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6.231 DYNAMIC PROGRAMMING

LECTURE 1

LECTURE OUTLINE

• Problem Formulation

• Examples

• The Basic Problem

• Significance of Feedback



BASIC STRUCTURE OF STOCHASTIC DP

• Discrete-time system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1

− k: Discrete time

− xk: State; summarizes past information that
is relevant for future optimization

− uk: Control; decision to be selected at time
k from a given set

− wk: Random parameter (also called distur-
bance or noise depending on the context)

− N : Horizon or number of times control is
applied

• Cost function that is additive over time

E

{
gN (xN ) +

N−1∑
k=0

gk(xk, uk, wk)

}



INVENTORY CONTROL EXAMPLE

Inventory
System

Stock Ordered at
Period k

Stock at Period k Stock at Period k + 1

Demand at Period k

xk

wk

xk  + 1 = xk  + uk -  wk

uk
Cost of Period k

r (xk ) + cuk 

• Discrete-time system

xk+1 = fk(xk, uk, wk) = xk + uk − wk

• Cost function that is additive over time

E

{
gN (xN ) +

N−1∑
k=0

gk(xk, uk, wk)

}

= E

{
N−1∑
k=0

(
cuk + r(xk + uk − wk)

)}

• Optimization over policies: Rules/functions uk =
µk(xk) that map states to controls



ADDITIONAL ASSUMPTIONS

• The set of values that the control uk can take
depend at most on xk and not on prior x or u

• Probability distribution of wk does not depend
on past values wk−1, . . . , w0, but may depend on
xk and uk

• Otherwise past values of w or x would be useful
for future optimization

• Sequence of events envisioned in period k:

− xk occurs according to

xk = fk−1

(
xk−1, uk−1, wk−1

)
− uk is selected with knowledge of xk, i.e.,

uk ∈ U(xk)

− wk is random and generated according to a
distribution

Pwk(xk, uk)



DETERMINISTIC FINITE-STATE PROBLEMS

• Scheduling example: Find optimal sequence of
operations A, B, C, D

• A must precede B and C must precede D

• Given startup cost SA and SC , and setup tran-
sition cost Cmn from operation m to operation n

A

SA

C

SC

AB

CAB

ACCAC

CDA

CAD

ABC

CA

CCD CD

ACD

ACB

CAB

CAD

CBC

CCB

CCD

CAB

CCA

CDA

CCD

CBD

CDB

CBD

CDB

CAB

Initial
State



STOCHASTIC FINITE-STATE PROBLEMS

• Example: Find two-game chess match strategy

• Timid play draws with prob. pd > 0 and loses
with prob. 1 − pd. Bold play wins with prob. pw <
1/2 and loses with prob. 1 − pw

1 - 0

0.5-0.5

0 - 1

2 - 0

1.5-0.5

1 - 1

0.5-1.5

0 - 2

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play

0 - 0

0.5-0.5

0 - 1

pd

1 - pd

1st Game / Bold Play

0 - 0

1 -  0

0 - 1

1 - pw

pw

1 - 0

0.5-0.5

0 - 1

2 - 0

1.5-0.5

1 - 1

0.5-1.5

0 - 2

pd

pd

pd

1 - pd

1 - pd

1 - pd

1 - pw

pw

1 - pw

pw

1 - pw

pw



BASIC PROBLEM

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N − 1

• Control contraints uk ∈ U(xk)

• Probability distribution Pk(· |xk, uk) of wk

• Policies π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk) and is such
that µk(xk) ∈ Uk(xk) for all xk

• Expected cost of π starting at x0 is

Jπ(x0) = E

{
gN (xN ) +

N−1∑
k=0

gk(xk, µk(xk), wk)

}

• Optimal policy π∗:

Jπ∗(x0) = min
π

Jπ(x0)

When produced by DP, it is independent of x0.

• Optimal cost function

J∗(x0) = min
π

Jπ(x0)



SIGNIFICANCE OF FEEDBACK

• Open-loop versus closed-loop policies

          System
xk + 1 = fk(xk,uk,wk)

µk

uk = µk(xk) xk

wk

• In deterministic problems open loop is a good
as closed loop

• Chess match example; value of information

Timid Play

1 - pd

pd

Bold Play

0 - 0

1 -  0

0 - 1

1 - pw

pw

1.5-0.5

1 - 1

1 -  1

0 - 2

1 - pw

pw
Bold Play



6.231 DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

• Principle of optimality

• DP example: Deterministic problem

• DP example: Stochastic problem

• The general algorithm

• State augmentation



BASIC PROBLEM

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N − 1

• Control contraints uk ∈ U(xk)

• Probability distribution Pk(· |xk, uk) of wk

• Policies π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk) and is such
that µk(xk) ∈ Uk(xk) for all xk

• Expected cost of π starting at x0 is

Jπ(x0) = E

{
gN (xN ) +

N−1∑
k=0

gk(xk, µk(xk), wk)

}

• Optimal policy π∗:

Jπ∗(x0) = min
π

Jπ(x0)

• Optimal cost function

J∗(x0) = min
π

Jπ(x0)



PRINCIPLE OF OPTIMALITY

• Let π∗ = {µ∗
0, µ

∗
1, . . . , µ

∗
N−1} be an optimal pol-

icy

• Consider the “tail subproblem” whereby we are
at xi at time i and wish to minimize the “cost-to-go”
from time i to time N

E

{
gN (xN ) +

N−1∑
k=i

gk

(
xk, µk(xk), wk

)}

0 Ni

xi Tail Subproblem

• Then the truncated policy {µ∗
i , µ

∗
i+1, . . . , µ

∗
N−1}

is optimal for this subproblem (assuming xi is a
“relevant state” at time i).

• DP first solves all tail subroblems of final stage

• At the generic step, it solves all tail subproblems
of a given time length, using the solution of the tail
subproblems of shorter time length.



DETERMINISTIC SCHEDULING EXAMPLE

• Find optimal sequence of operations A, B, C, D
(A must precede B and C must precede D)

A

C

AB

AC

CDA

ABC

CA

CD

ACD

ACB

CAB

CAD

Initial
State1 0

7 6

2

8
6

6

2

2

9

3

3
3

3

3

3

5

1

5

4
4

3

1

5

4

• Start from the last tail subproblem and go back-
wards

• At each state-time pair, we record the optimal
cost-to-go and the optimal decision



STOCHASTIC INVENTORY EXAMPLE

Inventory
System

Stock Ordered at
Period k

Stock at Period k Stock at Period k + 1

Demand at Period k

xk

wk

xk  + 1 = xk  + uk -  wk

uk
Cost of Period k

r (xk ) + cuk 

• Tail Subproblems of Length 1:

JN−1(xN−1) = min
uN−1≥0

E
wN−1

{
cuN−1

+ r(xN−1 + uN−1 − wN−1)
}

• Tail Subproblems of Length N − k:

Jk(xk) = min
uk≥0

E
wk

{
cuk + r(xk + uk − wk)

+ Jk+1(xk + uk − wk)
}



DP ALGORITHM

Start with
JN (xN ) = gN (xN ),

and go backwards using

Jk(xk) = min
uk∈Uk(xk)

E
wk

{
gk(xk, uk, wk)

+ Jk+1

(
fk(xk, uk, wk)

)}
, k = 0, 1, . . . , N − 1.

Then J0(x0), generated at the last step of the al-
gorithm, is equal to the optimal cost J∗(x0). Fur-
thermore, if u∗

k = µ∗
k(xk) minimizes in the right

side above for each xk and k, the policy

π∗ = {µ∗
0, . . . , µ

∗
N−1}

is optimal.

• Justification: Proof by induction that Jk(xk) is
equal to J∗

k (xk), defined as the optimal cost of the
tail subproblem that starts at time k at state xk.

• Note that ALL the tail subproblems are solved in
addition to the original problem, and the intensive
computational requirements.



PROOF OF THE INDUCTION STEP

• Assume that Jk+1(xk+1) = J∗
k+1(xk+1). Then

J∗
k (xk) = min

(µk,πk+1)
E

wk,...,wN−1

{
gk

(
xk, µk(xk), wk

)

+ gN (xN ) +

N−1∑
i=k+1

gi

(
xi, µi(xi), wi

)}

= min
µk

E
wk

{
gk

(
xk, µk(xk), wk

)

+ min
πk+1

[
E

wk+1,...,wN−1

{
gN (xN ) +

N−1∑
i=k+1

gi

(
xi, µi(xi), wi

)}]

= min
µk

E
wk

{
gk

(
xk, µk(xk), wk

)
+ J∗

k+1

(
fk

(
xk, µk(xk), wk

))}
= min

µk

E
wk

{
gk

(
xk, µk(xk), wk

)
+ Jk+1

(
fk

(
xk, µk(xk), wk

))}
= min

uk∈Uk(xk)
E
wk

{
gk(xk, uk, wk) + Jk+1

(
fk(xk, uk, wk)

)}
= Jk(xk)



LINEAR-QUADRATIC ANALYTICAL EXAMPLE

Temperature
         u0

Temperature
          u1

Final 
Temperature x2

Initial 
Temperature x0

Oven 1 Oven 2x1

• System

xk+1 = (1 − a)xk + auk, k = 0, 1,

where a is given scalar from the interval (0, 1).

• Cost
r(x2 − T )2 + u2

0 + u2
1

where r is given positive scalar.

• DP Algorithm:

J2(x2) = r(x2 − T )2

J1(x1) = min
u1

[
u2

1 + r
(
(1 − a)x1 + au1 − T

)2
]

J0(x0) = min
u0

[
u2

0 + J1

(
(1 − a)x0 + au0

)]



STATE AUGMENTATION

• When assumptions of the basic problem are
violated (e.g., disturbances are correlated, cost is
nonadditive, etc) reformulate the state.

• Example: Time lags

xk+1 = fk(xk, xk−1, uk, wk)

• Introduce additional state variable yk = xk−1.
New system takes the form

(
xk+1

yk+1

)
=

(
fk(xk, yk, uk, wk)

xk

)

View x̃k = (xk, yk) as the new state.

• DP algorithm for the reformulated problem:

Jk(xk, xk−1) = min
uk∈Uk(xk)

E
wk

{
gk(xk, uk, wk)

+ Jk+1

(
fk(xk, xk−1, uk, wk), xk

)}



6.231 DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

• Deterministic finite-state DP problems

• Backward shortest path algorithm

• Forward shortest path algorithm

• Shortest path examples

• Alternative shortest path algorithms



BASIC DETERMINISTIC PROBLEM

. . .

. . .

. . .

Stage 0 Stage 1 Stage 2 Stage N  - 1 Stage N

Initial State
               s

t
Artificial Terminal
Node

Terminal Arcs
with Cost Equal
to Terminal Cost

. . .

• States <==> Nodes

• Controls <==> Arcs

• Control sequences (open-loop) <==> paths from
initial state to terminal states

• ak
ij : Cost of transition from state i ∈ Sk to state

j ∈ Sk+1 at time k

• aN
it : Terminal cost of state i ∈ SN

• Cost of control sequence <==> Cost/length of
the corresponding path



DP ALGORITHMS

• DP algorithm:

JN (i) = aN
it , i ∈ SN ,

Jk(i) = min
j∈Sk+1

[
ak

ij+Jk+1(j)
]
, i ∈ Sk, k = 0, . . . , N−1.

The optimal cost is J0(s) and is equal to the length
of the shortest path from s to t.

• Observation: An optimal path s → t is also
an optimal path t → s in a “reverse” shortest
path problem where the direction of each arc is
reversed and its length is left unchanged.

• Forward DP algorithm:

J̃N (j) = a0
sj , j ∈ S1,

J̃k(j) = min
i∈SN−k

[
aN−k

ij +J̃k+1(i)
]
, j ∈ SN−k+1, k = 1, . .

The optimal cost is J̃0(t) = mini∈SN

[
aN

it + J̃1(i)
]
.

• View J̃k(j) as optimal cost-to-arrive to state j
from initial state s.



GENERIC SHORTEST PATH PROBLEMS

• {1, 2, . . . , N, t}: nodes of a graph (t: the desti-
nation)

• aij : cost of moving from node i to node j

• Find a shortest (minimum cost) path from each
node i to node t

• Assumption: All cycles have nonnegative length.
Then an optimal path need not take more than N
moves

• We formulate the problem as one where we
require exactly N moves but allow degenerate
moves from a node i to itself with cost aii = 0.

Jk(i) = optimal cost of getting from i to t in N−k moves

J0(i): Cost of the optimal path from i to t.

• DP algorithm:

Jk(i) = min
j=1,...,N

[
aij+Jk+1(j)

]
, k = 0, 1, . . . , N−2,

with JN−1(i) = ait, i = 1, 2, . . . , N.



EXAMPLE

2
7 5

2
5 5

6 1

3

0.5
3

1

2

4

0 1 2 3 4

1

2

3

4

5

State i

Stage k

3 3 3 3

4 4 4 5

4.5 4.5 5.5 7

2 2 2 2

Destination 
     5

(a) (b)

JN−1(i) = ait, i = 1, 2, . . . , N,

Jk(i) = min
j=1,...,N

[
aij+Jk+1(j)

]
, k = 0, 1, . . . , N−2.



HIDDEN MARKOV MODELS

• Markov chain with transition probabilities pij

• State transitions are hidden from view

• For each transition, we get an (independent)
observation

• r(z; i, j): Prob. the observation takes value z
when the state transition is from i to j

• Trajectory estimation problem: Given the ob-
servation sequence ZN = {z1, z2, . . . , zN}, what
is the “most likely” state transition sequence X̂N =
{x̂0, x̂1, . . . , x̂N} [one that maximizes p(XN |ZN )
over all XN = {x0, x1, . . . , xN}].

. . .

. . .

. . .

s x0 x1 x2 xN - 1 xN t



VITERBI ALGORITHM

• We have

p(XN |ZN ) =
p(XN , ZN )

p(ZN )
,

where p(XN , ZN ) and p(ZN ) are the unconditional
probabilities of occurrence of (XN , ZN ) and ZN

• Maximizing p(XN |ZN ) is equivalent with max-
imizing ln(p(XN , ZN ))

• We have

p(XN , ZN ) = πx0

N∏
k=1

pxk−1xkr(zk;xk−1, xk)

so the problem is equivalent to

minimize − ln(πx0) −
N∑

k=1

ln
(
pxk−1xkr(zk;xk−1, xk)

)
over all possible sequences {x0, x1, . . . , xN}.

• This is a shortest path problem



GENERAL SHORTEST PATH ALGORITHMS

• There are many nonDP shortest path algo-
rithms. They can all be used to solve deterministic
finite-state problems.

• They may be preferable than DP if they avoid
calculating the optimal cost-to-go of EVERY state

• This is essential for problems with HUGE state
spaces. Such problems arise for example in com-
binatorial optimization

1

1 20

20

5

3

5

4

4

15

15

3

ABC ABD ACB ACD ADB ADC

ABCD

AB AC AD

ABDC ACBD ACDB ADBC ADCB

Artificial Terminal Node t

Origin Node sA

1

11

20 20

2020

44

4 4

15
15 5

5

3 3

5

33

15



LABEL CORRECTING METHODS

• Origin s, destination t, lengths aij are ≥ 0.

• Idea is to progressively discover shorter paths
from the origin s to every other node i

• di (label of i): Length of the shortest path found

• UPPER: Label dt of the destination

• OPEN list: Contains nodes that are currently
active in the sense that they are candidates for
further examination (initially OPEN={s})

Label Correcting Algorithm

Step 1: Remove a node i from OPEN and for
each child j of i, execute step 2.

Step 2: If di + aij < min{dj , UPPER}, set dj =
di +aij and set i to be the parent of j. In addition,
if j �= t, place j in OPEN if it is not already in
OPEN, while if j = t, set UPPER to the new value
di + ait of dt.

Step 3: If OPEN is empty, terminate; else go to
step 1.



VISUALIZATION/EXPLANATION

• Origin s, destination t, lengths aij that are ≥ 0.

• di (label of i): Length of the shortest path found
thus far (initially di = ∞ except ds = 0). The label
di is implicitly associated with an s → i path.

• UPPER: Label dt of the destination

• OPEN list: Contains “active” nodes (initially
OPEN={s})

i j

REMOVE

Is di + aij < dj  ?
(Is the path s --> i --> j 
better than the 
current path s --> j ?)

Is di + aij < UPPER  ?

(Does the path s --> i --> j 
have a chance to be part 
of a shorter s --> t path ?)

YES

YES

INSERT

OPEN

Set  dj = di + aij



EXAMPLE

ABC ABD ACB ACD ADB ADC

ABCD

AB AC AD

ABDC ACBD ACDB ADBC ADCB

Artificial Terminal Node t

Origin Node sA

1

11

20 20

2020

44

4 4

15
15 5

5

3 3

5

33

15

1

2

3

4

5

6

7

8

9

1 0

Iter. No. Node Exiting OPEN OPEN after Iteration UPPER

0 - 1 ∞
1 1 2, 7,10 ∞
2 2 3, 5, 7, 10 ∞
3 3 4, 5, 7, 10 ∞
4 4 5, 7, 10 43

5 5 6, 7, 10 43

6 6 7, 10 13

7 7 8, 10 13

8 8 9, 10 13

9 9 10 13

10 10 Empty 13



VALIDITY OF LABEL CORRECTING METHODS

Proposition: If there exists at least one path from
the origin to the destination, the label correcting
algorithm terminates with UPPER equal to the
shortest distance from the origin to the destina-
tion.

Proof: (1) Each time a node j enters OPEN,
its label is decreased and becomes equal to the
length of some path from s to j

(2)The number of possible distinct path lengths is
finite, so the number of times a node can enter
OPEN is finite, and the algorithm terminates

(3) Let (s, j1, j2, . . . , jk, t) be a shortest path and
let d∗ be the shortest distance. If UPPER > d∗

at termination, UPPER will also be larger than the
length of all the paths (s, j1, . . . , jm), m = 1, . . . , k,
throughout the algorithm. Hence, node jk will
never enter the OPEN list with djk equal to the
shortest distance from s to jk. Similarly node jk−1

will never enter the OPEN list with djk−1 equal to
the shortest distance from s to jk−1. Continue to
j1 to get a contradiction.
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LECTURE 4

LECTURE OUTLINE

• Label correcting methods for shortest paths

• Variants of label correcting methods

• Branch-and-bound as a shortest path algorithm

• Linear-quadratic problems



LABEL CORRECTING METHODS

• Origin s, destination t, lengths aij that are ≥ 0.

• di (label of i): Length of the shortest path found
thus far (initially di = ∞ except ds = 0). The label
di is implicitly associated with an s → i path.

• UPPER: Label dt of the destination

• OPEN list: Contains “active” nodes (initially
OPEN={s})

i j

REMOVE

Is di + aij < dj  ?
(Is the path s --> i --> j 
better than the 
current path s --> j ?)

Is di + aij < UPPER  ?

(Does the path s --> i --> j 
have a chance to be part 
of a shorter s --> t path ?)

