresponds to the model shown in Figure 2 with
stiffness values perturbed from the nominal stiffness values according to the expression
ki ¼ k0;ið11niÞ, where k0;i are the nominal values used in KF-based fatigue predictions and
ni � N ð0; s2i Þ are samples from a zero mean normal distribution with variance s2i . The standard
deviation si of the perturbed terms controls the size of the model error and reflects the

Figure 2. N-DOF spring-mass chain-like model.

Figure 3. Structure consisting of a series of N masses and N11 bar elements.
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differences observed in real applications between the predictions from a model of a structure
and the actual behavior of the structure.

The measurements are assumed to be strain measurements. These measurements are
simulated from the reference model of the structure using two types of excitations, referred to as
Type I and Type II excitations. Type I excitations are assumed to be samples of a Gaussian
white noise process, thus providing good approximation to an excitation whenever its
correlation time is sufficiently small compared with the system time constants. In this case, the
excitation vector uðtÞ is modeled by samples generated by a Gaussian stationary white noise
vector process nðtÞ with constant spectral density matrix Su ¼ S0. Type II excitations are
assumed to be samples of a unimodal filtered white noise excitation with characteristics given by
the second-order filter equation

€qf ðtÞ12zfof _qf ðtÞ1o2
f qf ðtÞ ¼ nðtÞ ð30Þ

uðtÞ ¼ €qf ðtÞ ¼ �2zfof _qf ðtÞ � o2
f qf ðtÞ1nðtÞ ð31Þ

The characteristics of the excitation depend on the values of the filter parameters: the dominant
frequency of and the damping ratio zf . The value of the PSD S0 of the Gaussian stationary
white noise process n(t) controls the intensity of the excitation samples u(t) generated by the
second-order filter.

For type I excitation, the discrete state space formulation of the equations of motion for the
reference model is used to simulate response time history data as well as compute estimates of
the covariance responses and the PSD of the responses using the white noise excitation n(t)
applied at node r. For type II excitation, the responses from the reference model can readily be
obtained by a discrete state space formulation of an augmented system which consists of the
equations of motion (13) and the filter equations (30)–(31) excited by the white noise process
n(t). In this augmented system, the system states include the states of the original system in (14)
and the filter states arising from (30). For both excitation types, the strain and stress response
time histories ek and sk, respectively, are simulated at all bar elements using the discrete state
space formulation. The time discretization step used in simulating the sampled data is
Dt ¼ 0:5� 10�3. The simulated strain and stress response time histories are the reference stress
response time histories that are considered to be the exact stress response time histories for the
excitations used. These response time histories and the corresponding power spectral densities
are also used with the fatigue methodology in Section 2 to compute the damage accumulation
and lifetime of the entire body of the structure due to fatigue. Such predictions constitute the
reference (exact) predictions against which the predictions from the proposed KF approach
should be compared with for assessing the accuracy of the proposed methodology.

For convenience, the set o is introduced that contains the bar element numbers where the
strains are measured. The measured strain response time histories y

k
¼ eðoÞk are the components

of the reference response time history vector ek associated with the bar element numbers
identified in the set o. In practice, these measurements are collected using appropriate sensors,
such as strain gauges. Let p be the set that contains the bar element numbers where the stresses
will be predicted. In this study, the set p is selected to be p ¼ f1; . . . ;N11g, i.e. it is assumed that
stresses are predicted at all bar elements.

4.1.1. Five DOF model. Results demonstrating the effectiveness of the proposed methodology
are first presented for a five-DOF system (N5 5), as shown in Figure 2. The nominal values of
the nodal masses are m1 5m5 5 21 kg, m2 5m4 5 15 kg and m3 5 12 kg. A uniform distribution
of the properties of the bar elements is assumed resulting in uniform stiffness ki ¼ k0,
i ¼ 1; . . . ;N . The nominal values of the stiffness properties are chosen so that k0 ¼ E0A0=L0,
where E0 ¼ 2:1� 1011N=m2, A0 ¼ pð0:0035Þ2m2 and L0 ¼ 0:3m are same for all bar elements.
For the mass and bar properties selected, the nominal values of the natural frequencies of the
five-DOF system are 110.0, 193.4, 277.0, 344.3 and 425.3Hz. The damping matrix C in the
equations of motion (13) is chosen assuming that the system is classically damped. Specifically,
the damping matrix C is selected so that the values of the modal damping ratios are 1% for all
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contributing modes. A single excitation is considered which is applied at node r ¼ 5. The
measured strain response time histories y

k
¼ eðoÞk at the bar elements identified by the set o are

used to predict the stress response time histories at all bar elements identified in the set p using
the proposed KF approach. These predictions depend on the values of the measurement noise
covariance R in the KF formulation. In this study, the noise covariance matrix R is selected to
be a diagonal matrix of the form R ¼ Z2diagðQ̂yyÞ, where e gives the level of the observation
error and diagðQ̂yyÞ denotes the diagonal matrix formed from Q̂yy after setting the non-diagonal
terms to zero. In the numerical results that follow, the values of Z ¼ 0:1% and Z ¼ 10% are used
which corresponds to very small and relatively large observation errors, respectively.

The simulated measurements and the reference fatigue predictions are first obtained for the
Type I white noise excitation. For demonstration purposes, comparison between the reference
(exact) stress PSD simulated by the model and the estimated PSD from the KF are given in
Figure 4 for the bar elements p ¼ f2; 4; 6g, assuming that the measured strains are at bar
elements o ¼ f1; 2g. Results are presented for the case of relatively large model error (si ¼ 5%)
in Figure 4(a, b) at bar elements 2 and 4 and for the case of zero model error (si ¼ 0) in
Figure 4(c, d) at bar elements 4 and 6. It can be seen in Figure 4(a) for the case of relatively large
model error that the estimated PSDs of the stress at the bar element 2, where measurements are
available, almost coincides with the corresponding reference stress PSDs simulated by the
model. At the bar element 4, where measurements are not available, there is a discrepancy
between the estimated and reference (exact) stress PSDs, as shown in Figure 4(b). For the case
of relatively large model error, the discrepancies observed in Figure 4(b) are mainly due to the
fact that the nominal model used for PSDs predictions from the KF approach differs from the
reference model used to simulate the reference PSDs. The size of the discrepancies depends on
the size of the model error. Specifically, these discrepancies, shown in Figure 4(b) for relatively
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Figure 4. Comparison between reference and estimated from KF PSD of the stress response at bar
elements 2, 4 and 6; (a,b) relatively large model error s ¼ 5%, (c,d) zero model error s ¼ 0%.
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large model error (si ¼ 5%), are found to be significantly higher than the discrepancies observed
in Figure 4(c) for zero model error (si ¼ 0). For zero model error, the discrepancies shown in
Figure 4(c, d) for bar elements 4 and 6, respectively, are due to the estimation error associated
with the KF. However, it should be noted that the predictions of the PSD from the KF
approach are quite good, especially for the high amplitudes around the resonance peaks, which
mainly contribute to the fatigue process.

Lifetime predictions due to fatigue are next compared in Figure 5(a–d) for all six bar (spring)
elements of the structure. The lifetime values in these figures are obtained using the fatigue
prediction formula (5). For each bar element, there are six lifetime fatigue predictions. The first
prediction is based on the reference time histories simulated by the reference model and it is used
as the exact value against which to study the accuracy of the predictions from the proposed KF
methodology. The other five fatigue-based lifetime estimates are the ones predicted by the
methodologies based on the use of KF method and the nominal model to estimate the stress
response time histories at all bar elements. To study the effect of the number and location of
sensors on the accuracy of the predictions, the five fatigue lifetime estimates shown in Figure
5(a–d) correspond to the following five sensor configurations that differ from the number and
location of sensors used: one sensor configuration o ¼ f6g involving one sensor placed at
location or bar element 6, two sensor configurations o ¼ f1; 2g and o ¼ f3; 4g each one
involving two sensors placed at locations denoted in the set o, and two sensor configurations
o ¼ f1; 2; 3g and o ¼ f2; 3; 4g each one involving three sensors. To study the effect of model
error on the accuracy of the KF methodology, the results in Figure 5(a–c) are based on
simulated measurements from the reference model chosen to involve zero (si ¼ 0), moderate
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Figure 5. Comparison of reference fatigue-based lifetime estimates and the estimates predicted by the KF
for the N5 5 DOF model as a function of the number and location of sensors: (a) si ¼ 0, Z ¼ 0;

(b) si ¼ 2%, Z ¼ 0; (c) si ¼ 5%, Z ¼ 0; and (d) si ¼ 0, Z ¼ 10%.

C. PAPADIMITRIOU ET AL.

Copyright r 2010 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2010)

DOI: 10.1002/stc



(si ¼ 2%) and relatively large (si ¼ 5%) model error, while the observation error used for
KF-based fatigue predictions is negligible (Z ¼ 0:1%). To study the effect of observation error in
the accuracy of the KF methodology, the results in Figure 5(d) are based on simulated
measurements from the reference model chosen to involve zero model error (si ¼ 0) and
relatively large observation error (Z ¼ 10%) used for KF-based fatigue predictions.