YES

YES

INSERT

OPEN

Set  dj = di + aij



MAKING THE METHOD EFFICIENT

• Reduce the value of UPPER as quickly as pos-
sible

− Try to discover “good” s → t paths early in
the course of the algorithm

• Keep the number of reentries into OPEN low

− Try to remove from OPEN nodes with small
label first

− For an acyclic graph each node will enter
OPEN at most once, so this issue does not
arise

• Reduce the overhead for selecting the node to
be removed from OPEN

• These objectives are often in conflict. They give
rise to a large variety of distict implementations.



NODE SELECTION METHODS

• Depth-first search: Remove from the top of
OPEN and insert at the top of OPEN

− Has low memory storage properties (OPEN
is not too long). Reduces UPPER quickly.

Origin Node s

Destination Node t

1 4

2

3

4 5

6

7 8 9

1 0

1 3

1 1 1 2

1

• Best-first search (Djikstra): Remove from OPEN
a node with minimum value of label.

− Interesting property: Each node will be in-
serted in OPEN at most once.

− Many implementations/approximations



ADVANCED INITIALIZATION

• Instead of starting from di = ∞ for all i �= s,
start with

di = length of some path from s to i (or di = ∞)

OPEN = {i �= t | di < ∞}

• Motivation: Get a small starting value of UP-
PER.

• No node with shortest distance ≤ initial value
of UPPER will enter OPEN

• Good practical idea:

− Run a heuristic (or use common sense) to
get a “good” starting path P from s to t

− Use as UPPER the length of P , and as di

the path distances of all nodes i along P

• Very useful also in reoptimization, where we
solve the same problem with slightly different data



VARIANTS OF LABEL CORRECTING METHODS

• If a lower bound hj of the true shortest distance
from j to t is known, use the test

di + aij + hj < UPPER

for entry into OPEN, instead of

di + aij < UPPER

• If an upper bound mj of the true shortest dis-
tance from j to t is known, then if dj + mj <
UPPER, reduce UPPER to dj + mj

• Important use: Branch-and-bound algorithm for
discrete optimization



BRANCH-AND-BOUND METHOD

• Problem: Minimize f(x) over a finite set of fea-
sible solutions X.

• Idea of branch-and-bound: Partition the feasi-
ble set into smaller subsets, and then calculate
certain bounds on the attainable cost within some
of the subsets to eliminate from further consider-
ation other subsets.

Bounding Principle

Given two subsets Y1 ⊂ X and Y2 ⊂ X, suppose
that we have bounds

f
1
≤ min

x∈Y1

f(x), f2 ≥ min
x∈Y2

f(x).

Then, if f2 ≤ f
1
, the solutions in Y1 may be dis-

regarded since their cost cannot be smaller than
the cost of the best solution in Y2.



SHORTEST PATH IMPLEMENTATION

• Acyclic graph/partition of X into subsets. The
leafs consist of single solutions.

• Upper/Lower bounds f
Y

and fY for the mini-
mum cost over each subset Y can be calculated

• Arc (Y, Z) has length f
Z
− f

Y

• Shortest distance from X to Y = f
Y
− f

X

• Shortest path to the set of leafs gives the optimal
cost and optimal solution

X = {1,2,3,4,5}

{4}

{1,2,3} {4,5}

{2,3}{1,2} {4}

{2} {3}

{5}

{1}



BRANCH-AND-BOUND ALGORITHM

Step 1: Remove a node Y from OPEN. For each
child Yj of Y , do the following: If f

Y j
< UPPER,

then place Yj in OPEN. If in addition fY j < UP-
PER, then set UPPER = fY j , and if Yj consists
of a single solution, mark that solution as being
the best solution found so far.

Step 2: (Termination Test) If OPEN is nonempty,
go to step 1. Otherwise, terminate; the best solu-
tion found so far is optimal.

• It is neither practical nor necessary to generate
a priori the acyclic graph (we generate it as we
go).

• Keys to branch-and-bound:

− Generate as sharp as possible upper and
lower bounds at each node

− Have a good partitioning and node selection
strategy

• Method involves a lot of art, may be prohibitively
time-consuming, but is guaranteed to find an op-
timal solution.



LINEAR-QUADRATIC PROBLEMS

• System: xk+1 = Akxk + Bkuk + wk, k =
0, . . . , N − 1

• Quadratic cost

E
wk

k=0,1,...,N−1

{
x′

NQNxN +
N−1∑
k=0

(x′
kQkxk + u′

kRkuk)

}

• wk are independent and zero mean

• DP algorithm:

JN (xN ) = x′
NQNxN ,

Jk(xk) = min
uk

E
{
x′

kQkxk + u′
kRkuk

+ Jk+1(Akxk + Bkuk + wk)
}

• Key facts:

− Jk(xk) is quadratic

− Optimal policy {µ∗
0, . . . , µ

∗
N−1} is linear:

µ∗
k(xk) = Lkxk



DERIVATION

• By induction and straightforward calculation,
verify that

µ∗
k(xk) = Lkxk,

where the matrices Lk are given by

Lk = −(B′
kKk+1Bk + Rk)−1B′

kKk+1Ak,

and where the symmetric positive semidefinite ma-
trices Kk are given by the algorithm

KN = QN ,

Kk = A′
k

(
Kk+1 − Kk+1Bk(B′

kKk+1Bk

+ Rk)−1B′
kKk+1

)
Ak + Qk.

• This is called the discrete-time Riccati equation.

• Just like DP, it starts at the terminal time N and
proceeds backwards.

• Certainty equivalence holds (optimal policy is
the same as when wk is replaced by its expected
value E{wk} = 0).
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LINEAR-QUADRATIC PROBLEMS

• System: xk+1 = Akxk + Bkuk + wk

• Quadratic cost

E
wk

k=0,1,...,N−1

{
x′

NQNxN +
N−1∑
k=0

(x′
kQkxk + u′

kRkuk)

}

where Qk ≥ 0 and Rk > 0 (in the positive (semi)definite
sense).

• wk are independent and zero mean

• DP algorithm:
JN (xN ) = x′

NQNxN ,

Jk(xk) = min
uk

E
{
x′

kQkxk + u′
kRkuk

+ Jk+1(Akxk + Bkuk + wk)
}

• Key facts:

− Jk(xk) is quadratic

− Optimal policy {µ∗
0, . . . , µ

∗
N−1} is linear:

µ∗
k(xk) = Lkxk

− Similar treatment of a number of variants



DERIVATION

• By induction and straightforward calculation,
verify that

µ∗
k(xk) = Lkxk,

where the matrices Lk are given by

Lk = −(B′
kKk+1Bk + Rk)−1B′

kKk+1Ak,

and where the symmetric positive semidefinite ma-
trices Kk are given by the algorithm

KN = QN ,

Kk = A′
k

(
Kk+1 − Kk+1Bk(B′

kKk+1Bk

+ Rk)−1B′
kKk+1

)
Ak + Qk.

• This is called the discrete-time Riccati equation.

• Just like DP, it starts at the terminal time N and
proceeds backwards.

• Certainty equivalence holds (optimal policy is
the same as when wk is replaced by its expected
value E{wk} = 0).



ASYMPTOTIC BEHAVIOR OF RICCATI EQUATION

• Assume time-independent system and cost per
stage, and some technical assumptions: contro-
lability of (A, B) and observability of (A, C) where
Q = C ′C

• The Riccati equation converges limk→−∞ Kk =
K, where K is the unique positive semidefinite
solution of the algebraic Riccati equation

K = A′
(
K − KB(B′KB + R)−1B′K

)
A + Q

• The corresponding steady-state controller µ∗(x) =
Lx, where

L = −(B′KB + R)−1B′KA,

is stable in the sense that the matrix (A + BL) of
the closed-loop system

xk+1 = (A + BL)xk + wk

satisfies limk→∞(A + BL)k = 0.



GRAPHICAL PROOF FOR SCALAR SYSTEMS

A
2
R

B
2 + Q

P 0

Q

F(P)

450

PPk Pk + 1
P*

-
R

B
2

• Riccati equation (with Pk = KN−k):

Pk+1 = A2

(
Pk − B2P 2

k

B2Pk + R

)
+ Q,

or Pk+1 = F (Pk), where

F (P ) =
A2RP

B2P + R
+ Q.

• Note the two steady-state solutions, satisfying
P = F (P ), of which only one is positive.



RANDOM SYSTEM MATRICES

• Suppose that {A0, B0}, . . . , {AN−1, BN−1} are
not known but rather are independent random ma-
trices that are also independent of the wk

• DP algorithm is

JN (xN ) = x′
NQNxN ,

Jk(xk) = min
uk

E
wk,Ak,Bk

{
x′

kQkxk

+ u′
kRkuk + Jk+1(Akxk + Bkuk + wk)

}
.

• Optimal policy µ∗
k(xk) = Lkxk, where

Lk = −
(
Rk + E{B′

kKk+1Bk}
)−1

E{B′
kKk+1Ak},

and where the matrices Kk are given by

KN = QN ,

Kk = E{A′
kKk+1Ak − E{A′

kKk+1Bk}}(
Rk + E{B′

kKk+1Bk}
)−1

E{B′
kKk+1Ak} + Qk.



PROPERTIES

• Certainty equivalence may not hold

• Riccati equation may not converge to a steady-
state

Q

450

0 P

F (P)

-
R

E{B
2}

• We have Pk+1 = F̃ (Pk), where

F̃ (P ) =
E{A2}RP

E{B2}P + R
+ Q +

TP 2

E{B2}P + R
,

T = E{A2}E{B2} −
(
E{A}

)2(
E{B}

)2
.



INVENTORY CONTROL

• xk: stock, uk: inventory purchased, wk: de-
mand

xk+1 = xk + uk − wk, k = 0, 1, . . . , N − 1.

• Minimize

E

{
N−1∑
k=0

(
cuk + r(xk + uk − wk)

)}

where, for some p > 0 and h > 0,

r(x) = p max(0,−x) + h max(0, x)

• DP algorithm:

JN (xN ) = 0,

Jk(xk) = min
uk≥0

[
cuk+H(xk+uk)+E

{
Jk+1(xk+uk−wk)

}]
,

where H(x + u) = E{r(x + u − w)}



OPTIMAL POLICY

• DP algorithm can be written as

JN (xN ) = 0,

Jk(xk) = min
uk≥0

Gk(xk + uk) − cxk,

where

Gk(y) = cy + H(y) + E
{
Jk+1(y − w)

}
.

• If Gk is convex and lim|x|→∞ Gk(x) → ∞, we
have

µ∗
k(xk) =

{
Sk − xk if xk < Sk,
0 if xk ≥ Sk,

where Sk minimizes Gk(y).

• This is shown, assuming that c < p, by showing
that Jk is convex for all k, and

lim
|x|→∞

Jk(x) → ∞



JUSTIFICATION

• Graphical inductive proof that Jk is convex.

- cy

- cy

y

L(y)

cy + L(y)

SN - 1

cSN - 1

JN - 1(xN - 1)

xN - 1SN - 1
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• Other applications



PURE STOPPING PROBLEMS

• Two possible controls:

− Stop (incur a one-time stopping cost, and
move to cost-free and absorbing stop state)

− Continue [using xk+1 = fk(xk, wk) and in-
curring the cost-per-stage]

• Each policy consists of a partition of the set of
states xk into two regions:

− Stop region, where we stop

− Continue region, where we continue

STOP
REGION

CONTINUE 
REGION

Stop State



EXAMPLE: ASSET SELLING

• A person has an asset, and at k = 0, 1, . . . , N−1
receives a random offer wk

• May accept wk and invest the money at fixed
rate of interest r, or reject wk and wait for wk+1.
Must accept the last offer wN−1

• DP algorithm (xk: current offer, T : stop state):

JN (xN ) =
{

xN if xN �= T ,
0 if xN = T ,

Jk(xk) =

{
max

[
(1 + r)N−kxk, E

{
Jk+1(wk)

}]
if xk �= T ,

0 if xk = T .

• Optimal policy;

accept the offer xk if xk > αk,

reject the offer xk if xk < αk,

where

αk =
E

{
Jk+1(wk)

}
(1 + r)N−k

.



FURTHER ANALYSIS

0 1 2 N - 1 N k

ACCEPT

REJECT

α1

αN - 1

α2

• Can show that αk ≥ αk+1 for all k

• Proof: Let Vk(xk) = Jk(xk)/(1 + r)N−k for xk �=
T. Then the DP algorithm is VN (xN ) = xN and

Vk(xk) = max
[
xk, (1 + r)−1 E

w

{
Vk+1(w)

}]
.

We have αk = Ew

{
Vk+1(w)

}
/(1 + r), so it is enough

to show that Vk(x) ≥ Vk+1(x) for all x and k. Start
with VN−1(x) ≥ VN (x) and use the monotonicity
property of DP.

• We can also show that αk → a as k → −∞.
Suggests that for an infinite horizon the optimal
policy is stationary.



GENERAL STOPPING PROBLEMS

• At time k, we may stop at cost t(xk) or choose
a control uk ∈ U(xk) and continue

JN (xN ) = t(xN ),

Jk(xk) = min
[
t(xk), min

uk∈U(xk)
E

{
g(xk, uk, wk)

+ Jk+1

(
f(xk, uk, wk)

)}]
• Optimal to stop at time k for states x in the set

Tk =

{
x

∣∣∣ t(x) ≤ min
u∈U(x)

E
{

g(x, u, w) + Jk+1

(
f(x, u, w)

)}}
• Since JN−1(x) ≤ JN (x), we have Jk(x) ≤
Jk+1(x) for all k, so

T0 ⊂ · · · ⊂ Tk ⊂ Tk+1 ⊂ · · · ⊂ TN−1.

• Interesting case is when all the Tk are equal (to
TN−1, the set where it is better to stop than to go
one step and stop). Can be shown to be true if

f(x, u, w) ∈ TN−1, for all x ∈ TN−1, u ∈ U(x), w.



SCHEDULING PROBLEMS

• Set of tasks to perform, the ordering is subject
to optimal choice.

• Costs depend on the order

• There may be stochastic uncertainty, and prece-
dence and resource availability constraints

• Some of the hardest combinatorial problems
are of this type (e.g., traveling salesman, vehicle
routing, etc.)

• Some special problems admit a simple quasi-
analytical solution method

− Optimal policy has an “index form”, i.e., each
task has an easily calculable “index”, and
it is optimal to select the task that has the
maximum value of index (multi-armed bandit
problems - to be discussed later)

− Some problems can be solved by an “inter-
change argument” (start with some sched-
ule, interchange two adjacent tasks, and see
what happens)



EXAMPLE: THE QUIZ PROBLEM

• Given a list of N questions. If question i is an-
swered correctly (given probability pi), we receive
reward Ri; if not the quiz terminates. Choose or-
der of questions to maximize expected reward.

• Let i and j be the kth and (k + 1)st questions
in an optimally ordered list

L = (i0, . . . , ik−1, i, j, ik+2, . . . , iN−1)

E {reward of L} = E
{

reward of {i0, . . . , ik−1}
}

+ pi0 · · · pik−1(piRi + pipjRj)

+ pi0 · · · pik−1pipjE
{

reward of {ik+2, . . . , iN−1}
}

Consider the list with i and j interchanged

L′ = (i0, . . . , ik−1, j, i, ik+2, . . . , iN−1)

Since L is optimal, E{reward of L} ≥ E{reward of L′},
so it follows that piRi +pipjRj ≥ pjRj +pjpiRi or

piRi/(1 − pi) ≥ pjRj/(1 − pj).



MINIMAX CONTROL

• Consider basic problem with the difference that
the disturbance wk instead of being random, it is
just known to belong to a given set Wk(xk, uk).

• Find policy π that minimizes the cost

Jπ(x0) = max
wk∈Wk(xk,µk(xk))

k=0,1,...,N−1

[
gN (xN )

+
N−1∑
k=0

gk

(
xk, µk(xk), wk

)]

• The DP algorithm takes the form

JN (xN ) = gN (xN ),

Jk(xk) = min
uk∈U(xk)

max
wk∈Wk(xk,uk)

[
gk(xk, uk, wk)

+ Jk+1

(
fk(xk, uk, wk)

)]
(Exercise 1.5 in the text, solution posted on the
www).



UNKNOWN-BUT-BOUNDED CONTROL

• For each k, keep the xk of the controlled system

xk+1 = fk

(
xk, µk(xk), wk

)
inside a given set Xk, the target set at time k.

• This is a minimax control problem, where the
cost at stage k is

gk(xk) =
{

0 if xk ∈ Xk,
1 if xk /∈ Xk.

• We must reach at time k the set

Xk =
{
xk |Jk(xk) = 0

}
in order to be able to maintain the state within the
subsequent target sets.

• Start with XN = XN , and for k = 0, 1, . . . , N−1,

Xk =
{
xk ∈ Xk | there exists uk ∈ Uk(xk) such that

fk(xk, uk, wk) ∈ Xk+1, for all wk ∈ Wk(xk, uk)
}
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• Deterministic continuous-time optimal control

• Examples

• Connection with the calculus of variations

• The Hamilton-Jacobi-Bellman equation



PROBLEM FORMULATION

• We have a continuous-time dynamic system

ẋ(t) = f
(
x(t), u(t)

)
, 0 ≤ t ≤ T, x(0) : given,

where

− x(t) ∈ �n is the state vector at time t

− u(t) ∈ U ⊂ �m is the control vector at time
t, U is the control constraint set

− T is the terminal time.

• We assume that, for any admissible control tra-
jectory

{
u(t) | t ∈ [0, T ]

}
(piecewise continuous

functions
{
u(t) | t ∈ [0, T ]

}
with u(t) ∈ U for all

t ∈ [0, T ]), the system has a unique solution.

• Find an admissible control trajectory
{
u(t) | t ∈

[0, T ]
}

and corresponding state trajectory
{
x(t) | t ∈

[0, T ]
}

, that minimizes a cost function of the form

h
(
x(T )

)
+

∫ T

0

g
(
x(t), u(t)

)
dt

• f, h, g are assumed continuously differentiable.



EXAMPLE I

• Motion control: A unit mass moves on a line
under the influence of a force u.

• x(t) =
(
x1(t), x2(t)

)
: position and velocity of

the mass at time t

• Problem: From a given
(
x1(0), x2(0)

)
, bring

the mass “near” a given final position-velocity pair
(x1, x2) at time T in the sense:

minimize
∣∣x1(T ) − x1

∣∣2 +
∣∣x2(T ) − x2

∣∣2
subject to the control constraint

|u(t)| ≤ 1, for all t ∈ [0, T ].

• The problem fits the framework with

ẋ1(t) = x2(t), ẋ2(t) = u(t),

h
(
x(T )

)
=

∣∣x1(T ) − x1

∣∣2 +
∣∣x2(T ) − x2

∣∣2,
g
(
x(t), u(t)

)
= 0, for all t ∈ [0, T ].



EXAMPLE II

• A producer with production rate x(t) at time t
may allocate a portion u(t) of his/her production
rate to reinvestment and 1 − u(t) to production of
a storable good. Thus x(t) evolves according to

ẋ(t) = γu(t)x(t),

where γ > 0 is a given constant.

• The producer wants to maximize the total amount
of product stored

∫ T

0

(
1 − u(t)

)
x(t)dt

subject to

0 ≤ u(t) ≤ 1, for all t ∈ [0, T ].

• The initial production rate x(0) is a given positive
number.



EXAMPLE III (CALCULUS OF VARIATIONS)

Length = ∫
0

T

1 + (u(t))2 dt

α x(t) 

T t0

x(t) = u(t)
.

Given
Point Given

Line

• Find a curve from a given point to a given line
that has minimum length.

• The problem is

minimize
∫ T

0

√
1 +

(
ẋ(t)

)2
dt

subject to x(0) = α.

• Reformulation as an optimal control problem:

minimize
∫ T

0

√
1 +

(
u(t)

)2
dt

subject to ẋ(t) = u(t), x(0) = α.



HAMILTON-JACOBI-BELLMAN EQUATION I

• We discretize [0, T ] at times 0, δ, 2δ, . . . , Nδ,
where δ = T/N , and we let

xk = x(kδ), uk = u(kδ), k = 0, 1, . . . , N.

• We also discretize the system and cost:

xk+1 = xk+f(xk, uk)·δ, h(xN )+
N−1∑
k=0

g(xk, uk)·δ.

• We write the DP algorithm for the discretized
problem

J̃∗(Nδ, x) = h(x),

J̃∗(kδ, x) = min
u∈U

[
g(x, u)·δ+J̃∗

(
(k+1)·δ, x+f(x, u)·δ

)]
.

• Assume J̃∗ is differentiable and Taylor-expand:

J̃∗(kδ, x) = min
u∈U

[
g(x, u) · δ + J̃∗(kδ, x) + ∇tJ̃

∗(kδ, x) · δ

+ ∇xJ̃∗(kδ, x)′f(x, u) · δ + o(δ)
]
.



HAMILTON-JACOBI-BELLMAN EQUATION II

• Let J∗(t, x) be the optimal cost-to-go of the con-
tinuous problem. Assuming the limit is valid

lim
k→∞, δ→0, kδ=t

J̃∗(kδ, x) = J∗(t, x), for all t, x,

we obtain for all t, x,

0 = min
u∈U

[
g(x, u)+∇tJ∗(t, x)+∇xJ∗(t, x)′f(x, u)

]
with the boundary condition J∗(T, x) = h(x).

• This is the Hamilton-Jacobi-Bellman (HJB) equa-
tion – a partial differential equation, which is sat-
isfied for all time-state pairs (t, x) by the cost-to-go
function J∗(t, x) (assuming J∗ is differentiable and
the preceding informal limiting procedure is valid).

• It is hard to tell a priori if J∗(t, x) is differentiable.

• So we use the HJB Eq. as a verification tool; if
we can solve it for a differentiable J∗(t, x), then:

− J∗ is the optimal-cost-to-go function

− The control µ∗(t, x) that minimizes in the RHS
for each (t, x) defines an optimal control



VERIFICATION THEOREM

• Suppose V (t, x) is a solution to the HJB equa-
tion; that is, V is continuously differentiable in t
and x, and is such that for all t, x,

0 = min
u∈U

[
g(x, u) + ∇tV (t, x) + ∇xV (t, x)′f(x, u)

]
,

V (T, x) = h(x), for all x.

• Suppose also that µ∗(t, x) attains the minimum
above for all t and x.

• Let
{
x∗(t) | t ∈ [0, T ]

}
and u∗(t) = µ∗

(
t, x∗(t)

)
,

t ∈ [0, T ], be the corresponding state and control
trajectories.

• Then

V (t, x) = J∗(t, x), for all t, x,

and
{
u∗(t) | t ∈ [0, T ]

}
is optimal.



PROOF

Let {(û(t), x̂(t)) | t ∈ [0, T ]} be any admissible control-
state trajectory. We have for all t ∈ [0, T ]

0 ≤ g
(
x̂(t), û(t)

)
+∇tV

(
t, x̂(t)

)
+∇xV

(
t, x̂(t)

)′
f
(
x̂(t), û(t)

)
.

Using the system equation ˙̂x(t) = f
(
x̂(t), û(t)

)
,

the RHS of the above is equal to

g
(
x̂(t), û(t)

)
+

d

dt

(
V (t, x̂(t))

)
Integrating this expression over t ∈ [0, T ],

0 ≤
∫ T

0

g
(
x̂(t), û(t)

)
dt+V

(
T, x̂(T )

)
−V

(
0, x̂(0)

)
.

Using V (T, x) = h(x) and x̂(0) = x(0), we have

V
(
0, x(0)

)
≤ h

(
x̂(T )

)
+

∫ T

0

g
(
x̂(t), û(t)

)
dt.

If we use u∗(t) and x∗(t) in place of û(t) and x̂(t),
the inequalities becomes equalities, and

V
(
0, x(0)

)
= h

(
x∗(T )

)
+

∫ T

0

g
(
x∗(t), u∗(t)

)
dt.



EXAMPLE OF THE HJB EQUATION

Consider the scalar system ẋ(t) = u(t), with |u(t)| ≤
1 and cost (1/2)

(
x(T )

)2
. The HJB equation is

0 = min
|u|≤1

[
∇tV (t, x) +∇xV (t, x)u

]
, for all t, x,

with the terminal condition V (T, x) = (1/2)x2.

• Evident candidate for optimality: µ∗(t, x) =
−sgn(x). Corresponding cost-to-go

J∗(t, x) =
1
2
(
max

{
0, |x| − (T − t)

})2
.

• We verify that J∗ solves the HJB Eq., and that
u = −sgn(x) attains the min in the RHS. Indeed,

∇tJ∗(t, x) = max
{
0, |x| − (T − t)

}
,

∇xJ∗(t, x) = sgn(x) · max
{
0, |x| − (T − t)

}
.

Substituting, the HJB Eq. becomes

0 = min
|u|≤1

[
1 + sgn(x) · u

]
max

{
0, |x| − (T − t)

}



LINEAR QUADRATIC PROBLEM

Consider the n-dimensional linear system

ẋ(t) = Ax(t) + Bu(t),

and the quadratic cost

x(T )′QT x(T ) +
∫ T

0

(
x(t)′Qx(t) + u(t)′Ru(t)

)
dt

The HJB equation is

0 = min
u∈�m

[
x′Qx+u′Ru+∇tV (t, x)+∇xV (t, x)′(Ax+Bu)

]
,

with the terminal condition V (T, x) = x′QT x. We
try a solution of the form

V (t, x) = x′K(t)x, K(t) : n × n symmetric,

and show that V (t, x) solves the HJB equation if

K̇(t) = −K(t)A−A′K(t)+K(t)BR−1B′K(t)−Q

with the terminal condition K(T ) = QT .
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mum Principle

• Examples



THE HJB EQUATION

• Continuous-time dynamic system

ẋ(t) = f
(
x(t), u(t)

)
, 0 ≤ t ≤ T, x(0) : given

• Cost function

h
(
x(T )

)
+

∫ T

0

g
(
x(t), u(t)

)
dt

• J∗(t, x): optimal cost-to-go from x at time t

• HJB equation: For all (t, x)

0 = min
u∈U

[
g(x, u)+∇tJ∗(t, x)+∇xJ∗(t, x)′f(x, u)

]
with the boundary condition J∗(T, x) = h(x).

• Verification theorem: If we can find a solution, it
must be equal to the optimal cost-to-go function.
Also a (closed-loop) policy µ∗(t, x) s.t.

µ∗(t, x) attains the min for each (t, x)

is optimal.



HJB EQ. ALONG AN OPTIMAL TRAJECTORY

• Observation I: An optimal control-state trajec-
tory pair {(u∗(t), x∗(t)) | t ∈ [0, T ]

}
satisfies for all

t ∈ [0, T ]

u∗(t) = arg min
u∈U

[
g
(
x∗(t), u

)
+∇xJ∗(t, x∗(t)

)′
f
(
x∗(t), u

)]
.

(1)

• Observation II: To obtain an optimal control tra-
jectory {u∗(t) | t ∈ [0, T ]

}
via this equation, we

don’t need to know ∇xJ∗(t, x) for all (t, x) - only
the time function

p(t) = ∇xJ∗
(
t, x∗(t)

)
, t ∈ [0, T ].

• It turns out that calculating p(t) is often easier
than calculating J∗(t, x) or ∇xJ∗(t, x) for all (t, x).

• Pontryagin’s minimum principle is just Eq. (1) to-
gether with an equation for calculating p(t), called
the adjoint equation.

• Also, Pontryagin’s minimum principle is valid
much more generally, even in cases where J∗(t, x)
is not differentiable and the HJB has no solution.



DERIVING THE ADJOINT EQUATION

• The HJB equation holds as an identity for all
(t, x), so it can be differentiated [the gradient of
the RHS with respect to (t, x) is identically 0].

• We need a tool for differentiation of “minimum”
functions.

Lemma: Let F (t, x, u) be a continuously differ-
entiable function of t ∈ �, x ∈ �n, and u ∈ �m,
and let U be a convex subset of �m. Assume
that µ∗(t, x) is a continuously differentiable func-
tion such that

µ∗(t, x) = arg min
u∈U

F (t, x, u), for all t, x.

Then

∇t

{
min
u∈U

F (t, x, u)
}

= ∇tF
(
t, x, µ∗(t, x)

)
, for all t, x,

∇x

{
min
u∈U

F (t, x, u)
}

= ∇xF
(
t, x, µ∗(t, x)

)
, for all t, x.



DIFFERENTIATING THE HJB EQUATION I

• We set to zero the gradient with respect to x
and t of the function

g
(
x, µ∗(t, x)

)
+∇tJ∗(t, x)+∇xJ∗

(
t, x

)′
f
(
x, µ∗(t, x)

)
and we rely on the Lemma to disregard the terms
involving the derivatives of µ∗(t, x) with respect to
t and x.

• We obtain for all (t, x),

0 = ∇xg
(
x, µ∗(t, x)

)
+ ∇2

xtJ
∗(t, x)

+ ∇2
xxJ∗(t, x)f

(
x, µ∗(t, x)

)
+ ∇xf

(
x, µ∗(t, x)

)
∇xJ∗(t, x)

0 = ∇2
ttJ

∗(t, x) + ∇2
xtJ

∗(t, x)′f
(
x, µ∗(t, x)

)
,

where ∇xf
(
x, µ∗(t, x)

)
is the matrix

∇xf =




∂f1
∂x1

· · · ∂fn
∂x1

...
...

...
∂f1
∂xn

· · · ∂fn
∂xn






DIFFERENTIATING THE HJB EQUATION II

• The preceding equations hold for all (t, x). We
specialize them along an optimal state and con-
trol trajectory

{(
x∗(t), u∗(t)

)
| t ∈ [0, T ]

}
, where

u∗(t) = µ∗
(
t, x∗(t)

)
for all t ∈ [0, T ].

• We have ẋ∗(t) = f
(
x∗(t), u∗(t)

)
, so the terms

∇2
xtJ

∗
(
t, x∗(t)

)
+ ∇2

xxJ∗
(
t, x∗(t)

)
f
(
x∗(t), u∗(t)

)
∇2

ttJ
∗
(
t, x∗(t)

)
+ ∇2

xtJ
∗
(
t, x∗(t)

)′
f
(
x∗(t), u∗(t)

)
are equal to the total derivatives

d

dt

(
∇xJ∗

(
t, x∗(t)

))
,

d

dt

(
∇tJ∗

(
t, x∗(t)

))
.

• Denoting p(t) = ∇xJ∗
(
t, x∗(t)

)
,and p0(t) =

∇tJ∗
(
t, x∗(t)

)
, we obtain

ṗ(t) = −∇xf
(
x∗(t), u∗(t)

)
p(t)−∇xg

(
x∗(t), u∗(t)

)
and ṗ0(t) = 0 or equivalently, p0(t) = constant, for
all t ∈ [0, T ].



PONTRYAGIN MINIMUM PRINCIPLE

• Define the Hamiltonian function

H(x, u, p) = g(x, u) + p′f(x, u).

• Minimum Principle: Let
{
u∗(t) | t ∈ [0, T ]

}
be an optimal control trajectory and let

{
x∗(t) | t ∈

[0, T ]
}

be the corresponding state trajectory. Let
also p(t) be the solution of the adjoint equation

ṗ(t) = −∇xH
(
x∗(t), u∗(t), p(t)

)
,

with the boundary condition

p(T ) = ∇h
(
x∗(T )

)
.

Then, for all t ∈ [0, T ],

u∗(t) = arg min
u∈U

H
(
x∗(t), u, p(t)

)
.

Furthermore, there is a constant C such that

H
(
x∗(t), u∗(t), p(t)

)
= C, for all t ∈ [0, T ].



2-POINT BOUNDARY PROBLEM VIEW

• The minimum principle is a necessary condition
for optimality and can be used to identify candi-
dates for optimality.

• We need to solve for x∗(t) and p(t) the differen-
tial equations

ẋ∗(t) = f
(
x∗(t), u∗(t)

)
ṗ(t) = −∇xH

(
x∗(t), u∗(t), p(t)

)
,

with split boundary conditions:

x∗(0) : given, p(T ) = ∇h
(
x∗(T )

)
.

• The control trajectory is implicitly determined
from x∗(t) and p(t) via the equation

u∗(t) = arg min
u∈U

H
(
x∗(t), u, p(t)

)
.



EXAMPLE I

minimize
∫ T

0

√
1 +

(
u(t)

)2
dt

subject to

ẋ(t) = u(t), x(0) = α.

• Hamiltonian is

H(x, u, p) =
√

1 + u2 + pu,

and adjoint equation is ṗ(t) = 0 with p(T ) = 0.

• Hence, p(t) = 0 for all t ∈ [0, T ], so minimization
of the Hamiltonian gives

u∗(t) = arg min
u∈�

√
1 + u2 = 0, for all t ∈ [0, T ].

Therefore, ẋ∗(t) = 0 for all t, implying that x∗(t) is
constant. Using the initial condition x∗(0) = α, it
follows that x∗(t) = α for all t.



EXAMPLE II

• Optimal production problem

maximize
∫ T

0

(
1 − u(t)

)
x(t)dt

subject to 0 ≤ u(t) ≤ 1 for all t, and

ẋ(t) = γu(t)x(t), x(0) > 0 : given.

• Hamiltonian: H(x, u, p) = (1 − u)x + pγux.

• Adjoint equation is

ṗ(t) = −γu∗(t)p(t) − 1 + u∗(t), p(T ) = 0.

• Maximization of the Hamiltonian over u ∈ [0, 1]:

u∗(t) =

{
0 if p(t) < 1

γ ,
1 if p(t) ≥ 1

γ .

Since p(T ) = 0, for t close to T , p(t) < 1/γ and
u∗(t) = 0. Therefore, for t near T the adjoint equa-
tion has the form ṗ(t) = −1.



EXAMPLE II (CONTINUED)

T t0

p(t)

T -  1/γ

1/γ

• For t = T − 1/γ, p(t) is equal to 1/γ, so u∗(t)
changes to u∗(t) = 1.

• Geometrical construction

T t0

p(t)

T -  1/γ

1/γ

T t0 T -  1/γ

u*(t)

u*(t) = 1 u*(t) = 0
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• Discrete-Time Minimum Principle



REVIEW

• Continuous-time dynamic system

ẋ(t) = f
(
x(t), u(t)

)
, 0 ≤ t ≤ T, x(0) : given

• Cost function

h
(
x(T )

)
+

∫ T

0

g
(
x(t), u(t)

)
dt

• J∗(t, x): optimal cost-to-go from x at time t

• HJB equation/Verification theorem: For all (t, x)

0 = min
u∈U

[
g(x, u)+∇tJ∗(t, x)+∇xJ∗(t, x)′f(x, u)

]
with the boundary condition J∗(T, x) = h(x).

• Adjoint equation/vector: To compute an op-
timal state-control trajectory {(u∗(t), x∗(t))

}
it is

enough to know

p(t) = ∇xJ∗
(
t, x∗(t)

)
, t ∈ [0, T ].

• Pontryagin theorem gives an equation for p(t).



NEC. CONDITION: PONTRYAGIN MIN. PRINCIPLE

• Define the Hamiltonian function

H(x, u, p) = g(x, u) + p′f(x, u).

• Minimum Principle: Let
{
u∗(t) | t ∈ [0, T ]

}
be an optimal control trajectory and let

{
x∗(t) | t ∈

[0, T ]
}

be the corresponding state trajectory. Let
also p(t) be the solution of the adjoint equation

ṗ(t) = −∇xH
(
x∗(t), u∗(t), p(t)

)
,

with the boundary condition

p(T ) = ∇h
(
x∗(T )

)
.

Then, for all t ∈ [0, T ],

u∗(t) = arg min
u∈U

H
(
x∗(t), u, p(t)

)
.

Furthermore, there is a constant C such that

H
(
x∗(t), u∗(t), p(t)

)
= C, for all t ∈ [0, T ].



VARIATIONS: FIXED TERMINAL STATE

• Suppose that in addition to the initial state x(0),
the final state x(T ) is given.

• Then the informal derivation of th eadjoint equa-
tion still holds, but the terminal condition J∗(T, x) ≡
h(x) of the HJB equation is not true anymore.

• In effect,

J∗(T, x) =
{

0 if x = x(T )
∞ otherwise.

So J∗(T, x) cannot be differentiated with respect
to x, and the terminal boundary condition p(T ) =
∇h

(
x∗(T )

)
for the adjoint equation does not hold.

• As compensation, we have the extra condition

x(T ) : given,

thus maintaining the balance between boundary
conditions and unknowns.

• Generalization: Some components of the ter-
minal state are fixed.



EXAMPLE WITH FIXED TERMINAL STATE

• Consider finding the curve of minimum length
connecting two points (0, α) and (T, β). We have

ẋ(t) = u(t), x(0) = α, x(T ) = β,

and the cost is
∫ T

0

√
1 +

(
u(t)

)2
dt.

T t0

α

βx*(t)

• The adjoint equation is ṗ(t) = 0, implying that

p(t) = constant, for all t ∈ [0, T ].

• Minimizing the Hamiltonian
√

1 + u2 + p(t)u:

u∗(t) = constant, for all t ∈ [0, T ].

So optimal
{
x∗(t) | t ∈ [0, T ]

}
is a straight line.



VARIATIONS: FREE TERMINAL TIME

• Initial state and/or the terminal state are given,
but the terminal time T is subject to optimization.

• Let
{(

x∗(t), u∗(t)
)
| t ∈ [0, T ]

}
be an optimal

state-control trajectory pair and let T ∗ be the opti-
mal terminal time. Then x∗(t), u∗(t) would still be
optimal if T were fixed at T ∗, so

u∗(t) = arg min
u∈U

H
(
x∗(t), u, p(t)

)
, for all t ∈ [0, T ∗]

where p(t) is given by the adjoint equation.