It can be seen from the results for the fatigue predictions involving zero model error (si ¼ 0)
shown in Figure 5(a) that the estimates based on the KF predictions are quite close to the
reference fatigue values obtained from the actual (reference) response time histories. It also
becomes clear that the accuracy of the KF predictions depend on the number and location of
sensors in the structure. Specifically, the best predictions are obtained from one sensor placed at
bar element 6. Similar accuracy in the predictions are obtained from the sensor configurations
o ¼ f3; 4g and o ¼ f2; 3; 4g involving two and three sensors. However, the sensor configurations
o ¼ f1; 2g and o ¼ f1; 2; 3g provide significantly less accurate predictions in the entire structure
(all six bar elements) than the predictions provided by one sensor placed at location 6.
Specifically, significant discrepancies between the reference and KF fatigue predictions from the
sensor configurations o ¼ f1; 2g and o ¼ f1; 2; 3g are observed in bar element 5 and 6. It
becomes evident from the results in Figure 5(a) that the locations and number of sensors affect
the accuracy of the fatigue lifetime predictions from the proposed KF approach. Optimal sensor
location methodologies [33] may be advantageously used to obtain the most informative
locations that give the best accuracy in the fatigue lifetime predictions with the least number of
sensors.

Comparing the results in Figure 5(a–c) corresponding to zero (si ¼ 0), moderate (si ¼ 2%)
and larger (si ¼ 4%) model errors, it is evident that the size of model error affects the accuracy
of the fatigue prediction provided by the proposed KF methodology. For a fixed sensor
configuration, the accuracy of the fatigue predictions obtained from the KF methodology
deteriorates as the size of the model error increases. Moreover, the accuracy of the predictions
depends highly on the number and location of sensors. There are optimal sensor locations,
which give the most accurate fatigue predictions. Specifically, the most accurate predictions in
the entire structure for the case of moderate model error (si ¼ 2%) are obtained from sensor
configurations o ¼ f6g and o ¼ f2; 3; 4g involving one and three sensors, respectively. For the
case of larger model error (si ¼ 5%), the most accurate predictions in the entire structure (all bar
elements) are obtained from sensor configurations o ¼ f6g involving one sensor, followed by the
predictions provided by the sensor configuration o ¼ f1; 2; 3g involving three sensors.

The effect of measurement error on the fatigue predictions provided by the KF approach is
next considered by comparing the results in Figure 5(d) obtained for relatively large observation
error of the order of Z ¼ 10% with the results in Figure 5(a–c) obtained for very small
(Z ¼ 0:1%) observation error. It can be seen that the accuracy of the fatigue predictions is less
sensitive to the magnitude of the observation error than it is to the magnitude of the model
error. In addition, the accuracy of the fatigue lifetime predictions provided by the KF for the
different sensor configurations observed in Figure 5(d) for zero model error and significant
observation error (Z ¼ 10%) does not significantly deteriorate when compared with the accuracy
of the predictions observed in Figure 5(a) provided by the methodology for zero model error
and very small (Z ¼ 0:1%) observation error.

Next, results are also presented for simulated measurements generated from the Type II
filtered white noise excitation. In this case, one examines the effect of the characteristics of the
excitation on the accuracy of the proposed methodology. As before, the excitations is applied at
node r ¼ 5. Figure 6 compares the reference fatigue estimates and the fatigue predictions
provided by the KF methodology for three different excitation characteristics: broadband
excitation corresponding to values of ¼ 200Hz and zf ¼ 0:4 (Figure 6(a)), and two lightly
damped excitations (zf ¼ 0:02) with resonant frequencies close to the first, of ¼ o1 � 110Hz
(Figure 6(b)), and third of ¼ o3 � 277Hz (Figure 6(c)), natural frequency of the structure. All
results shown in Figure 6(a–c) are based on simulated measurements that involve zero model
error (si ¼ 0) and negligible measurement error Z ¼ 0:1%. The results in Figure 6(d) are
based on large model error (si ¼ 5%) and for the lightly damped excitation (zf ¼ 0:02) with
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resonant frequency close to the third of ¼ o3 � 277Hz natural frequency of the structure. All
filtered white noise excitations correspond to the same variance. Given the values of of and zf ,
this is achieved by selecting appropriately the intensity of the white noise n(t) so that the output
u(t) in (31) has the desired value of variance.