• In addition: H(x∗(t), u∗(t), p(t)) ≡ 0 [i.e., for all
t, instead of H(x∗(t), u∗(t), p(t)) ≡ constant].

• Justification: We have

∇tJ∗
(
t, x∗(t)

)∣∣
t=0

= 0

Along the optimal, the HJB equation is

∇tJ∗
(
t, x∗(t)

)
= −H

(
x∗(t), u∗(t), p(t)

)
, for all t

so H
(
x∗(0), u∗(0), p(0)

)
= 0.



MINIMUM-TIME EXAMPLE I

• Unit mass moves horizontally: ÿ(t) = u(t),
where y(t): position, u(t): force, u(t) ∈ [−1, 1].

• Given the initial position-velocity (y(0), ẏ(0)),
bring the object to (y(T ), ẏ(T )) = (0, 0) so that
the time of transfer is minimum. Thus, we want to

minimize T =
∫ T

0

1dt.

• Let the state variables be

x1(t) = y(t), x2(t) = ẏ(t),

so the system equation is

ẋ1(t) = x2(t), ẋ2(t) = u(t).

• Initial state
(
x1(0), x2(0)

)
: given and

x1(T ) = 0, x2(T ) = 0.



MINIMUM-TIME EXAMPLE II

• If
{
u∗(t) | t ∈ [0, T ]

}
is optimal, u∗(t) must min-

imize the Hamiltonian for each t, i.e.,

u∗(t) = arg min
−1≤u≤1

[
1 + p1(t)x∗

2(t) + p2(t)u
]
.

Therefore

u∗(t) =
{

1 if p2(t) < 0,
−1 if p2(t) ≥ 0.

• The adjoint equation is

ṗ1(t) = 0, ṗ2(t) = −p1(t),

so
p1(t) = c1, p2(t) = c2 − c1t,

where c1 and c2 are constants.

• So
{
p2(t) | t ∈ [0, T ]

}
switches at most once in

going from negative to positive or reversely.



MINIMUM-TIME EXAMPLE III

T t0

p2(t)

T t0 T t0 T t0

(a)

(b)

T t0

u*(t)

1

p2(t) p2(t) p2(t)

T t0

-1

u*(t)

T t0

-1

1

u*(t)

T t0

1

-1

u*(t)

• For u(t) ≡ ζ, where ζ = ±1, the system evolves
according to

x1(t) = x1(0)+x2(0)t+
ζ

2
t2, x2(t) = x2(0)+ζt.

Eliminating the time t, we see that for all t

x1(t) −
1
2ζ

(
x2(t)

)2 = x1(0) − 1
2ζ

(
x2(0)

)2
.



MINIMUM-TIME EXAMPLE IV

• For intervals where u(t) ≡ 1, the system moves
along the curves

x1(t) −
1
2
(
x2(t)

)2 : constant.

• For intervals where u(t) ≡ −1, the system
moves along the curves

x1(t) +
1
2
(
x2(t)

)2 : constant.

x1

x2

u(t)  ≡ 1

0

(a)

x1

x2

0

u(t) ≡ -1

(b)



MINIMUM-TIME EXAMPLE V

• To bring the system from the initial state x(0)
to the origin with at most one switch, we use the
following switching curve.

x1

x2

u*(t) ≡ 1

u*(t) ≡ -1

0

(x1(0),x2(0))

(a) If the initial state lies above the switching curve,
use u∗(t) ≡ −1 until the state hits the switch-
ing curve; then use u∗(t) ≡ 1.

(b) If the initial state lies below the switching curve,
use u∗(t) ≡ 1 until the state hits the switch-
ing curve; then use u∗(t) ≡ −1.

(c) If the initial state lies on the top (bottom)
part of the switching curve, use u∗(t) ≡ −1
[u∗(t) ≡ 1, respectively].



DISCRETE-TIME MINIMUM PRINCIPLE

• Minimize J(u) = gN (xN ) +
∑N−1

k=0 gk(xk, uk),
subject to uk ∈ Uk ⊂ �m, with Uk: convex, and

xk+1 = fk(xk, uk), k = 0, . . . , N−1, x0 : given.

• Introduce Hamiltonian function

Hk(xk, uk, pk+1) = gk(xk, uk) + p′k+1fk(xk, uk)

• Suppose {(u∗
k, x∗

k+1) | k = 0, . . . , N − 1} are
optimal. Then for all k,

∇ukHk

(
x∗

k, u∗
k, pk+1

)′(uk−u∗
k) ≥ 0, for all uk ∈ Uk,

where p1, . . . , pN are obtained from

pk = ∇xkfk · pk+1 + ∇xkgk,

with the terminal condition pN = ∇gN (x∗
N ).

• If, in addition, the Hamiltonian Hk is a convex
function of uk for any fixed xk and pk+1, we have

u∗
k = arg min

uk∈Uk

Hk

(
x∗

k, uk, pk+1

)
, for all k.



DERIVATION

• We develop an expression for the gradient∇J(u).
We have, using the chain rule,

∇uk
J(u) = ∇uk

fk · ∇xk+1
fk+1 · · · ∇xN−1

fN−1 · ∇gN

+ ∇uk
fk · ∇xk+1

fk+1 · · · ∇xN−2
fN−2 · ∇xN−1

gN−1

· · ·
+ ∇uk

fk · ∇xk+1
gk+1

+ ∇uk
gk,

where all gradients are evaluated along u and the
corresponding state trajectory.

• Iintroduce the discrete-time adjoint equation

pk = ∇xkfk · pk+1 +∇xkgk, k = 1, . . . , N − 1,

with terminal condition pN = ∇gN .

• Verify that, for all k,

∇ukJ(u0, . . . , uN−1) = ∇ukHk(xk, uk, pk+1)
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BASIC PROBLEM WITH IMPERFECT STATE INFO

• Same as basic problem of Chapter 1 with one
difference: the controller, instead of knowing xk,
receives at each time k an observation of the form

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k ≥ 0

• The observation zk belongs to some space Zk.

• The random observation disturbance vk is char-
acterized by a probability distribution

Pvk (· | xk, . . . , x0, uk−1, . . . , u0, wk−1, . . . , w0, vk−1, . . . , v0)

• The initial state x0 is also random and charac-
terized by a probability distribution Px0 .

• The probability distribution Pwk(· | xk, uk) of wk

is given, and it may depend explicitly on xk and
uk but not on w0, . . . , wk−1, v0, . . . , vk−1.

• The control uk is constrained to a given subset
Uk (this subset does not depend on xk, which is
not assumed known).



INFORMATION VECTOR AND POLICIES

• Denote by Ik the information vector , i.e., the
information available at time k:

Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k ≥ 1,

I0 = z0.

• We consider policies π = {µ0, µ1, . . . , µN−1},
where each function µk maps the information vec-
tor Ik into a control uk and

µk(Ik) ∈ Uk, for all Ik, k ≥ 0.

• We want to find a policy π that minimizes

Jπ = E
x0,wk,vk

k=0,...,N−1

{
gN (xN ) +

N−1∑
k=0

gk

(
xk, µk(Ik), wk

)}

subject to the equations

xk+1 = fk

(
xk, µk(Ik), wk

)
, k ≥ 0,

z0 = h0(x0, v0), zk = hk

(
xk, µk−1(Ik−1), vk

)
, k ≥ 1



EXAMPLE: MULTIACCESS COMMUNICATION I

• Collection of transmitting stations sharing a com-
mon channel, are synchronized to transmit pack-
ets of data at integer times.

• xk: backlog at the beginning of slot k.

• ak: random number of packet arrivals in slot k.

• tk: the number of packets transmitted in slot k.

xk+1 = xk + ak − tk,

• At kth slot, each of the xk packets in the system
is transmitted with probability uk (common for all
packets). If two or more packets are transmitted
simultaneously, they collide.

• So tk = 1 (a success) with probability xkuk(1−
uk)xk−1, and tk = 0 (idle or collision) otherwise.

• Imperfect state info: The stations can observe
the channel and determine whether in any one
slot there was a collision (two or more packets), a
success (one packet), or an idle (no packets).



EXAMPLE: MULTIACCESS COMMUNICATION II

• Information vector at time k: The entire history
(up to k) of successes, idles, and collisions. Math-
ematically, zk+1, the observation at the end of the
kth slot, is

zk+1 = vk+1

where vk+1 yields an idle with probability (1 −
uk)xk , a success with probability xkuk(1−uk)xk−1,
and a collision otherwise.

• If we had perfect state information, the DP al-
gorithm would be

Jk(xk) = gk(xk)+ min
0≤uk≤1

E
ak

{
p(xk, uk)Jk+1(xk + ak − 1)

+
(
1 − p(xk, uk)

)
Jk+1(xk + ak)

}
,

p(xk, uk) is the success probability xkuk(1−uk)xk−1.

• The optimal (perfect state information) policy
would be to select the value of uk that maximizes
p(xk, uk), so µk(xk) = 1

xk
, for all xk ≥ 1.

• Imperfect state info problem is much harder.



REFORMULATION AS A PERFECT INFO PROBLEM

• We have

Ik+1 = (Ik, zk+1, uk), k = 0, 1, . . . , N−2, I0 = z0.

View this as a dynamic system with state Ik, con-
trol uk, and random disturbance zk+1.

• We have

P (zk+1 | Ik, uk) = P (zk+1 | Ik, uk, z0, z1, . . . , zk),

since z0, z1, . . . , zk are part of the information vec-
tor Ik. Thus the probability distribution of zk+1

depends explicitly only on the state Ik and control
uk and not on the prior “disturbances” zk, . . . , z0.

• Write

E
{
gk(xk, uk, wk)

}
= E

{
E

xk,wk

{
gk(xk, uk, wk) | Ik, uk

}}

so the cost per stage of the new system is

g̃k(Ik, uk) = E
xk,wk

{
gk(xk, uk, wk) | Ik, uk

}



DP ALGORITHM

• Writing the DP algorithm for the (reformulated)
perfect state info problem and doing the algebra:

Jk(Ik) = min
uk∈Uk

[
E

xk, wk, zk+1

{
gk(xk, uk, wk)

+ Jk+1(Ik, zk+1, uk) | Ik, uk

}]

for k = 0, 1, . . . , N − 2, and for k = N − 1,

JN−1(IN−1) = min
uN−1∈UN−1[

E
xN−1, wN−1

{
gN

(
fN−1(xN−1, uN−1, wN−1)

)

+ gN−1(xN−1, uN−1, wN−1) | IN−1, uN−1

}]
,

• The optimal cost J∗ is given by

J∗ = E
z0

{
J0(z0)

}
.



MACHINE REPAIR EXAMPLE I

• A machine can be in one of two states denoted
P (good state) and P (bad state).

• At the end of each period the machine is in-
spected.

• Two possible inspection outcomes: G (probably
good state) and B (probably bad state).

• Transition probabilities:

P P G

B

1/4

1/3

2/3 3/4

3/41

1/4

P P

State Transition Inspection

• Possible actions after each inspection:

C : Continue operation of the machine.

S : Stop the machine, determine its state, and if
in P bring it back to the good state P .

• Cost per stage:

g(P, C) = 0, g(P, S) = 1, g(P , C) = 2, g(P , S) = 1.



MACHINE REPAIR EXAMPLE II

• The information vector at times 0 and 1 is

I0 = z0, I1 = (z0, z1, u0),

and we seek functions µ0(I0), µ1(I1) that minimize

E
x0, w0, w1

v0, v1

{
g
(
x0, µ0(z0)

)
+g

(
x1, µ1(z0, z1, µ0(z0))

)}
.

• DP algorithm: Start with J2(I2) = 0. For k =
0, 1, take the min over the two actions, C and S,

Jk(Ik) = min
[
P (xk = P | Ik, C)g(P, C)

+ P (xk = P | Ik, C)g(P , C)

+ E
zk+1

{
Jk+1(Ik, C, zk+1) | Ik, C

}
,

P (xk = P | Ik, S)g(P, S)

+ P (xk = P | Ik, S)g(P , S)

+ E
zk+1

{
Jk+1(Ik, S, zk+1) | Ik, S

}]



MACHINE REPAIR EXAMPLE III

• Last Stage: Compute J1(I1) for each of the eight
possible information vectors I1 = (z0, z1, u0). We
have

cost of C = 2 · P (x1 = P | I1), cost of S = 1,

and therefore J1(I1) = min
[
2P (x1 = P | I1), 1

]
.

The probabilities P (x1 = P | I1) are computed
using Bayes’ rule:

(1) For I1 = (G, G, S)

P (x1 = P | G, G, S) =
P (x1 = P , G, G, S)

P (G, G, S)

=
1
3
· 1

4
·
(

2
3
· 3

4
+ 1

3
· 1

4

)
(

2
3
· 3

4
+ 1

3
· 1

4

)2
=

1

7
.

Hence

J1(G, G, S) =
2
7
, µ∗

1(G, G, S) = C.



MACHINE REPAIR EXAMPLE IV

(2) For I1 = (B, G, S)

P (x1 = P |B, G, S) = P (x1 = P |G, G, S) =
1
7
,

J1(B, G, S) =
2
7
, µ∗

1(B, G, S) = C.

(3) For I1 = (G, B, S)

P (x1 = P | G, B, S) =
P (x1 = P , G,B, S)

P (G, B, S)

=
1
3 · 3

4 ·
(

2
3 · 3

4 + 1
3 · 1

4

)(
2
3 · 1

4 + 1
3 · 3

4

) (
2
3 · 3

4 + 1
3 · 1

4

)
=

3
5
,

J1(G, B, S) = 1, µ∗
1(G, B, S) = S.

• Similarly, for all possible I1, we compute J1(I1),
and µ∗

1(I1), which is to continue (u1 = C) if the
last inspection was G, and to stop otherwise.



MACHINE REPAIR EXAMPLE V

• First Stage: Compute J0(I0) for each of the two
possible information vectors I0 = (G), I0 = (B).
We have

cost of C = 2P (x0 = P | I0, C) + E
z1

{
J1(I0, z1, C) | I0, C

}
= 2P (x0 = P | I0, C) + P (z1 = G | I0, C)J1(I0, G, C)

+ P (z1 = B | I0, C)J1(I0, B, C),

cost of S = 1 + E
z1

{
J1(I0, z1, S) | I0, S

}
= 1 + P (z1 = G | I0, S)J1(I0, G, S)
+ P (z1 = B | I0, S)J1(I0, B, S),

using the values of J1 from the previous stage.

• We have

J0(I0) = min
[
cost of C, cost of S

]
• The optimal cost is

J∗ = P (G)J0(G) + P (B)J0(B).
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• Linear quadratic problems

• Separation of estimation and control



REVIEW: PROBLEM WITH IMPERFECT STATE INFO

• Instead of knowing xk, we receive observations

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k ≥ 0

• Ik: information vector available at time k:

I0 = z0, Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k ≥ 1

• Optimization over policies π = {µ0, µ1, . . . , µN−1},
where µk(Ik) ∈ Uk, for all Ik and k.

• Find a policy π that minimizes

Jπ = E
x0,wk,vk

k=0,...,N−1

{
gN (xN ) +

N−1∑
k=0

gk

(
xk, µk(Ik), wk

)}

subject to the equations

xk+1 = fk

(
xk, µk(Ik), wk

)
, k ≥ 0,

z0 = h0(x0, v0), zk = hk

(
xk, µk−1(Ik−1), vk

)
, k ≥ 1



DP ALGORITHM

• Reformulate to perfect state info problem, and
write the DP algorithm:

Jk(Ik) = min
uk∈Uk

[
E

xk, wk, zk+1

{
gk(xk, uk, wk)

+ Jk+1(Ik, zk+1, uk) | Ik, uk

}]

for k = 0, 1, . . . , N − 2, and for k = N − 1,

JN−1(IN−1) = min
uN−1∈UN−1[

E
xN−1, wN−1

{
gN

(
fN−1(xN−1, uN−1, wN−1)

)

+ gN−1(xN−1, uN−1, wN−1) | IN−1, uN−1

}]
,

• The optimal cost J∗ is given by

J∗ = E
z0

{
J0(z0)

}
.



LINEAR-QUADRATIC PROBLEMS

• System: xk+1 = Akxk + Bkuk + wk

• Quadratic cost

E
wk

k=0,1,...,N−1

{
x′

NQNxN +
N−1∑
k=0

(x′
kQkxk + u′

kRkuk)

}

where Qk ≥ 0 and Rk > 0.

• Observations

zk = Ckxk + vk, k = 0, 1, . . . , N − 1.

• w0, . . . , wN−1, v0, . . . , vN−1 indep. zero mean

• Key fact to show:

− Optimal policy {µ∗
0, . . . , µ

∗
N−1} is of the form:

µ∗
k(Ik) = LkE{xk | Ik}

Lk: same as for the perfect state info case

− Estimation problem and control problem can
be solved separately



DP ALGORITHM I

• Last stage N − 1 (supressing index N − 1):

JN−1(IN−1) = min
uN−1

[
E{xN−1,wN−1

{
x′

N−1QxN−1

+ u′
N−1RuN−1 + (AxN−1 + BuN−1 + wN−1)′

· Q(AxN−1 + BuN−1 + wN−1) | IN−1, uN−1

}]

• Since E{wN−1 | IN−1} = E{wN−1} = 0, the
minimization involves

min
uN−1

[
u′

N−1(B
′QB + R)uN−1

+ 2E{xN−1 | IN−1}′A′QBuN−1

]
The minimization yields the optimal µ∗

N−1:

u∗
N−1 = µ∗

N−1(IN−1) = LN−1E{xN−1 | IN−1}

where

LN−1 = −(B′QB + R)−1B′QA



DP ALGORITHM II

• Substituting in the DP algorithm

JN−1(IN−1) = E
xN−1

{
x′

N−1KN−1xN−1 | IN−1

}
+ E

xN−1

{(
xN−1 − E{xN−1 | IN−1}

)′
· PN−1

(
xN−1 − E{xN−1 | IN−1}

)
| IN−1

}
+ E

wN−1

{w′
N−1QNwN−1},

where the matrices KN−1 and PN−1 are given by

PN−1 = A′
N−1QNBN−1(RN−1B′

N−1QNBN−1)−1

+ B′
N−1QNAN−1,

KN−1 = A′
N−1QNAN−1 − PN−1 + QN−1.

• Note the structure of JN−1: in addition to the
quadratic and constant terms, it involves a quadratic
in the estimation error

xN−1 − E{xN−1 | IN−1}



DP ALGORITHM III

• DP equation for period N − 2:

JN−2(IN−2) = min
uN−2

[
E

xN−2,wN−2,zN−1

{x′
N−2QxN−2

+ u′
N−2RuN−2 + JN−1(IN−1) | IN−2, uN−2}

]
= E

{
x′

N−2QxN−2 | IN−2

}
+ min

uN−2

[
u′

N−2RuN−2 + x′
N−1KN−1xN−1 | IN−2

}]
+ E

{(
xN−1 − E{xN−1 | IN−1}

)′

· PN−1

(
xN−1 − E{xN−1 | IN−1}

)
| IN−2, uN−2

}
+ EwN−1{w′

N−1QNwN−1}.

• Key point: We have excluded the next to last
term from the minimization with respect to uN−2.

• This term turns out to be independent of uN−2.



QUALITY OF ESTIMATION LEMMA

• For every k, there is a function Mk such that we
have

xk−E{xk | Ik} = Mk(x0, w0, . . . , wk−1, v0, . . . , vk),

independently of the policy being used.

• Using the lemma,

xN−1 − E{xN−1 | IN−1} = ξN−1,

where ξN−1: function of x0, w0, . . . , wN−2, v0, . . . , vN−1.
Since ξN−1 is independent of uN−2, the condi-
tional expectation of ξ′N−1PN−1ξN−1 satisfies

E{ξ′N−1PN−1ξN−1 | IN−2, uN−2}
= E{ξ′N−1PN−1ξN−1 | IN−2}

and is independent of uN−2.

• So minimization in the DP algorithm yields

u∗
N−2 = µ∗

N−2(IN−2) = LN−2E{xN−2 | IN−2}



FINAL RESULT

• Continuing similarly (using also the quality of
estimation lemma)

µ∗
k(Ik) = LkE{xk | Ik},

where Lk is the same as for perfect state info:

Lk = −(Rk + B′
kKk+1Bk)−1B′

kKk+1Ak,

with Kk generated from KN = QN , using

Kk = A′
kKk+1Ak − Pk + Qk,

Pk = A′
kKk+1Bk(Rk + B′

kKk+1Bk)−1B′
kKk+1Ak

xk + 1 = Akxk + Bkuk + wk

Lk

uk

wk

xk
zk = Ckxk + vk

Delay

Estimator
E{xk | Ik}

uk  - 1

zk

vk

zkuk



SEPARATION INTERPRETATION

• The optimal controller can be decomposed into

(a) An estimator , which uses the data to gener-
ate the conditional expectation E{xk | Ik}.

(b) An actuator , which multiplies E{xk | Ik} by
the gain matrix Lk and applies the control
input uk = LkE{xk | Ik}.

• Generically the estimate x̂ of a random vec-
tor x given some information (random vector) I,
which minimizes the mean squared error Ex{‖x−
x̂‖2 | I} is E{x | I} (expand the quadratic form
and set to zero the derivative with respect to x̂).

• The estimator portion of the optimal controller
is an optimal solution of the problem of estimating
the state xk assuming the control is not subject to
choice.

• The actuator portion is an optimal solution of
the control problem assuming perfect state infor-
mation prevails.



STEADY STATE/IMPLEMENTATION ASPECTS

• As N → ∞, the solution of the Riccati equation
converges to a steady state and Lk → L.

• If x0, wk, and vk are Gaussian, E{xk | Ik} is
a linear function of Ik and is generated by a nice
recursive algorithm, the Kalman filter.

• The Kalman filter involves also a Riccati equa-
tion, so for N → ∞, and a stationary system, it
also has a steady-state structure.

• Thus, for Gaussian uncertainty, the solution is
nice and possesses a steady state.

• For nonGaussian uncertainty, computing E{xk | Ik}
maybe very difficult, so a suboptimal solution is
typically used.

• Most common suboptimal controller: Replace
E{xk | Ik} by the estimate produced by the Kalman
filter (act as if x0, wk, and vk are Gaussian).

• It can be shown that this controller is optimal
within the class of controllers that are linear func-
tions of Ik.
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REVIEW: PROBLEM WITH IMPERFECT STATE INFO

• Instead of knowing xk, we receive observations

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k ≥ 0

• Ik: information vector available at time k:

I0 = z0, Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k ≥ 1

• Optimization over policies π = {µ0, µ1, . . . , µN−1},
where µk(Ik) ∈ Uk, for all Ik and k.

• Find a policy π that minimizes

Jπ = E
x0,wk,vk

k=0,...,N−1

{
gN (xN ) +

N−1∑
k=0

gk

(
xk, µk(Ik), wk

)}

subject to the equations

xk+1 = fk

(
xk, µk(Ik), wk

)
, k ≥ 0,

z0 = h0(x0, v0), zk = hk

(
xk, µk−1(Ik−1), vk

)
, k ≥ 1



DP ALGORITHM

• DP algorithm:

Jk(Ik) = min
uk∈Uk

[
E

xk, wk, zk+1

{
gk(xk, uk, wk)

+ Jk+1(Ik, zk+1, uk) | Ik, uk

}]

for k = 0, 1, . . . , N − 2, and for k = N − 1,

JN−1(IN−1) = min
uN−1∈UN−1[

E
xN−1, wN−1

{
gN

(
fN−1(xN−1, uN−1, wN−1)

)

+ gN−1(xN−1, uN−1, wN−1) | IN−1, uN−1

}]

• The optimal cost J∗ is given by

J∗ = E
z0

{
J0(z0)

}
.



SUFFICIENT STATISTICS

• Suppose that we can find a function Sk(Ik) such
that the right-hand side of the DP algorithm can
be written in terms of some function Hk as

min
uk∈Uk

Hk

(
Sk(Ik), uk

)
.

• Such a function Sk is called a sufficient statistic.

• An optimal policy obtained by the preceding
minimization can be written as

µ∗
k(Ik) = µk

(
Sk(Ik)

)
,

where µk is an appropriate function.

• Example of a sufficient statistic: Sk(Ik) = Ik

• Another important sufficient statistic

Sk(Ik) = Pxk|Ik



DP ALGORITHM IN TERMS OF PXK |IK

• It turns out that Pxk|Ik
is generated recursively

by a dynamic system (estimator) of the form

Pxk+1|Ik+1
= Φk

(
Pxk|Ik

, uk, zk+1

)
for a suitable function Φk

• DP algorithm can be written as

Jk(Pxk|Ik
) = min

uk∈Uk

[
E

xk,wk,zk+1

{
gk(xk, uk, wk)

+ Jk+1

(
Φk(Pxk|Ik

, uk, zk+1)
)
| Ik, uk

}]
.

uk xk

Delay

Estimator

uk  - 1

uk  - 1

vk

zk

zk

wk

φk  - 1

Actuator

xk + 1 = fk(xk ,uk ,wk) zk = hk(xk ,uk  - 1,vk)

System Measurement

P x
k

| I
k

µk



EXAMPLE: A SEARCH PROBLEM

• At each period, decide to search or not search
a site that may contain a treasure.

• If we search and a treasure is present, we find
it with prob. β and remove it from the site.

• Treasure’s worth: V . Cost of search: C

• States: treasure present & treasure not present

• Each search can be viewed as an observation
of the state

• Denote

pk : prob. of treasure present at the start of time k

with p0 given.

• pk evolves at time k according to the equation

pk+1 =




pk if not search,
0 if search and find treasure,

pk(1−β)
pk(1−β)+1−pk

if search and no treasure.



SEARCH PROBLEM (CONTINUED)

• DP algorithm

Jk(pk) = max
[
0, −C + pkβV

+ (1 − pkβ)Jk+1

(
pk(1 − β)

pk(1 − β) + 1 − pk

) ]
,

with JN (pN ) = 0.

• Can be shown by induction that the functions
Jk satisfy

Jk(pk) = 0, for all pk ≤ C

βV

• Furthermore, it is optimal to search at period k
if and only if

pkβV ≥ C

(expected reward from the next search ≥ the cost
of the search)



FINITE-STATE SYSTEMS

• Suppose the system is a finite-state Markov
chain, with states 1, . . . , n.

• Then the conditional probability distribution Pxk|Ik

is a vector

(
P (xk = 1 | Ik), . . . , P (xk = n | Ik)

)
• The DP algorithm can be executed over the n-
dimensional simplex (state space is not expanding
with increasing k)

• When the control and observation spaces are
also finite sets, it turns out that the cost-to-go func-
tions Jk in the DP algorithm are piecewise linear
and concave (Exercise 5.7).

• This is conceptually important and also (mod-
erately) useful in practice.



INSTRUCTION EXAMPLE

• Teaching a student some item. Possible states
are L: Item learned, or L: Item not learned.

• Possible decisions: T : Terminate the instruc-
tion, or T : Continue the instruction for one period
and then conduct a test that indicates whether the
student has learned the item.

• The test has two possible outcomes: R: Student
gives a correct answer, or R: Student gives an
incorrect answer.

• Probabilistic structure

L L R

rt

1 1

1 - r1 - t
L RL

• Cost of instruction is I per period

• Cost of terminating instruction; 0 if student has
learned the item, and C > 0 if not.



INSTRUCTION EXAMPLE II

• Let pk: prob. student has learned the item given
the test results so far

pk = P (xk|Ik) = P (xk = L | z0, z1, . . . , zk).

• Using Bayes’ rule we can obtain

pk+1 = Φ(pk, zk+1)

=

{
1−(1−t)(1−pk)

1−(1−t)(1−r)(1−pk) if zk+1 = R,

0 if zk+1 = R.

• DP algorithm:

Jk(pk) = min

[
(1 − pk)C, I + E

zk+1

{
Jk+1

(
Φ(pk, zk+1)

)}]
.

starting with

JN−1(pN−1) = min
[
(1−pN−1)C, I+(1−t)(1−pN−1)C

]
.



INSTRUCTION EXAMPLE III

• Write the DP algorithm as

Jk(pk) = min
[
(1 − pk)C, I + Ak(pk)

]
,

where

Ak(pk) = P (zk+1 = R | Ik)Jk+1

(
Φ(pk, R)

)
+ P (zk+1 = R | Ik)Jk+1

(
Φ(pk, R)

)
• Can show by induction that Ak(p) are piecewise
linear, concave, monotonically decreasing, with

Ak−1(p) ≤ Ak(p) ≤ Ak+1(p), for all p ∈ [0, 1].

0 p

C

I

I + AN - 1(p)

I + AN - 2(p)

I + AN - 3(p)

1αN - 1 αN - 3αN - 2 1 -
I

C
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• Implementations and approximations

• Issues in adaptive control



PRACTICAL DIFFICULTIES OF DP

• The curse of modeling

• The curse of dimensionality

− Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

− Quick explosion of the number of states in
combinatorial problems

− Intractability of imperfect sate information prob-
lems

• There may be real-time solution constraints

− A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

− The problem data may change as the system
is controlled – need for on-line replanning



CERTAINTY EQUIVALENT CONTROL (CEC)

• Replace the stochastic problem with a deter-
ministic problem

• At each time k, the uncertain quantities are fixed
at some “typical” values

• Implementation for an imperfect info problem.
At each time k:

(1) Compute a state estimate xk(Ik) given the
current information vector Ik.

(2) Fix the wi, i ≥ k, at some wi(xi, ui). Solve
the deterministic problem:

minimize gN (xN )+
N−1∑
i=k

gi

(
xi, ui, wi(xi, ui)

)

subject to xk = xk(Ik) and for i ≥ k,

ui ∈ Ui, xi+1 = fi

(
xi, ui, wi(xi, ui)

)
.

(3) Use as control the first element in the optimal
control sequence found.



ALTERNATIVE IMPLEMENTATION

• Let
{
µd

0(x0), . . . , µd
N−1(xN−1)

}
be an optimal

controller obtained from the DP algorithm for the
deterministic problem

minimize gN (xN ) +

N−1∑
k=0

gk

(
xk, µk(xk), wk(xk, uk)

)
subject to xk+1 = fk

(
xk, µk(xk), wk(xk, uk)

)
, µk(xk) ∈ Uk

The CEC applies at time k the control input

µ̃k(Ik) = µd
k

(
xk(Ik)

)

xk

Delay

Estimator

uk  - 1

uk  - 1

vk

zk

zk

wk

Actuator

xk + 1 = fk(xk ,uk ,wk) zk = hk(xk ,uk  - 1,vk)

System Measurement

µ k
d

u k =µk
d (xk)

xk(Ik)



CEC WITH HEURISTICS

• Solve the “deterministic equivalent” problem us-
ing a heuristic/suboptimal policy

• Improved version of this idea: At time k minimize
the stage k cost and plus the heuristic cost of the
remaining stages, i.e., apply at time k a control ũk

that minimizes over uk ∈ Uk(xk)

gk

(
xk, uk, wk(xk, uk)

)
+Hk+1

(
fk

(
xk, uk, wk(xk, uk)

))
where Hk+1 is the cost-to-go function correspond-
ing to the heuristic.

• This an example of an important suboptimal
control idea:

Minimize at each stage k the sum of approxima-
tions to the current stage cost and the optimal
cost-to-go.

• This is a central idea in several other suboptimal
control schemes, such as limited lookahead, and
rollout algorithms.



PARTIALLY STOCHASTIC CEC

• Instead of fixing all future disturbances to their
typical values, fix only some, and treat the rest as
stochastic.

• Important special case: Treat an imperfect state
information problem as one of perfect state infor-
mation, using an estimate xk(Ik) of xk as if it were
exact.

• Multiaccess Communication Example: Con-
sider controlling the slotted Aloha system (dis-
cussed in Ch. 5) by optimally choosing the proba-
bility of transmission of wating packets. This is a
hard problem of imperfect state info, whose per-
fect state info version is easy.

• Natural partially stochastic CEC:

µ̃k(Ik) = min
[
1,

1
xk(Ik)

]
,

where xk(Ik) is an estimate of the current packet
backlog based on the entire past channel history
of successes, idles, and collisions (which is Ik).



SYSTEMS WITH UNKNOWN PARAMETERS

• Let the system be of the form

xk+1 = fk(xk, θ, uk, wk),

where θ is a vector of unknown parameters with a
given a priori probability distribution.

• To formulate this into the standard framework,
introduce a state variable yk = θ and the system

(
xk+1

yk+1

)
=

(
fk(xk, yk, uk, wk)

yk

)
,

and view x̃k = (xk, yk) as the new state.

• Since yk = θ is unobservable, we have a prob-
lem of imperfect state information even if the con-
troller knows the state xk exactly.

• Consider a partially stochastic CEC. If for a fixed
parameter vector θ, we can compute the corre-
sponding optimal policy

{
µ∗

0(I0, θ), . . . , µ∗
N−1(IN−1, θ)

}
a partially stochastic CEC applies µ∗

k(Ik, θ̂k), where
θ̂k is some estimate of θ.



THE PROBLEM OF IDENTIFIABILITY

• Suppose we consider two phases:

− A parameter identification phase (compute
an estimate θ̂ of θ)

− A control phase (apply control that would be
optimal if θ̂ were true).

• A fundamental difficulty: the control process
may make some of the unknown parameters in-
visible to the identification process.

• Example: Consider the scalar system

xk+1 = axk + buk + wk, k = 0, 1, . . . , N − 1,

with the cost E
{∑N

k=1(xk)2
}

. If a and b are known,

the optimal control law is µ∗
k(xk) = −(a/b)xk.

• If a and b are not known and we try to esti-
mate them while applying some nominal control
law µ̃k(xk) = γxk, the closed-loop system is

xk+1 = (a + bγ)xk + wk,

so identification can at best find (a + bγ) but not
the values of both a and b.



CEC AND IDENTIFIABILITY I

• Suppose we have P{xk+1 |xk, uk, θ} and we
use a stationary control law:

µ̂k(Ik) = µ∗(xk, θ̂k), k = 0, 1, . . .

There are three systems of interest:
(a) The system (perhaps falsely) believed by the

controller to be true, which evolves proba-
bilistically according to

P
{
xk+1 |xk, µ∗(xk, θ̂k), θ̂k

}
.

(b) The true closed-loop system, which evolves
probabilistically according to

P
{
xk+1 |xk, µ∗(xk, θ̂k), θ

}
.

(c) The optimal closed-loop system that corre-
sponds to the true value of the parameter,
which evolves probabilistically according to

P
{
xk+1 |xk, µ∗(xk, θ), θ

}
.



CEC AND IDENTIFIABILITY II

System Believed to beTrue

P{xk + 1 | xk,µ*(xk, k), k }

Optimal Closed-Loop System

P{xk + 1 | xk,µ*(xk,θ),θ }

True Closed-Loop System

P{xk + 1 | xk,µ*(xk, k),θ }

θ
^

θ
^

θ
^

• There is a built-in mechanism for the parameter
estimates to converge to a wrong value

• Assume that for some θ̂ �= θ and all xk+1, xk,

P
{
xk+1 |xk, µ∗(xk, θ̂), θ̂

}
= P

{
xk+1 |xk, µ∗(xk, θ̂), θ

}
i.e., there is a false value of parameter for which
the system under closed-loop control looks ex-
actly as if the false value were true.

• Then, if the controller estimates at some time
the parameter to be θ̂, subsequent data will tend
to reinforce this erroneous estimate.
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LIMITED LOOKAHEAD POLICIES

• One-step lookahead (1SL) policy : At each k and
state xk, use the control µk(xk) that

min
uk∈Uk(xk)

E
{
gk(xk, uk, wk)+J̃k+1

(
fk(xk, uk, wk)

)}
,

where

− J̃N = gN .

− J̃k+1: approximation to true cost-to-go Jk+1

• Two-step lookahead policy : At each k and xk,
use the control µ̃k(xk) attaining the minimum above,
where the function J̃k+1 is obtained using a 1SL
approximation (solve a 2-step DP problem)

• If J̃k+1 is readily available and the minimization
above is not too hard, the 1SL policy is imple-
mentable on-line

• Sometimes one also replaces Uk(xk) above with
a subset of “most promising controls” Uk(xk)

• As the length of lookahead increases, the re-
quired computation quickly explodes



PERFORMANCE BOUNDS

• Let Jk(xk) be the cost-to-go from (xk, k) of the
1SL policy, based on functions J̃k

• Assume that for all (xk, k), we have

Ĵk(xk) ≤ J̃k(xk), (*)

where ĴN = gN and for all k,

Ĵk(xk) = min
uk∈Uk(xk)

E
{
gk(xk, uk, wk)

+ J̃k+1

(
fk(xk, uk, wk)

)}
.

Then
Jk(xk) ≤ Ĵk(xk) ≤ J̃k(xk)

• Important application: When J̃k is the cost-to-
go of some heuristic policy (then the 1SL policy is
called the rollout policy)

• Bound can be extended to case where there is
a δk in the RHS of (*). Then

Jk(xk) ≤ J̃k(xk) + δk + · · · + δN−1



COMPUTATIONAL ASPECTS

• Sometimes nonlinear programming can be used
to calculate the 1SL or the multistep version (par-
ticularly when Uk(xk) is not a discrete set). Con-
nection with the methodology of stochastic pro-
gramming.

• The choice of the approximating functions J̃k is
critical, and is calculated with a variety of methods.