It is clear in Figure 6(a–c) that for the case of zero model error, the KF methodology gives
very good predictions for a variety of excitation characteristics, including broadband and lightly
damped excitations. As before, the accuracy of the predictions depends on the number and
location of sensors. The most accurate predictions are obtained from the sensor configuration
o ¼ f6g involving one sensor placed at location (bar element) 6, followed by the sensor
configurations o ¼ f3; 4g and o ¼ f2; 3; 4g involving two and three sensors. Less accurate
predictions are obtained from the sensor configurations o ¼ f1; 2g and o ¼ f1; 2; 3g involving
two and three sensors, respectively. Obviously, optimizing the sensor placement in the structure
can significantly improve the accuracy of the fatigue lifetime predictions provided by the KF
methodology. Comparing the fatigue prediction results given in Figure 6(d) for large model error
si ¼ 5% to the fatigue prediction results in Figure 6(c) for zero model error, it is clear that the
accuracy of the predictions from the KF methodology deteriorates as the model error increases.
Sensor configuration o ¼ f6g involving one sensor provides predictions with the best accuracy
compared with the predictions provided by all other sensor configurations used in Figure 6.

For the two lightly damped excitations shown in Figure 6(b, c), it is observed that the fatigue
at each bar element depends on the mode excited. For the excitation with dominant frequency
close to the first natural frequency (Figure 6(b)), the structure responds mainly to its first mode
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Figure 6. Comparison of reference fatigue-based lifetime estimates and the estimates predicted by the KF
for the N5 5 DOF model as a function of the number and location of sensors: (a) of ¼ 200Hz, zf ¼ 0:4,
si ¼ 0; (b) of ¼ o1 � 110Hz, zf ¼ 0:02, si ¼ 0; (c) of ¼ o3 � 277Hz, zf ¼ 0:02, si ¼ 0; and (d) of ¼
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and the strains levels due to vibration, depending on the derivatives of the modeshape, are higher
at bar elements 1 and 6, while due to symmetry they are lower at the middle bar elements 3 and 4.
Consequently, the bar elements 1 and 6 are expected to have significantly less fatigue lifetime,
whereas the middle bar elements 3 and 4 are expected to have high fatigue lifetime, which is
consistent with the results observed in Figure 6(b). For the excitation with dominant frequency
close to the third natural frequency, the structure respond mainly with its third mode and
therefore high strain values are expected also to occur at internal bar elements 2 and 5, while due
to symmetry the strains at the middle elements 3 and 4 are expected to be small. This is consistent
with the small fatigue lifetime values predicted for the bar elements 2 and 5 and the high fatigue
lifetime values predicted for the middle bar elements 3 and 4, as shown in Figure 6(c).

4.1.2. Twenty DOF model. Finally, results demonstrating the effectiveness of the proposed
methodology are presented for a 20-DOF system (N5 20), as shown in Figure 2. The nodal masses
are assumed to be the same, i.e. mi ¼ m0, i ¼ 1; . . . ;N . A uniform distribution of the properties of
the bar elements is also assumed resulting in uniform stiffness ki ¼ k0, i ¼ 1; . . . ;N . The nominal
values of the mass and stiffness properties are chosen so that m05 30kg and k0 ¼ E0A0=L0, where
E0 ¼ 2:1� 1011N=m2, A0 ¼ pð0:0035Þ2m2 and L0 ¼ 0:3m are same for all bar elements. For the
mass and bar properties selected, the nominal values of the natural frequencies of the 20-DOF
system range from 22.5 (minimum) to 300.8Hz (maximum). The structure is subjected to either
Type I stationary white noise excitation or Type II non-white excitation applied at node r ¼ 10,
with constant spectral density matrix equal to Su ¼ S0 ¼ 10. The strain response time histories
y

k
¼ eðoÞk at the measured DOFs are used to predict the stress response time histories at all bar

elements identified in the set p ¼ f1; . . . ; 21g using the KF approach.
Lifetime predictions due to fatigue are shown in Figure 7 for all 21 bar (spring) elements of the