• Some approaches:

(a) Problem Approximation: Approximate the op-
timal cost-to-go with some cost derived from
a related but simpler problem

(b) Heuristic Cost-to-Go Approximation: Approx-
imate the optimal cost-to-go with a function
of a suitable parametric form, whose param-
eters are tuned by some heuristic or system-
atic scheme (Neuro-Dynamic Programming)

(c) Rollout Approach: Approximate the optimal
cost-to-go with the cost of some suboptimal
policy, which is calculated either analytically
or by simulation



PROBLEM APPROXIMATION

• Many (problem-dependent) possibilities

− Replace uncertain quantities by nominal val-
ues, or simplify the calculation of expected
values by limited simulation

− Simplify difficult constraints or dynamics

• Example of enforced decomposition: Route m
vehicles that move over a graph. Each node has
a “value.” The first vehicle that passes through the
node collects its value. Max the total collected
value, subject to initial and final time constraints
(plus time windows and other constraints).

• Usually the 1-vehicle version of the problem is
much simpler. This motivates an approximation
obtained by solving single vehicle problems.

• 1SL scheme: At time k and state xk (position
of vehicles and “collected value nodes”), consider
all possible kth moves by the vehicles, and at the
resulting states we approximate the optimal value-
to-go with the value collected by optimizing the
vehicle routes one-at-a-time



HEURISTIC COST-TO-GO APPROXIMATION

• Use a cost-to-go approximation from a paramet-
ric class J̃(x, r) where x is the current state and
r = (r1, . . . , rm) is a vector of “tunable” scalars
(weights)

• By adjusting the weights, one can change the
“shape” of the approximation J̃ so that it is reason-
ably close to the true optimal cost-to-go function.

• Two key issues:

− The choice of parametric class J̃(x, r) (the
approximation architecture).

− Method for tuning the weights (“training” the
architecture).

• Successful application strongly depends on how
these issues are handled, and on insight about the
problem.

• Sometimes a simulator is used, particularly
when there is no mathematical model of the sys-
tem.



APPROXIMATION ARCHITECTURES

• Broadly divided in linear and nonlinear [depend-
ing on whether J̃(x, r) depends linearly or nonlin-
early on r]

• Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer.

• Architectures based on feature extraction

Feature Extraction
Mapping

Cost Approximator w/
Parameter Vector r

Feature
Vector yState x

Cost Approximation

J (y,r )

• Ideally, the features will encode much of the
nonlinearity that is inherent in the cost-to-go ap-
proximated, and the approximation may be quite
accurate without a complicated architecture.

• With a well-chosen feature vector y(x), we can
use a linear architecture

J̃(x, r) = Ĵ
(
y(x), r

)
=

m∑
i=1

riyi(x)



COMPUTER CHESS I

• Programs use a feature-based position evalua-
tor that assigns a score to each move/position

Feature
Extraction

Weighting
of Features

Score

Features:
Material balance,
Mobility,
Safety, etc

Position Evaluator

• Most often the weighting of features is linear but
multistep lookahead is involved.

• Most often the training is done by trial and error.

• Additional features:

− Depth first search

− Variable depth search when dynamic posi-
tions are involved

− Alpha-beta pruning



COMPUTER CHESS II

• Multistep lookahead tree

P   (White to Move)

M 2

(+16)

(+16) (+20)

(+8) (+16) (+20) (+8)

+8 +20 +18 +16 +24 +20 +10 +12 -4 +8 +21 +11 -5 +10 +32 +27 +10 +9 +3

(+16)

(+11)

(+11)

(+11) Black to
Move

Black to Move

White to Move

M 1

P 2

P 1

P 3

P 4

α Cutoffα Cutoff

α Cutoff

β Cutoff

• Alpha-beta pruning: As the move scores are
evaluated by depth-first search, branches whose
consideration (based on the calculations so far)
cannot possibly .change the optimal move are ne-
glected
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ROLLOUT ALGORITHMS

• One-step lookahead policy : At each k and state
xk, use the control µk(xk) that

min
uk∈Uk(xk)

E
{
gk(xk, uk, wk)+J̃k+1

(
fk(xk, uk, wk)

)}
,

where

− J̃N = gN .

− J̃k+1: approximation to true cost-to-go Jk+1

• Rollout algorithm: When J̃k is the cost-to-go of
some heuristic policy (called the base policy)

• Cost improvement property (to be shown): The
rollout algorithm achieves no worse (and usually
much better) cost than the base heuristic starting
from the same state.

• Main difficulty: Calculating J̃k(xk) may be com-
putationally intensive if the cost-to-go of the base
policy cannot be analytically calculated.

− May involve Monte Carlo simulation if the
problem is stochastic.

− Things improve in the deterministic case.



EXAMPLE: THE QUIZ PROBLEM

• A person is given N questions; answering cor-
rectly question i has probability pi, with reward vi.

• Quiz terminates at the first incorrect answer.

• Problem: Choose the ordering of questions so
as to maximize the total expected reward.

• Assuming no other constraints, it is optimal to
use the index policy : Questions should be an-
swered in decreasing order of the “index of pref-
erence” pivi/(1 − pi).

• With minor changes in the problem, the index
policy need not be optimal. Examples:

− A limit (< N ) on the maximum number of
questions that can be answered.

− Time windows, sequence-dependent rewards,
precedence constraints.

• Rollout with the index policy as base policy:
Convenient because at a given state (subset of
questions already answered), the index policy and
its expected reward can be easily calculated.



COST IMPROVEMENT PROPERTY

• Let

Jk(xk): Cost-to-go of the rollout policy

Hk(xk): Cost-to-go of the base policy

• We claim that Jk(xk) ≤ Hk(xk) for all xk and k

• Proof by induction: We have JN (xN ) = HN (xN )
for all xN . Assume that

Jk+1(xk+1) ≤ Hk+1(xk+1), ∀ xk+1.

Then, for all xk

Jk(xk) = E
{

gk

(
xk, µk(xk), wk

)
+ Jk+1

(
fk

(
xk, µk(xk), wk

))}
≤ E

{
gk

(
xk, µk(xk), wk

)
+ Hk+1

(
fk

(
xk, µk(xk), wk

))}
≤ E

{
gk

(
xk, µk(xk), wk

)
+ Hk+1

(
fk

(
xk, µk(xk), wk

))}
= Hk(xk)



EXAMPLE: THE BREAKTHROUGH PROBLEM

root

• Given a binary tree with N stages.

• Each arc is either free or is blocked (crossed
out in the figure).

• Problem: Find a free path from the root to the
leaves (such as the one shown with thick lines).

• Base heuristic (greedy): Follow the right branch
if free; else follow the left branch if free.

• For large N and given prob. of free branch:
the rollout algorithm requires O(N) times more
computation, but has O(N) times larger prob. of
finding a free path than the greedy algorithm.



DISCRETE DETERMINISTIC PROBLEMS

• Any discrete optimization problem (with finite
number of choices/feasible solutions) can be rep-
resented as a sequential decision process by us-
ing a tree.

• The leaves of the tree correspond to the feasible
solutions.

• The problem can be solved by DP, starting from
the leaves and going back towards the root.

• Example: Traveling salesman problem. Find a
minimum cost tour that goes exactly once through
each of N cities.

ABC ABD ACB ACD ADB ADC

ABCD

AB AC AD

ABDC ACBD ACDB ADBC ADCB

Origin Node sA

Traveling salesman problem with four cities A, B, C, D



A CLASS OF GENERAL DISCRETE PROBLEMS

• Generic problem:

− Given a graph with directed arcs

− A special node s called the origin
− A set of terminal nodes, called destinations,

and a cost g(i) for each destination i.

− Find min cost path starting at the origin, end-
ing at one of the destination nodes.

• Base heuristic: For any nondestination node i,
constructs a path (i, i1, . . . , im, i) starting at i and
ending at one of the destination nodes i. We call
i the projection of i, and we denote H(i) = g(i).

• Rollout algorithm: Start at the origin; choose
the successor node with least cost projection

s i1 im

j1

j2

j3

j4

p(j1)

p(j2)

p(j3)

p(j4)

im-1

Neighbors of im
Projections of

Neighbors of im



EXAMPLE: ONE-DIMENSIONAL WALK

• A person takes either a unit step to the left or a
unit step to the right. Minimize the cost g(i) of the
point i where he will end up after N steps.

g(i)

iNN - 2-N 0

(N,0)

(0,0)

(N,-N) (N,N)

i
_

i
_

• Base heuristic: Always go to the right. Rollout
finds the rightmost local minimum.

• Base heuristic: Compare always go to the right
and always go the left. Choose the best of the
two. Rollout finds a global minimum.



SEQUENTIAL CONSISTENCY

• The base heuristic is sequentially consistent if
for every node i, whenever it generates the path
(i, i1, . . . , im, i) starting at i, it also generates the
path (i1, . . . , im, i) starting at the node i1 (i.e., all
nodes of its path have the same projection).

• Prime example of a sequentially consistent heuris-
tic is a greedy algorithm. It uses an estimate F (i)
of the optimal cost starting from i.

• At the typical step, given a path (i, i1, . . . , im),
where im is not a destination, the algorithm adds
to the path a node im+1 such that

im+1 = arg min
j∈N(im)

F (j)

• If the base heuristic is sequentially consistent,
the cost of the rollout algorithm is no more than
the cost of the base heuristic. In particular, if
(s, i1, . . . , im̄) is the rollout path, we have

H(s) ≥ H(i1) ≥ · · · ≥ H(im̄−1) ≥ H(im̄)

where H(i) = cost of the heuristic starting from i.



SEQUENTIAL IMPROVEMENT

• We say that the base heuristic is sequentially
improving if for every non-destination node i, we
have

H(i) ≥ min
j is neighbor of i

H(j)

• If the base heuristic is sequentially improving,
the cost of the rollout algorithm is no more than
the cost of the base heuristic, starting from any
node.

• Fortified rollout algorithm:

− Simple variant of the rollout algorithm, where
we keep the best path found so far through
the application of the base heuristic.

− If the rollout path deviates from the best path
found, then follow the best path.

− Can be shown to be a rollout algorithm with
sequentially improving base heuristic for a
slightly modified variant of the original prob-
lem.

− Has the cost improvement property.
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ROLLOUT ALGORITHMS

• Rollout policy : At each k and state xk, use the
control µk(xk) that

min
uk∈Uk(xk)

Qk(xk, uk),

where

Qk(xk, uk) = E
{
gk(xk, uk, wk)+Hk+1

(
fk(xk, uk, wk)

)}
and Hk+1(xk+1) is the cost-to-go of the heuristic.

• Qk(xk, uk) is called the Q-factor of (xk, uk), and
for a stochastic problem, its computation may in-
volve Monte Carlo simulation.

• Potential difficulty: To minimize over uk the Q-
factor, we must form Q-factor differences Qk(xk, u)−
Qk(xk, u). This differencing often amplifies the
simulation error in the calculation of the Q-factors.

• Potential remedy: Compare any two controls u
and u by simulating Qk(xk, u)−Qk(xk, u) directly.



Q-FACTOR APPROXIMATION

• Here, instead of simulating the Q-factors, we
approximate the costs-to-go Hk+1(xk+1).

• Certainty equivalence approach: Given xk, fix
the future disturbances at “typical” values wk, . . . , wN−1

and approximate the Q-factors with

Q̃k(xk, uk) = E
{
gk(xk, uk, wk)+H̃k+1

(
fk(xk, uk, wk)

)}
where H̃k+1

(
fk(xk, uk, wk)

)
is the cost of the heuris-

tic with the disturbances fixed at the typical values.

• This is approximation of Hk+1

(
fk(xk, uk, wk)

)
by using a “single sample simulation.”

• Variant of the certainty equivalence approach:
Approximate Hk+1

(
fk(xk, uk, wk)

)
by simulation

using a small number of “representative samples”
(scenarios).

• Alternative: Calculate (exact or approximate)
values for the cost-to-go of the base policy at a
limited set of state-time pairs, and then approx-
imate Hk+1 using an approximation architecture
and a “least-squares fit.”



ROLLING HORIZON APPROACH

• This is an l-step lookahead policy where the
cost-to-go approximation is just 0.

• Alternatively, the cost-to-go approximation is the
terminal cost function gN .

• A short rolling horizon saves computation.

• “Paradox”: It is not true that a longer rolling
horizon always improves performance.

• Example: At the initial state, there are two con-
trols available (1 and 2). At every other state, there
is only one control.

Current
State

Optimal Trajectory

High
Cost

... ...

... ...

1

2

Low
Cost

High
Cost

l  Stages



ROLLING HORIZON COMBINED WITH ROLLOUT

• We can use a rolling horizon approximation in
calculating the cost-to-go of the base heuristic.

• Because the heuristic is suboptimal, the ratio-
nale for a long rolling horizon becomes weaker.

• Example: N -stage stopping problem where the
stopping cost is 0, the continuation cost is either
−ε or 1, where 0 < ε < 1/N , and the first state
with continuation cost equal to 1 is state m. Then
the optimal policy is to stop at state m, and the
optimal cost is −mε.

0 1 2 m N

Stopped State

− ε − ε 1... ...

• Consider the heuristic that continues at every
state, and the rollout policy that is based on this
heuristic, with a rolling horizon of l ≤ m steps.

• It will continue up to the first m − l + 1 stages,
thus compiling a cost of −(m− l+1)ε. The rollout
performance improves as l becomes shorter!



DISCRETIZATION

• If the state space and/or control space is con-
tinuous/infinite, it must be replaced by a finite dis-
cretization.

• Need for consistency, i.e., as the discretiza-
tion becomes finer, the cost-to-go functions of the
discretized problem converge to those of the con-
tinuous problem.

• Pitfalls with discretizing continuous time.

• The control constraint set changes a lot as we
pass to the discrete-time approximation.

• Example:

ẋ1(t) = u1(t), ẋ2(t) = u2(t),

with the control constraint ui(t) ∈ {−1, 1} for i =
1, 2. Compare with the discretized version

x1(t+∆t) = x1(t)+∆tu1(t), x2(t+∆t) = x2(t)+∆tu2(t),

with ui(t) ∈ {−1, 1}.

• “Convexification effect” of continuous time.



OTHER SUBOPTIMAL CONTROL APPROACHES

• Approximate the optimal cost-to-go functions
Jk(xk) with functions J̃k(xk, rk), where rk is a vec-
tor of unknown parameters, chosen to minimize
some form of error in the DP equations.

• Approximate directly control policies. For a sub-
set of states xi, i = 1, . . . , m, find

µ̂k(xi) = arg min
uk∈Uk(xi)

E
{
g(xi, uk, wk)

+ J̃k+1

(
fk(xi, uk, wk), rk+1

)}
.

Then find µ̃k(xk, sk), where sk is a vector of pa-
rameters obtained by solving the problem

min
s

m∑
i=1

‖µ̂k(xi) − µ̃k(xi, s)‖2.

• Approximation in policy space. Do not bother
with cost-to-go approximations. Parametrize the
policies as µ̃k(xk, sk), and minimize the cost func-
tion of the problem over the parameters s0, . . . , sN−1.
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TYPES OF INFINITE HORIZON PROBLEMS

• Same as the basic problem, but:

− The number of stages is infinite.

− The system is stationary.

• Total cost problems: Minimize

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{
N−1∑
k=0

αkg
(
xk, µk(xk), wk

)}

− Stochastic shortest path problems (α = 1)

− Discounted problems (α < 1) with bounded
cost per stage

− Discounted and undiscounted problems with
unbounded cost per stage

• Average cost problems

lim
N→∞

1
N

E
wk

k=0,1,...

{
N−1∑
k=0

g
(
xk, µk(xk), wk

)}



PREVIEW OF INFINITE HORIZON RESULTS

• Key issue: The relation between the infinite and
finite horizon optimal cost-to-go functions.

• Illustration: Let α = 1 and JN (x) denote the
optimal cost of the N -stage problem, generated
after N DP iterations, starting from J0(x) ≡ 0

Jk+1(x) = min
u∈U(x)

E
w

{
g(x, u, w) + Jk

(
f(x, u, w)

)}
, ∀x

• Typical results for total cost problems:

J∗(x) = lim
N→∞

JN (x), ∀ x

J∗(x) = min
u∈U(x)

E
w

{
g(x, u, w) + J∗

(
f(x, u, w)

)}
, ∀x

(Bellman’s Equation). If µ(x) minimizes in Bell-
man’s Eq., the policy {µ, µ, . . .} is optimal.

• Bellman’s Eq. always holds. The other results
are true for SSP (and bounded/discounted; un-
usual exceptions for other problems).



STOCHASTIC SHORTEST PATH PROBLEMS

• Assume finite-state system: States 1, . . . , n and
special cost-free termination state t

− Transition probabilities pij(u)
− Control constraints u ∈ U(i)
− Cost of policy π = {µ0, µ1, . . .} is

Jπ(i) = lim
N→∞

E

{
N−1∑
k=0

g
(
xk, µk(xk)

)∣∣∣ x0 = i

}

− Optimal policy if Jπ(x) = J∗(x) for all x.

− Special notation: For stationary policies π =
{µ, µ, . . .}, we use Jµ(i) in place of Jπ(i).

• Assumption: There exists integer m such that
for every policy and initial state, there is posi-
tive probability that the termination state will be
reached after no more that m stages; for all π, we
have

ρπ = max
i=1,...,n

P{xm �= t |x0 = i, π} < 1



FINITENESS OF POLICY COST-TO-GO FUNCTIONS

• Let
ρ = max

π
ρπ.

Note that ρπ depends only on the first m compo-
nents of the policy π, so that ρ < 1.

• For any π and any initial state i

P{x2m �= t |x0 = i, π} = P{x2m �= t |xm �= t, x0 = i, π}
× P{xm �= t |x0 = i, π} ≤ ρ2

and similarly

P{xkm �= t |x0 = i, π} ≤ ρk, i = 1, . . . , n

• So E{Cost between times km and (k + 1)m − 1 }

≤ mρk max
i=1,...,n
u∈U(i)

∣∣g(i, u)
∣∣

and

∣∣Jπ(i)
∣∣ ≤ ∞∑

k=0

mρk max
i=1,...,n
u∈U(i)

∣∣g(i, u)
∣∣ =

m

1 − ρ
max

i=1,...,n
u∈U(i)

∣∣g(i, u)
∣∣



MAIN RESULT

• Given any initial conditions J0(1), . . . , J0(n), the
sequence Jk(i) generated by the DP iteration

Jk+1(i) = min
u∈U(i)


g(i, u) +

n∑
j=1

pij(u)Jk(j)


 , ∀ i

converges to the optimal cost J∗(i) for each i.

• Bellman’s equation has J∗(i) as unique solution:

J∗(i) = min
u∈U(i)


g(i, u) +

n∑
j=1

pij(u)J∗(j)


 , ∀ i

• A stationary policy µ is optimal if and only if
for every state i, µ(i) attains the minimum in Bell-
man’s equation.

• Key proof idea: The “tail” of the cost series,

∞∑
k=mK

E
{
g
(
xk, µk(xk)

)}

vanishes as K increases to ∞.