structure. For each bar element, there are six lifetime fatigue predictions. The first prediction is based
on the reference time histories simulated by the reference model and it is used as the exact value
against which to study the accuracy of the predictions from the proposed KF methodology. The
second fatigue lifetime prediction is based on the use of KF method and the nominal model using
sensors at all 21 bar elements. This second prediction uses measurements from all 21 bar elements
and thus represents the most accurate results that can be obtained from the KF methodology. The
other four fatigue-based lifetime estimates are the ones predicted by the methodologies based on the
use of KF method and the nominal model to estimate the stress response time histories at all bar
elements using a limited number of sensors. To study the effect of the number and location of sensors
on the accuracy of the predictions, the four fatigue lifetime estimates shown in Figure 7(a–d) in the
entire structure (all 21 bar elements) correspond to the following four sensor configurations that
differ from the number and location of sensors used: one sensor configuration o ¼ f10g involving
one sensor placed at location or bar element 10, one sensor configuration o ¼ f5; 21g involving two
sensors placed at locations 5 and 21, one sensor configuration o ¼ f5; 10; 21g involving three sensors,
and one sensor configuration o ¼ f1; 5; 16; 21g involving four sensors. Figure 7(a) compares results
for white noise excitation, Figure 7(b) compares results for broadband-filtered white noise excitation
(of ¼ 110Hz, zf ¼ 0:6), while Figure 7(c, d) compares results for lightly damped filtered white
noise excitations (zf ¼ 0:02) with dominant frequency close to the second natural frequency of the
structure (of ¼ o2 � 44Hz). Predictions in Figure 7(a–c) correspond to moderate model error
(si ¼ 2%) and very small observation error (Z ¼ 0:1%). To study the effect of observation error in
the accuracy of the KF methodology, predictions in Figure 7(d) correspond to zero model error
(si ¼ 0%) and large observation error (Z ¼ 10%).

It can be seen that despite the moderate model error considered in Figure 7(a–c) and the large
measurement error considered in Figure 7(d), the fatigue lifetime prediction values provided by
the KF approach for a full sensor configuration involving 21 sensors installed in all 21 bar
elements are quite close to the reference fatigue lifetime values. For given excitation case, it
becomes clear that the accuracy of the fatigue lifetime predictions based on the KF approach
using fewer than 21 sensors depend on the number and location of sensors in the structure.
Specifically, the best predictions are obtained from the sensor configuration o ¼ f10g involving
one sensor located at element 10 and the sensor configuration o ¼ f5; 10; 21g involving three
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sensors located at elements 5, 10 and 21. Such predictions are quite close to the reference fatigue
values obtained from the actual (reference) response time histories and to the KF prediction
provided by a full sensor configuration involving 21 sensors. It should be noted that the sensor
configuration o ¼ f5; 10; 21g gives slightly better fatigue lifetime prediction accuracy at all
21 bar elements than the sensor configuration o ¼ f10g. This is due to the fact that the sensor
configuration o ¼ f5; 10; 21g contains the sensor configuration o ¼ f10g and in addition it
involves two extra sensors that provide additional information for reconstructing more
accurately the response at unmeasured locations. However, the sensor configurations
o ¼ f5; 21g and o ¼ f1; 5; 16; 21g involving two and four sensors, respectively, provide
significantly less accurate predictions, especially at the bar elements 7 to 14, than the predictions
provided by the sensor configurations o ¼ f10g and o ¼ f5; 10; 21g involving one and three
sensors, respectively. It thus becomes evident from the results in Figure 7 that the location and
number of sensors affect the accuracy of the fatigue lifetime predictions. Optimal sensor location
strategies [33] may be advantageously used to obtain the most informative locations that give the
best accuracy in the fatigue lifetime predictions with the least number of sensors.

The relative importance of the model and measurement error on the accuracy of the fatigue
predictions provided by the KF is investigated by comparing the results in Figure 7(d) obtained
for relatively large observation error of the order of Z ¼ 10% and zero model error with the results
in Figure 7(c) obtained for very small (Z ¼ 0:1%) observation error and moderate model error
(si ¼ 2%). It can be seen from these figures that the accuracy of the fatigue predictions are less
sensitive to the size of the observation error. Specifically, the accuracy of the fatigue lifetime
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Figure 7. Comparison of reference fatigue-based lifetime estimates and the estimates predicted by the KF
for the N5 20 DOF model as a function of the number and location of sensors: (a) white noise, si ¼ 2%,
Z ¼ 0:1%; (b) of ¼ 110Hz, zf ¼ 0:6, si ¼ 2%, Z ¼ 0:1%; (c) of ¼ o2 � 44Hz, zf ¼ 0:02, si ¼ 2%,

Z ¼ 0:1%; and (d) of ¼ o2 � 44Hz, zf ¼ 0:02, si ¼ 0%, Z ¼ 10%.
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predictions provided by the KF for the different sensor configurations observed in Figure 7(d) for
zero model error and significant observation error (Z ¼ 10%) does not significantly deteriorate
when compared with the accuracy of the predictions observed in Figure 7(c) provided by the
methodology for moderate model error (si ¼ 2%) and very small observation error (Z ¼ 0:1%).