EXAMPLE I

• Minimizing the E{Time to Termination}: Let

g(i, u) = 1, ∀ i = 1, . . . , n, u ∈ U(i)

• Under our assumptions, the costs J∗(i) uniquely
solve Bellman’s equation, which has the form

J∗(i) = min
u∈U(i)


1 +

n∑
j=1

pij(u)J∗(j)


 , i = 1, . . . , n

• In the special case where there is only one con-
trol at each state, J∗(i) is the mean first passage
time from i to t. These times, denoted mi, are the
unique solution of the equations

mi = 1 +
n∑

j=1

pijmj , i = 1, . . . , n.



EXAMPLE II

• A spider and a fly move along a straight line.

• The fly moves one unit to the left with probability
p, one unit to the right with probability p, and stays
where it is with probability 1 − 2p.

• The spider moves one unit towards the fly if its
distance from the fly is more that one unit.

• If the spider is one unit away from the fly, it will
either move one unit towards the fly or stay where
it is.

• If the spider and the fly land in the same position,
the spider captures the fly.

• The spider’s objective is to capture the fly in
minimum expected time.

• This is an SSP w/ state = the distance between
spider and fly (i = 1, . . . , n and t = 0 the termina-
tion state).

• There is control choice only at state 1.



EXAMPLE II (CONTINUED)

• For M = move, and M = don’t move

p11(M) = 2p, p10(M) = 1 − 2p,

p12(M) = p, p11(M) = 1 − 2p, p10(M) = p,

pii = p, pi(i−1) = 1−2p, pi(i−2) = p, i ≥ 2,

with all other transition probabilities being 0.

• Bellman’s equation:

J∗(i) = 1+pJ∗(i)+(1−2p)J∗(i−1)+pJ∗(i−2), i ≥ 2

J∗(1) = 1+min
[
2pJ∗(1), pJ∗(2)+ (1− 2p)J∗(1)

]
w/ J∗(0) = 0. Substituting J∗(2) in Eq. for J∗(1),

J∗(1) = 1+min
[
2pJ∗(1),

p

1 − p
+

(1 − 2p)J∗(1)
1 − p

]
.

• Work from here to find that when one unit away
from the fly it is optimal not to move if and only if
p ≥ 1/3.
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• Stochastic shortest path problems

• Policy iteration

• Linear programming

• Discounted problems



STOCHASTIC SHORTEST PATH PROBLEMS

• Assume finite-state system: States 1, . . . , n and
special cost-free termination state t

− Transition probabilities pij(u)
− Control constraints u ∈ U(i)
− Cost of policy π = {µ0, µ1, . . .} is

Jπ(i) = lim
N→∞

E

{
N−1∑
k=0

g
(
xk, µk(xk)

)∣∣∣ x0 = i

}

− Optimal policy if Jπ(x) = J∗(x) for all x.

− Special notation: For stationary policies π =
{µ, µ, . . .}, we use Jµ(i) in place of Jπ(i).

• Assumption: There exists integer m such that
for every policy and initial state, there is posi-
tive probability that the termination state will be
reached after no more that m stages; for all π, we
have

ρπ = max
i=1,...,n

P{xm �= t |x0 = i, π} < 1



MAIN RESULT

• Given any initial conditions J0(1), . . . , J0(n), the
sequence Jk(i) generated by the DP iteration

Jk+1(i) = min
u∈U(i)


g(i, u) +

n∑
j=1

pij(u)Jk(j)


 , ∀ i

converges to the optimal cost J∗(i) for each i.

• Bellman’s equation has J∗(i) as unique solution:

J∗(i) = min
u∈U(i)


g(i, u) +

n∑
j=1

pij(u)J∗(j)


 , ∀ i

• A stationary policy µ is optimal if and only if
for every state i, µ(i) attains the minimum in Bell-
man’s equation.

• Key proof idea: The “tail” of the cost series,

∞∑
k=mK

E
{
g
(
xk, µk(xk)

)}

vanishes as K increases to ∞.



EXAMPLE

• A spider and a fly move along a straight line.

• The fly moves one unit to the left with probability
p, one unit to the right with probability p, and stays
where it is with probability 1 − 2p.

• The spider moves one unit towards the fly if its
distance from the fly is more that one unit.

• If the spider is one unit away from the fly, it will
either move one unit towards the fly or stay where
it is.

• If the spider and the fly land in the same position,
the spider captures the fly.

• The spider’s objective is to capture the fly in
minimum expected time.

• This is an SSP w/ state = the distance between
spider and fly (i = 1, . . . , n and t = 0 the termina-
tion state).

• There is control choice only at state 1.



EXAMPLE (CONTINUED)

• For M = move, and M = don’t move

p11(M) = 2p, p10(M) = 1 − 2p,

p12(M) = p, p11(M) = 1 − 2p, p10(M) = p,

pii = p, pi(i−1) = 1−2p, pi(i−2) = p, i ≥ 2,

with all other transition probabilities being 0.

• Bellman’s equation:

J∗(i) = 1+pJ∗(i)+(1−2p)J∗(i−1)+pJ∗(i−2), i ≥ 2

J∗(1) = 1+min
[
2pJ∗(1), pJ∗(2)+ (1− 2p)J∗(1)

]
w/ J∗(0) = 0. Substituting J∗(2) in Eq. for J∗(1),

J∗(1) = 1+min
[
2pJ∗(1),

p

1 − p
+

(1 − 2p)J∗(1)
1 − p

]
.

• Work from here to find that when one unit away
from the fly it is optimal not to move if and only if
p ≥ 1/3.



POLICY ITERATION

• It generates a sequence µ1, µ2, . . . of stationary
policies, starting with any stationary policy µ0.

• At the typical iteration, given µk, we perform a
policy evaluation step, that computes the Jµk(i)
as the solution of the (linear) system of equations

J(i) = g
(
i, µk(i)

)
+

n∑
j=1

pij

(
µk(i)

)
J(j), i = 1, . . . , n,

in the n unknowns J(1), . . . , J(n). We then per-
form a policy improvement step, which computes
a new policy µk+1 as

µk+1(i) = arg min
u∈U(i)


g(i, u) +

n∑
j=1

pij(u)Jµk(j)


 , ∀ i

• For each k, Jµk+1(i) ≤ Jµk(i) for all i, with strict
inequality for at least one i if µk is not optimal.

• A policy cannot be repeated, and since there are
finitely many stationary policies, an optimal policy
is obtained in a finite number of iterations.



LINEAR PROGRAMMING

• We claim that J∗ is the “largest” J that satisfies
the constraint

J(i) ≤ g(i, u) +
n∑

j=1

pij(u)J(j), (1)

for all i = 1, . . . , n and u ∈ U(i).

• Proof: If we use value iteration to generate a se-
quence of vectors Jk =

(
Jk(1), . . . , Jk(n)

)
starting

with a J0 such that

J0(i) ≤ min
u∈U(i)


g(i, u) +

n∑
j=1

pij(u)J0(j)


 , ∀ i

Then, Jk(i) ≤ Jk+1(i) for all k and i (monotonicity
of DP) and Jk → J∗, so that J0(i) ≤ J∗(i) for all i.

• So J∗ = (J∗(1), . . . , J∗(n)) is the solution of the
linear program of maximizing

∑n
i=1 J(i) subject to

the constraint (1).



LINEAR PROGRAMMING (CONTINUED)

J(1)

J(2)

0

J* = (J*(1),J*(2))

J(1) = g(1,u2) + p 11(u
2)J(1) + p 12(u

2)J(2)

J(1) = g(1,u1) + p 11(u
1)J(1) + p 12(u

1)J(2)

J(2) = g(2,u1) + p 21(u
1)J(1)+ p 22(u

1)J(2)

J(2) = g(2,u2) + p 21(u
2)J(1)+ p 22(u

2)J(2)

• Drawback: For large n the dimension of this
program is very large.



DISCOUNTED PROBLEMS

• Assume a dicount factor α < 1.

• Conversion to an SSP problem.

i j

pij(u)

pii(u) p jj(u )

pji(u)

α

1 - α

i j

pij(u)

pii(u) pjj(u)

pji(u)

α

α

α
1 - α

t

• Value iteration converges to J∗ for all initial J0:

Jk+1(i) = min
u∈U(i)


g(i, u) + α

n∑
j=1

pij(u)Jk(j)


 , ∀ i

• J∗ is the unique solution of Bellman’s equation:

J∗(i) = min
u∈U(i)


g(i, u) + α

n∑
j=1

pij(u)J∗(j)


 , ∀ i



DISCOUNTED PROBLEMS (CONTINUED)

• Policy iteration converges finitely to an optimal,
and linear programming works.

• Example: Asset selling over an infinite horizon.
If accepted, the offer xk of period k, is invested at
a rate of interest r.

• By depreciating the sale amount to period 0
dollars, we view (1 + r)−kxk as the reward for
selling the asset in period k at a price xk, where
r > 0 is the rate of interest. So the discount factor
is α = 1/(1 + r).

• J∗ is the unique solution of Bellman’s equation

J∗(x) = max

[
x,

E
{
J∗(w)

}
1 + r

]
.

• An optimal policy is to sell if and only if the
current offer xk is greater than or equal to ᾱ, where

ᾱ =
E

{
J∗(w)

}
1 + r

.
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• Average cost per stage problems

• Connection with stochastic shortest path prob-
lems

• Bellman’s equation

• Value iteration

• Policy iteration



AVERAGE COST PER STAGE PROBLEM

• Stationary system with finite number of states
and controls

• Minimize over policies π = {µ0, µ1, ...}

Jπ(x0) = lim
N→∞

1
N

E
wk

k=0,1,...

{
N−1∑
k=0

g
(
xk, µk(xk), wk

)}

• Important characteristics (not shared by other
types of infinite horizon problems)

− For any fixed N , the cost incurred up to time
N does not matter (only the state that we are
at time N matters)

− If all states “communicate” the optimal cost
is independent of the initial state [if we can
go from i to j in finite expected time, we must
have J∗(i) ≤ J∗(j)]. So J∗(i) ≡ λ∗ for all i.

− Because “communication” issues are so im-
portant, the methodology relies heavily on
Markov chain theory.



CONNECTION WITH SSP

• Assumption: State n is such that for some inte-
ger m > 0, and for all initial states and all policies,
n is visited with positive probability at least once
within the first m stages.

• Divide the sequence of generated states into
cycles marked by successive visits to n.

• Each of the cycles can be viewed as a state
trajectory of a corresponding stochastic shortest
path problem with n as the termination state.

i j

pij(u)

pii(u) pjj(u)pji(u)

n
pin(u) pjn(u)

pnn(u)

pnj(u)pni(u)

i j

pij(u)

pii(u) pjj(u)pji(u)

n

t

Artificial Termination State

Special
State n

pni(u)

pin(u)

pnn(u)

pnj(u)

pjn(u)

• Let the stage cost at i of the SSP problem be

g(i, u)−λ∗, λ∗: optimal av. cost per stage from n



CONNECTION WITH SSP (CONTINUED)

• View the average cost problem as a minimum
cycle cost problem: Find a stationary policy µ that
minimizes the expected cost per cycle

Cnn(µ)
Nnn(µ)

,

where for a fixed µ,

Cnn(µ) : E{cost from n up to the first return to n}

Nnn(µ) : E{time from n up to the first return to n}

• Justification: Intuitively, λ∗ = optimal cycle cost,
so

Cnn(µ) − Nnn(µ)λ∗ ≥ 0,

with equality if µ is optimal.

• Thus, the optimal µ must minimize over µ the
expression Cnn(µ) − Nnn(µ)λ∗, which is the ex-
pected cost of µ starting from n in the SSP with
stage costs g(i, u) − λ∗.



BELLMAN’S EQUATION

• Let h∗(i) the optimal cost of this SSP prob-
lem when starting at the nontermination states i =
1, . . . , n. Then, h∗(1), . . . , h∗(n) solve uniquely the
corresponding Bellman’s equation

h∗(i) = min
u∈U(i)


g(i, u) − λ∗ +

n−1∑
j=1

pij(u)h∗(j)


 , ∀ i

• If µ∗ is an optimal stationary policy for the SSP
problem, we have

h∗(n) = Cnn(µ∗) − Nnn(µ∗)λ∗ = 0

• Combining these equations, we have

λ∗+h∗(i) = min
u∈U(i)


g(i, u) +

n∑
j=1

pij(u)h∗(j)


 , ∀ i

• If µ∗(i) attains the min for each i, µ∗ is optimal.



MORE ON THE CONNECTION W/ SSP

• Interpretation of h∗(i) as a relative or differential
cost : It is the minimum of

E{cost to reach n from i for the first time}
− E{cost if the stage cost were λ∗ and not g(i, u)}

• Note that we don’t know λ∗, so we cannot solve
the average cost problem as an SSP problem. But
similar value and policy iteration algorithms are
possible.

• Example: A manufacturer at each time:

− Receives an order with prob. p and no order
with prob. 1 − p.

− May process all unfilled orders at cost K >
0, or process no order at all. The cost per
unfilled order at each time is c > 0.

− Maximum number of orders that can remain
unfilled is n.

− Find a processing policy that minimizes the
total expected cost per stage.



EXAMPLE (CONTINUED)

• State = number of unfilled orders. State 0 is the
special state for the SSP formulation.

• Bellman’s equation: For states i = 0, 1, . . . , n−1

λ∗ + h∗(i) = min
[
K + (1 − p)h∗(0) + ph∗(1),

ci + (1 − p)h∗(i) + ph∗(i + 1)
]
,

and for state n

λ∗ + h∗(n) = K + (1 − p)h∗(0) + ph∗(1)

• Optimal policy: process i unfilled orders if

K+(1−p)h∗(0)+ph∗(1) ≤ ci+(1−p)h∗(i)+ph∗(i+1).

• Intuitively, h∗(i) is monotonically nondecreas-
ing with i (interpret h∗(i) as optimal costs-to-go
for the associate SSP problem). So a threshold
policy is optimal: process the orders if their num-
ber exceeds some threshold integer m∗.



VALUE ITERATION

• Natural value iteration method: Generate op-
timal k-stage costs by DP algorithm starting with
any J0:

Jk+1(i) = min
u∈U(i)


g(i, u) +

n∑
j=1

pij(u)Jk(j)


 , ∀ i

• Result: limk→∞ Jk(i)/k = λ∗ for all i.

• Proof outline: Let J∗
k be so generated from the

initial condition J∗
0 = h∗. Then, by induction,

J∗
k (i) = kλ∗ + h∗(i), ∀i, ∀ k.

On the other hand,

∣∣Jk(i) − J∗
k (i)

∣∣ ≤ max
j=1,...,n

∣∣J0(j) − h∗(j)
∣∣, ∀ i

since Jk(i) and J∗
k (i) are optimal costs for two k-

stage problems that differ only in the terminal cost
functions, which are J0 and h∗.



MORE ON VALUE ITERATION

• The value iteration method just described has
two drawbacks.

− Since typically some components of Jk di-
verge to∞ or−∞, calculating limk→∞ Jk(i)/k
is numerically cumbersome.

− The method will not compute a correspond-
ing differential cost vector h∗.

• We can bypass both difficulties by subtracting a
constant from all components of the vector Jk, so
that the difference, call it hk, remains bounded.

• Relative value iteration algorithm: Pick any state
s, and iterate according to

hk+1(i) = min
u∈U(i)


g(i, u) +

n∑
j=1

pij(u)hk(j)




− min
u∈U(s)


g(s, u) +

n∑
j=1

psj(u)hk(j)


 , ∀ i

• Then hk → h∗ (under an extra assumption).



POLICY ITERATION

• At the typical iteration, we have a stationary µk.

• Policy evaluation: Compute λk and hk(i) of µk,
using the n − 1 equations hk(n) = 0 and

λk + hk(i) = g
(
i, µk(i)

)
+

n∑
j=1

pij

(
µk(i)

)
hk(j), ∀ i

• Policy improvement : Find for all i

µk+1(i) = arg min
u∈U(i)


g(i, u) +

n∑
j=1

pij(u)hk(j)




• If λk+1 = λk and hk+1(i) = hk(i) for all i, stop;
otherwise, repeat with µk+1 replacing µk.

• Result: For each k we either have λk+1 < λk or

λk+1 = λk, hk+1(i) ≤ hk(i), i = 1, . . . , n.

The algorithm terminates with an optimal policy.
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• Control of continuous-time Markov chains –
Semi-Markov problems

• Problem formulation – Equivalence to discrete-
time problems

• Discounted problems

• Average cost problems



CONTINUOUS-TIME MARKOV CHAINS

• Stationary system with finite number of states
and controls

• State transitions occur at discrete times

• Control applied at these discrete times and stays
constant between transitions

• Time between transitions is random

• Cost accumulates in continuous time (may also
be incurred at the time of transition)

• Example: Admission control in a system with
restricted capacity (e.g., a communication link)

− Customer arrivals: a Poisson process

− Customers entering the system, depart after
exponentially distributed time

− Upon arrival we must decide whether to ad-
mit or to block a customer

− There is a cost for blocking a customer

− For each customer that is in the system, there
is a customer-dependent reward per unit time

− Minimize time-discounted or average cost



PROBLEM FORMULATION

• x(t) and u(t): State and control at time t

• tk: Time of kth transition (t0 = 0)

• xk = x(tk): We have x(t) = xk for tk ≤ t < tk+1.

• uk = u(tk): We have u(t) = uk for tk ≤ t < tk+1.

• In place of transition probabilities, we have tran-
sition distributions

Qij(τ, u) = P{tk+1−tk ≤ τ, xk+1 = j |xk = i, uk = u}

• Two important formulas:

(1) Transition probabilities are specified by

pij(u) = P{xk+1 = j |xk = i, uk = u} = lim
τ→∞

Qij(τ, u)

(2) The conditional distribution function (CDF) of
τ given i, j, u is

P{tk+1−tk ≤ τ |xk = i, xk+1 = j, uk = u} =
Qij(τ, u)
pij(u)

for all i, j, u such that pij(u) > 0.



EXPONENTIAL TRANSITION DISTRIBUTIONS

• Important example of transition distributions

Qij(τ, u) = pij(u)
(
1 − e−νi(u)τ

)
,

where pij(u) are transition probabilities, and νi(u)
is called the transition rate at state i.

• Interpretation: If the system is in state i and
control u is applied

− the next state will be j with probability pij(u)
− the time interval between the transition to

state i and the transition to the next state
is exponentially distributed with parameter
νi(u); that is,

P{transition time interval > τ | i, u} = e−νi(u)τ

• The exponential distribution is memoryless. This
implies that for a given policy, the system is a
continuous-time Markov chain.