4.2. Truss model

Next, the effectiveness of the methodology is illustrated using simulated ‘measurements’ from a
two-dimensional truss structure shown in Figure 8. The dimensions of the truss are
L ¼ h ¼ 1:0m. The truss consists of N5 35 elastic steel truss elements and 14 DOFs. All truss
element have cross-sectional areas Ai ¼ A0 and modulus of elasticity Ei ¼ E0 ¼ 2:1� 1011 N=m2,
i ¼ 1; . . . ;N . A nodal mass mi is added at all truss nodes and the nominal values of the nodal
masses are selected to be m0 ¼ 200rA0L, where r ¼ 7850 kg=m3 is the steel density. The nominal
stiffness of each truss element is obtained from ki ¼ E0A0=Li, i ¼ 1; . . . ;N , where Li is the length
of the ith element. For the mass and stiffness properties selected, the nominal values of
the natural frequencies of the truss range from 1.72 (minimum) to 129.6Hz (maximum). The
structure is assumed to be classically damped with the damping matrix C selected so that the
values of the modal damping ratios are 5% for all contributing modes.

Fatigue predictions from the KF methodology are based on the nominal model of the
structure that corresponds to nominal nodal mass values mi ¼ m0. To study the effects of
the model error on the accuracy of the KF method for fatigue predictions, the measurements are
generated from the reference model obtained by perturbing the nodal mass values from the
nominal modal mass values according to the expression mi ¼ m0ð11niÞ, where m0 are the
nominal values used in KF-based fatigue predictions and ni � N ð0; s2i Þ are samples from a zero
mean normal distribution with variance s2i .

The structure is subjected to either Type I stationary white noise excitation or Type II non-
white excitation applied at the right end as shown in Figure 8. The constant spectral density of
the white noise is selected to be Su ¼ S0 ¼ 2ðrA0LgÞ2, where g is the acceleration of gravity. The
measurements are assumed to be strain measurements at the truss elements.

Lifetime predictions due to fatigue are shown in Figure 9 for all 35 truss elements of the
structure. For each truss element, there are six lifetime fatigue predictions. The first prediction is
based on the reference time histories simulated by the reference model and it is used as the exact
value against which to study the accuracy of the predictions from the proposed KF methodology.
The second fatigue lifetime prediction represents the most accurate prediction that can be obtained
from the KF methodology using sensors at all 35 truss elements. To study the effect of the number
and location of sensors on the accuracy of the predictions, the other four fatigue-based lifetime
estimates are the ones predicted by the KF method based on the nominal model to estimate the
stress response time histories at all bar elements using the sensor configurations SC-1, SC-2, SC-3
and SC-4, as shown in Figure 10. These sensor configurations involve a limited number of three
(SC-1 and SC-2) and six (SC-3 and SC-4) sensors placed at various locations. Figure 9(a, b)
compares results for white noise excitation and for moderate (si ¼ 2%) and relatively
large (si ¼ 5%) model error, respectively. Figure 9(c, d) compares results for lightly
damped filtered white noise excitations (zf ¼ 0:05) with dominant frequency close to the first

Figure 8. Two-dimensional truss model consisting of 35 truss elements.
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(of ¼ o1 � 1:72Hz) and third (of ¼ o3 � 13:1Hz) natural frequency of the structure,
respectively. Predictions in Figure 9(c, d) correspond to moderate model error (si ¼ 2%). All
predictions in Figure 9(a–d) correspond to very small observation error (Z ¼ 0:1%).

It can be seen that despite the moderate model error (si ¼ 2%) considered in Figure 9(a, c and
d), the fatigue lifetime prediction values provided by the KF approach for a full sensor
configuration installed at all 35 truss elements are quite close to the reference fatigue lifetime
values. The larger differences that are observed for the vertical members 29 to 35 of the truss are
due to the size of model error (si ¼ 2%) considered. For relatively large model error (si ¼ 5%),
the accuracy of the predictions from the KF approach for a full sensor configuration, shown in
Figure 9(b), tend to overall deteriorate, especially for the vertical members 29 to 35.
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Figure 9. Comparison of reference fatigue-based lifetime estimates and the estimates predicted by the KF for
the truss model as a function of the number and location of sensors: (a) white noise, si ¼ 2%; (b) white noise,

si ¼ 5%; (c) of ¼ o1 � 1:92Hz, zf ¼ 0:05, si ¼ 2%; and (d) of ¼ o3 � 13:1Hz, zf ¼ 0:05, si ¼ 2%.

Figure 10. Sensor configurations SC-1, SC-2, SC-3 and SC-4 involving three and six sensors (thick line
elements denote the truss elements monitored with strain sensors).
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It becomes clear that the accuracy of the fatigue lifetime predictions based on the KF
approach using fewer than 35 sensors depend on the number and location of sensors in the
structure. Specifically, the best predictions in Figure 9(a, c and d) corresponding to moderate
model error (si ¼ 2%) are obtained from the sensor configurations SC2 and SC3, involving three
and six sensors, respectively. SC-3 provides more accurate KF-based fatigue predictions for the
horizontal (1 to 14) and the diagonal (15 to 28) elements than the fatigue predictions estimated
by SC-2. The SC-3 predictions are relatively close to the reference fatigue values obtained from
the actual (reference) response time histories and to the KF prediction provided by a full sensor
configuration involving 35 sensors. SC-2 provides more accurate fatigue predictions than SC-3
for the horizontal members 29 to 35. The sensor configuration SC-1 involving three sensors
gives less accurate predictions than the sensor configurations SC-2 and SC-3. Finally, the sensor
configuration SC-4 involving six sensors, provide overall significantly less accurate predictions
at several truss elements than the predictions provided by the sensor configuration SC-2
involving three sensors. It thus becomes evident from the results in Figure 9 that the location
and number of sensors affect the accuracy of the fatigue lifetime predictions.

Comparing the results for moderate and large model error in Figure 9(a, b), respectively, the
accuracy of the predictions from the sensor configurations involving three and six sensors
deteriorate, as the model error increases from si ¼ 2% to si ¼ 5%. However, for the horizontal
members and a number of the diagonal members, the accuracy of the fatigue lifetime predictions
remains within acceptable levels. It should be noted that for zero model error the predictions for
all sensor configurations are extremely good at all truss elements. Such predictions are not
shown in Figure 9 because they coincide with the reference fatigue values.

5. CONCLUSIONS

A methodology for estimating damage due to fatigue on the entire body of a structure, using
spectral methods and output-only vibration measurements at a limited number of locations, was
presented. The fatigue predictions presented in this study were illustrated for structural
members subjected to a uniaxial stress state. These predictions can be extended using available
methods [19,20] to structural members subjected to multiaxial stress state. Using the available
response time history measurements and a model of the structure, a KF approach was used for
predicting the power spectral densities of the stresses in the entire body of the structure needed
in the spectral-based fatigue prediction methodology. These PSD predictions were used to
construct fatigue accumulation and lifetime prediction maps consistent with measurements
provided by a monitoring system. Simulated measurements from a spring-mass chain-like
structure and a truss structure suggest that the proposed methodology for lifetime fatigue
prediction provide sufficiently accurate estimates even for the cases where the broadband
assumptions of the stochastic excitation processes are violated. In particular, systematic
numerical studies have demonstrated that the accuracy of the proposed methodology depends
on the size of the model and observation errors, as well as the number and location of sensors.

The proposed method can also be seen as a tool for a lifetime prognosis within structural
health monitoring concepts. Specifically, the proposed method can be used to estimate the
accumulation of damage due to fatigue during operation in the entire body of a structure taking
into account the actual conditions collected from a sensor network placed at limited number of
locations. The fatigue accumulation and lifetime predictions provided by the proposed
methodology are useful for designing optimal maintenance strategies for most critical
components of metallic structures using information collected from a sensor network.

ACKNOWLEDGEMENTS

This research was funded by the Greek National Scholarship Foundation (IKY) within the IKYDA
program framework and by the Deutscher Akademischer Austausch Dienst (DAAD, German Academic
Exchange Service) within the PPP program. This research is also part of the 03-ED-524 project,

FATIGUE PREDICTIONS IN ENTIRE BODY

Copyright r 2010 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2010)

DOI: 10.1002/stc



implemented within the framework of the ‘Reinforcement Programme of Human Research Manpower’
(PENED) and co-financed 25% from the Greek Ministry of Development (General Secretariat of Research
and Technology) and 75% from E.U. (European Social Fund).

REFERENCES

1. Palmgren A. Die Lebensdauer von Kugallagern. VDI-Zeitschrift 1924; 68(14):339–341.
2. Miner MA. Cumulative damage in fatigue. Applied Mechanics Transactions (ASME) 1945; 12(3):A159–A164.
3. Lutes LD, Sarkani S. Random Vibrations: Analysis of Structural and Mechanical Systems. Elsevier Butterworth-

Heinemann: Oxford, 2004.
4. Wirsching PH, Light MC. Fatigue under wide band random stress. Journal of Structural Engineering (ASCE) 1980;

106(7):1593–1607.
5. Lutes LD, Corazao M, Hu S-LJ, Zimmerman J. Stochastic fatigue damage accumulation. Journal of Structural

Engineering (ASCE ) 1984; 110(11):2585–2601.
6. Lutes LD, Larsen CE. Improved spectral method for variable amplitude fatigue prediction. Journal of Structural

Engineering (ASCE ) 1990; 116(4):1149–1164.
7. Rychlik I. On the ‘narrow-band’ approximation for expected fatigue damage. Probabilistic Engineering Mechanics

1993; 8:1–4.
8. Dirlik T. Applications of computers to fatigue analysis. Ph.D. Thesis, Warwick Univ., 1985.
9. Benasciutti D, Tovo R. Comparison of spectral methods for fatigue analysis of broad-band Gaussian random

processes. Probabilistic Engineering Mechanics 2006; 21:287–299.
10. Chaudhury GK, Dover WD. Fatigue analysis of offshore platforms subject to sea wave loading. International

Journal of Fatigue 1985; 7(1):13–19.
11. Chow CL, Li DL. An analytical solution for fast fatigue assessment under wide band random loading. International

Journal of Fatigue 1991; 13:395–404.
12. Larsen CE, Lutes LD. Predicting the fatigue life of offshore structures by the single-moment spectral method.

Probabilistic Engineering Mechanics 1991; 6(2):96–108.
13. Petrucci G, Zuccarello B. Fatigue life prediction under wide-band random loading. Fatigue and Fracture of

Engineering Materials and Structures 2004; 27(12):1183–1195.
14. Tovo R. Cycle distribution and fatigue damage under broad-band random loading. International Journal of Fatigue

2002; 24(11):1137–1147.
15. Tunna JM. Fatigue life prediction for Gaussian random loads at the design stage. Fatigue and Fracture of

Engineering Materials and Structures 1986; 9(3):169–184.
16. Zhao W, Baker MJ. On the probability density function of raiflow stress range for stationary Gaussian processes.

International Journal of Fatigue 1992; 14(2):121–135.
17. Kalman RE, Bucy RS. New results in linear filtering and prediction theory. Journal of Basic Engineering

Transactions on ASME, Series D 1961; 83(3):95–108.
18. Preumont A, Piefort V. Predicting random high cycle fatigue life with finite elements. ASME Journal of Vibration

and Acoustics 1994; 16:245–248.
19. You BR, Lee SB. A critical review on multiaxial fatigue assessments of metals. International Journal of Fatigue

1996; 18(4):235–244.
20. Pitoiset X, Preumont A. Spectral methods for multiaxial random fatigue analysis of metallic structures.

International Journal of Fatigue 2000; 22:541–550.
21. Sarkani S, Kihl DP, Beach JE. Fatigue of welded joints under narrowband non-Gaussian loadings. Probabilistic

Engineering Mechanics 1994; 9:179–190.
22. Wang X, Sun JQ. Multi-stage regression fatigue analysis of non-Gaussian stress processes. Journal of Sound and

Vibration 2005; 280:455–465.
23. Sobczyk K, Spencer Jr BF. Random Fatigue: From Data to Theory. Academic Press: New York, 1992.
24. Spencer Jr BF, Tang J, Artley ME. Stochastic approach to modeling fatigue crack growth. AIAA Journal 1989;

27(11):1628–1635.
25. Casciati F, Colombi P, Faravelli L. Fatigue crack size probability distribution via a filter technique. Fatigue and

Fracture of Engineering Materials and Structures 1992; 15(5):463–475.
26. Sobczyk K, Perros K, Papadimitriou C. Fatigue reliability of multidimensional vibratory degrading systems under

random loading. ASCE Journal of Engineering Mechanics 2010; 136(2):179–188.
27. Bishop NNM, Sherrat F. A theoretical solution for the estimation of the rainflow ranges from power spectral

density data. Fatigue and Fracture of Engineering Materials and Structures 1990; 13(4):311–326.
28. Benasciutti D, Tovo R. Spectral methods for lifetime prediction under wide-band stationary random processes.

International Journal of Fatigue 2005; 27:867–877.
29. Franklin GF, Powell JD, WorkmanML. Digital Control of Dynamic Systems (2nd edn). Addison-Wesley: Reading,

MA, 1990.
30. Stengel RF. Stochastic Optimal Control: Theory and Applications. John Wiley & Son: New York, 1986.
31. Welch PD. The use of fast Fourier transform for the estimation of power spectra: a method based on time

averaging over short, modified periodograms. IEEE Transactions on Audio Electroacoustics 1967; AU-15:70–73.
32. Hayes M. Statistical Digital Signal Processing and Modeling. Wiley: New York, 1996.
33. Papadimitriou C. Optimal sensor placement methodology for parametric identification of structural systems.

Journal of Sound and Vibration 2004; 278(4):923–947.

C. PAPADIMITRIOU ET AL.

Copyright r 2010 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2010)

DOI: 10.1002/stc