COST STRUCTURES

• There is cost g(i, u) per unit time, i.e.

g(i, u)dt = the cost incurred in time dt

• There may be an extra “instantaneous” cost
ĝ(i, u) at the time of a transition (let’s ignore this
for the moment)

• Total discounted cost of π = {µ0, µ1, . . .} start-
ing from state i (with discount factor β > 0)

lim
N→∞

E

{
N−1∑
k=0

∫ tk+1

tk

e−βtg
(
xk, µk(xk)

)
dt

∣∣∣ x0 = i

}

• Average cost per unit time

lim
N→∞

1

E{tN}E

{
N−1∑
k=0

∫ tk+1

tk

g
(
xk, µk(xk)

)
dt

∣∣∣ x0 = i

}

• We will see that both problems have equivalent
discrete-time versions



DISCOUNTED PROBLEMS – COST CALCULATION

• For a policy π = {µ0, µ1, . . .}, write

Jπ(i) = E{cost of 1st transition}+E{e−βτJπ1(j) | i, µ0(i)}

where Jπ1(j) is the cost-to-go of the policy π1 =
{µ1, µ2, . . .}
• We calculate the two costs in the RHS. The
E{transition cost}, if u is applied at state i, is

G(i, u) = Ej

{
Eτ{transition cost | j}

}
=

n∑
{j | pij(u)>0}

pij(u)

∫ ∞

0

(∫ τ

0

e−βtg(i, u)dt

)
dQij(τ, u)

pij(u)

=

n∑
j=1

∫ ∞

0

1 − e−βτ

β
g(i, u)dQij(τ, u)

• Thus the E{cost of 1st transition} is

G
(
i, µ0(i)

)
= g

(
i, µ0(i)

) n∑
j=1

∫ ∞

0

1 − e−βτ

β
dQij

(
τ, µ0(i)

)



COST CALCULATION (CONTINUED)

• Also

E{e−βτJπ1(j)} = Ej

{
e−βτJπ1(j)}

= Ej

{
E{e−βτ | j}Jπ1(j)

}
=

n∑
{j | pij(u)>0}

pij(u)
(∫ ∞

0

e−βτ
dQij(τ, u)

pij(u)
Jπ1(j)

)

=
n∑

j=1

mij

(
µ(i)

)
Jπ1(j)

where mij(u) is the “effective discount factor”

mij(u) =
∫ ∞

0

e−βτdQij(τ, u)

= pij(u)E{discount factor | j}

• So Jπ(i) can be written as

Jπ(i) = G
(
i, µ0(i)

)
+

n∑
j=1

mij

(
µ(i)

)
Jπ1(j)



EQUIVALENCE TO AN SSP

• Similar to the discrete-time case, introduce a
stochastic shortest path problem with an artificial
termination state t

• Under control u, from state i the system moves
to state j with probability mij(u) and to the termi-
nation state t with probability 1 −

∑n
j=1 mij(u)

• Bellman’s equation

J∗(i) = min
u∈U(i)


G(i, u) +

n∑
j=1

mij(u)J∗(j)




• Analogs of value iteration, policy iteration, and
linear programming.

• If in addition to the cost per unit time g, there
is an extra (instantaneous) one-stage cost ĝ(i, u),
Bellman’s equation becomes

J∗(i) = min
u∈U(i)


ĝ(i, u) + G(i, u) +

n∑
j=1

mij(u)J∗(j)






MANUFACTURER’S EXAMPLE REVISITED

• A manufacturer receives orders with interarrival
times uniformly distributed in [0, τmax].

• May process all unfilled orders at cost K > 0, or
process none. The cost per unit time of an unfilled
order is c. Max number of unfilled orders is n

• The nonzero transition distributions are

Qi1(τ, Fill) = Qi(i+1)(τ, Not Fill) = min
[
1,

τ

τmax

]
• The one-stage expected cost G is

G(i, Fill) = 0, G(i, Not Fill) = γ c i,

where

γ =
n∑

j=1

∫ ∞

0

1 − e−βτ

β
dQij(τ, u) =

∫ τmax

0

1 − e−βτ

βτmax
dτ

• There is an “instantaneous” cost

ĝ(i, Fill) = K, ĝ(i, Not Fill) = 0



MANUFACTURER’S EXAMPLE CONTINUED

• The “effective discount factors” mij(u) in Bell-
man’s Equation are

mi1(Fill) = mi(i+1)(Not Fill) = α,

where

α =

∫ ∞

0

e−βτdQij(τ, u) =

∫ τmax

0

e−βτ

τmax
dτ =

1 − e−βτmax

βτmax

• Bellman’s equation has the form

J∗(i) = min
[
K+αJ∗(1), γci+αJ∗(i+1)

]
, i = 1, 2, . . .

• As in the discrete-time case, we can conclude
that there exists an optimal threshold i∗

fill the orders <==> their number i exceeds i∗



AVERAGE COST

• Minimize

lim
N→∞

1
E{tN}E

{∫ tN

0

g
(
x(t), u(t)

)
dt

}

assuming there is a special state that is “recurrent
under all policies”

• Total expected cost of a transition

G(i, u) = g(i, u)τ i(u),
where τ i(u): Expected transition time

• We now apply the SSP argument used for the
discrete-time case. Divide trajectory into cycles
marked by successive visits to n. The cost at
(i, u) is G(i, u) − λ∗τ i(u), where λ∗ is the optimal
expected cost per unit time. Each cycle is viewed
as a state trajectory of a corresponding SSP prob-
lem with the termination state being essentially n

• So Bellman’s Eq. for the average cost problem:

h∗(i) = min
u∈U(i)


G(i, u) − λ∗τ i(u) +

n∑
j=1

pij(u)h∗(j)






AVERAGE COST MANUFACTURER’S EXAMPLE

• The expected transition times are

τ i(Fill) = τ i(Not Fill) =
τmax

2

the expected transition cost is

G(i, Fill) = 0, G(i, Not Fill) =
c i τmax

2

and there is also the “instantaneous” cost

ĝ(i, Fill) = K, ĝ(i, Not Fill) = 0

• Bellman’s equation:

h∗(i) = min
[
K − λ∗ τmax

2
+ h∗(1),

ci
τmax

2
− λ∗ τmax

2
+ h∗(i + 1)

]
.

• Again it can be shown that a threshold policy is
optimal.
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• We start a four-lecture sequence on advanced
dynamic programming and neuro-dynamic pro-
gramming topics

• Discounted problems - infinite state space

• Mappings underlying infinite horizon DP

• Geometric interpretation of value and policy it-
eration

• Approximate policy iteration



DISCOUNTED PROBLEMS W/ BOUNDED COST

• System

xk+1 = f(xk, uk, wk), k = 0, 1, . . . ,

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{
N−1∑
k=0

αkg
(
xk, µk(xk), wk

)}

with g(x, u, w): bounded over (x, u, w), and α < 1.

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min
u∈U(x)

E
w

{
g(x, u, w) + αJ

(
f(x, u, w)

)}
, ∀ x

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

(TµJ)(x) = E
w

{
g
(
x, µ(x), w

)
+ αJ

(
f(x, µ(x), w)

)}
, ∀ x



“SHORTHAND” THEORY

• Cost function expressions [with J0(x) ≡ 0]

Jπ(x) = lim
k→∞

(Tµ0Tµ1 · · ·Tµk J0)(x), Jµ(x) = lim
k→∞

(T k
µ J0)(x)

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

• Value iteration: For any (bounded) J and all x,

J∗(x) = lim
k→∞

(T kJ)(x)

• Policy iteration steps: Given µk,

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk



THE THREE PROPERTIES

• Monotonicity property: For any functions J
and J ′ such that J(x) ≤ J ′(x) for all x, and any µ

(TJ)(x) ≤ (TJ ′)(x), ∀ x,

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x

• Additivity property: For any J , any scalar
r, and any µ

(
T (J + re)

)
(x) = (TJ)(x) + αr, ∀ x,

(
Tµ(J + re)

)
(x) = (TµJ)(x) + αr, ∀ x,

where e is the unit function [e(x) ≡ 1].

• Contraction property: For any (bounded)
functions J and J ′, and any µ,

max
x

∣∣(TJ)(x) − (TJ ′)(x)
∣∣ ≤ α max

x

∣∣J(x) − J ′(x)
∣∣,

max
x

∣∣(TµJ)(x)−(TµJ ′)(x)
∣∣ ≤ α max

x

∣∣J(x)−J ′(x)
∣∣.



“SHORTHAND” ANALYSIS

• Contraction mapping theorem: The con-
traction property implies that:

− T has a unique fixed point, J∗, which is the
limit of T kJ for any (bounded) J .

− For each µ, Tµ has a unique fixed point, Jµ,
which is the limit of T k

µ J for any J .

• Convergence rate: For all k,

max
x

∣∣(T kJ)(x) − J∗(x)
∣∣ ≤ αk max

x

∣∣J(x) − J∗(x)
∣∣

• An assortment of other analytical and computa-
tional results are based on the contraction prop-
erty, e.g, error bounds, computational enhance-
ments, etc.

• Example: If we execute value iteration approxi-
mately , so we compute TJ within an ε-error, i.e.,

max
x

|J̃(x) − (TJ)(x)| ≤ ε,

in the limit we obtain J∗ within an ε/(1 − α) error.



GEOMETRIC INTERPRETATIONS

J*

J*

450

450

Tξ

J TJ T2J

Value Iteration Sequence
J, TJ, T2J

Policy Iteration Sequence
µ 0, µ 1, µ 2

+αPµJ

g µ 0 +α Pµ0J

g µ 1 + αPµ 1J

Jµ 0Jµ 10

0

gµ 2 +αPµ 2J

Tξ

ξ

ξ

gµ



APPROXIMATE POLICY ITERATION

• Suppose that the policy evaluation is approxi-
mate, according to,

max
x

|Jk(x) − Jµk(x)| ≤ δ, k = 0, 1, . . .

and policy improvement is also approximate, ac-
cording to,

max
x

|(Tµk+1Jk)(x)−(TJk)(x)| ≤ ε, k = 0, 1, . . .

where δ and ε are some positive scalars.

• Error Bounds: The sequence {µk} gener-
ated by the approximate policy iteration algorithm
satisfies

lim sup
k→∞

max
x∈S

(
Jµk(x) − J∗(x)

)
≤ ε + 2αδ

(1 − α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.
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• Stochastic shortest problems in greater gener-
ality

• Proper and improper policies

• Counterexamples

• Approximate policy iteration

• Simulation-based policy iteration

• Actor-critic interpretation



UNDISCOUNTED PROBLEMS

• System

xk+1 = f(xk, uk, wk), k = 0, 1, . . . ,

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{
N−1∑
k=0

g
(
xk, µk(xk), wk

)}

• Shorthand notation for DP mappings

(TJ)(x) = min
u∈U(x)

E
w

{
g(x, u, w) + J

(
f(x, u, w)

)}
, ∀ x

• For any stationary policy µ

(TµJ)(x) = E
w

{
g
(
x, µ(x), w

)
+ J

(
f(x, µ(x), w)

)}
, ∀ x

• Neither T nor Tµ are contractions in general.
Some, but not all, of the nice theory holds, thanks
to the monotonicity of T and Tµ.

• Some of the nice theory is recovered in SSP
problems because of the termination state.



STOCHASTIC SHORTEST PATH PROBLEMS I

• Assume: cost-free term. state t, a finite number
of states 1, . . . , n, and finite number of controls

• Modified mapping T and Tµ:

(TJ)(i) = min
u∈U(i)

[
g(i, u) +

n∑
j=1

pij(u)J(j)

]
, i = 1, . . . , n,

(TµJ)(i) = g
(
i, µ(i)

)
+

n∑
j=1

pij

(
µ(i)

)
J(j), i = 1, . . . , n.

• Definition: A stationary policy µ is called proper,
if under µ, from every state i, there is a positive
probability path that leads to t.

• Important fact: If µ is proper then Tµ is a con-
traction with respect to some weighted max norm

max
i

1
vi
|(TµJ)(i)−(TµJ ′)(i)| ≤ α max

i

1
vi
|J(i)−J ′(i)|

• If all µ are proper, then T is similarly a contrac-
tion (this is the case discussed in Ch. 7).



STOCHASTIC SHORTEST PATH PROBLEMS II

• The theory can be pushed one step further.
Assume that:

(a) There exists at least one proper policy
(b) For each improper µ, we have Tµ(i) = ∞ for

some state i

• Then T is not necessarily a contraction, but:

− J∗ is the unique solution of Bellman’s Equ.

− µ∗ is optimal if and only if Tµ∗J∗ = TJ∗

− limk→∞(T kJ)(i) = J∗(i) for all i

− Policy iteration terminates with an optimal
policy, if started with a proper policy

• Example: Deterministic shortest path problem
with a single destination

− States <==> nodes

− Controls <==> arcs

− Termination state <==> the destination

− Assumption (a) <==> every node is con-
nected to the destination

− Assumption (b) <==> every cycle has pos-
itive cost



PATHOLOGIES: THE BLACKMAILER’S DILEMMA

• Two states, state 1 and the termination state t.

• At state 1, choose a control u ∈ (0, 1] (the black-
mail amount demanded), and move to t at no cost
with probability u2, or stay in 1 at a cost −u with
probability 1 − u2.

• Every stationary policy is proper, but the control
set in not finite.

• For any stationary µ with µ(1) = u, we have

Jµ(1) = −(1 − u2)u + (1 − u2)Jµ(1)

from which Jµ(1) = − 1−u2

u

• Thus J∗(1) = −∞, and there is no optimal
stationary policy.

• It turns out that a nonstationary policy is opti-
mal: demand µk(1) = γ/(k + 1) at time k, with
γ ∈ (0, 1/2). (Blackmailer requests diminishing
amounts over time, which add to ∞; the proba-
bility of the victim’s refusal diminishes at a much
faster rate.)



APPROXIMATE POLICY ITERATION

• Suppose that the policy evaluation is approxi-
mate, according to,

max
i=1,...,n

|Jk(i) − Jµk(i)| ≤ δ, k = 0, 1, . . .

and policy improvement is also approximate, ac-
cording to,

max
i=1,...,n

|(Tµk+1Jk)(i)−(TJk)(i)| ≤ ε, k = 0, 1, . . .

where δ and ε are some positive scalars.

• Assume that all policies generated by the method
are proper (they are guaranteed to be if δ = ε = 0,
but not in general).

• Error Bounds: The sequence {µk} generated
by approximate policy iteration satisfies

lim sup
k→∞

max
i=1,...,n

(
Jµk(i)−J∗(i)

)
≤ n(1 − ρ + n)(ε + 2δ)

(1 − ρ)2

where ρ = max i=1,...,n
µ: proper

P{xn �= t |x0 = i, µ}



SIMULATION-BASED POLICY EVALUATION

• Given µ, suppose we want to calculate Jµ by
simulation.

• Generate by simulation sample costs. Approx-
imation:

Jµ(i) ≈ 1
Mi

Mi∑
m=1

c(i, m)

c(i, m) : mth sample cost starting from state i

• Approximating each Jµ(i) is impractical for a
large state space. Instead, a “compact represen-
tation” J̃µ(i, r) may be used, where r is a tunable
parameter vector. We may calculate an optimal
value r∗ of r by a least squares fit

r∗ = arg min
r

n∑
i=1

Mi∑
m=1

∣∣c(i, m) − J̃µ(i, r)
∣∣2



ACTOR-CRITIC INTERPRETATION

System

Controller
(Actor)

Policy Evaluation
(Critic)

J µk

µk+1(i ) i

• Policy evaluation may be approximate, e.g., us-
ing limited simulation



EXAMPLE: TETRIS

• The state consists of the board position i, and
the shape of the current falling block (astronomi-
cally large number of states).

• Can be shown that all policies are proper!!

• Approximating function with feature extraction

J̃(i, r) =
m∑

k=1

rkwk(i),

where r = (r1, . . . , rm) is the parameter vector
and wk(i) is the kth feature.
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• Overview of simulation-based methods for exact
and approximate DP

• Lookup table methods

• Q-Learning

• Aggregation



SIMULATION-BASED METHODS (NDP)

• There are many proposals, but the methods for
which there is solid theory are of two types:

(a) Policy evaluation methods, to be used as
part of an exact or approximate policy itera-
tion scheme.

− The policy is fixed.

− As a special case we obtain the rollout method
(only one policy iteration is used).

− The cost of the policy may be calculated
in several different forms: (1) For all states
(lookup table representation) or (2) Through
an approximation architecture (compact rep-
resentation) or (2) Through on-line simula-
tion as needed (rollout algorithm).

(b) Q-Learning

− The policy is not fixed.

− Can be viewed as a form of an on-line simulation-
based value iteration method.

− The only available theory applies to the lookup
table representation case



POLICY EVALUATION METHODS

• The policy is fixed.

• Many simulation trajectories are generated.

• The weight vector r of an approximation ar-
chitecture J̃(i, r) is adjusted using some kind of
“least squares scheme” (off-line, or on-line as the
simulation trajectories are generated).

• There is a large variety of on-line methods,
[TD(λ), λ-policy iteration, etc].

• For on-line methods, a sequence {rk} of pa-
rameter vectors is generated.

− There may be one or more transitions be-
tween parameter vector changes

− There is solid theory only for linear approxi-
mation architectures (and under some tech-
nical assumptions)

• Typical result: In the limit, as the number of
simulation-generated transitions goes to ∞, the
sequence of generated parameter vectors con-
verges to a limit.



Q-LEARNING I

• To implement an optimal policy, what we need
are the Q-factors defined for each pair (i, u) by

Q(i, u) =
∑

j

pij(u)
(
g(i, u, j) + J∗(j)

)
• Bellman’s equation is J∗(j) = minu′∈U(j) Q(j, u′),
so the Q-factors solve the system of equations

Q(i, u) =
∑

j

pij(u)
(
g(i, u, j)+ min

u′∈U(j)
Q(j, u′)

)
, ∀ (i, u)

• One possibility is to solve this system iteratively
by a form of value iteration

Q(i, u) := (1 − γ)Q(i, u)+γ
∑

j

pij(u)
(
g(i, u, j)

+ min
u′∈U(j)

Q(j, u′)
)
,

where γ is a stepsize parameter with γ ∈ (0, 1],
that may change from one iteration to the next.



Q-LEARNING II

• The Q-learning method is an approximate ver-
sion of this iteration, whereby the expected value
is replaced by a single sample, i.e.,

Q(i, u) := Q(i, u) + γ
(
g(i, u, j)

+ min
u′∈U(j)

Q(j, u′) − Q(i, u)
)

• Here j and g(i, u, j) are generated from the pair
(i, u) by simulation, i.e., according to the transition
probabilities pij(u).

• Thus Q-learning can be viewed as a combina-
tion of value iteration and simulation.

• Convergence of the method to the (optimal) Q
factors can be shown under some reasonable (but
quite technical) assumptions.

• Strong connections with the theory of stochastic
iterative algorithms (such as stochastic gradient
methods).

• Challenging analysis, limited practicality (only
for a small number of states).



AGGREGATION I

• Another major idea in approximate DP is to ap-
proximate the cost-to-go function of the problem
with the cost-to-go function of a simpler problem.

• Idea of aggregation approach:

− Lump many states together into a few “ag-
gregate” states

− View the aggregate states as the states of
an “aggregate” system

− Formulate and solve (optimally) the “aggre-
gate” problem by any kind of value or policy
iteration method (including simulation-based
methods, such as Q-learning)

− Use the optimal cost of the aggregate prob-
lem for a piecewise-constant approximation
of the optimal cost of the original problem
(all states that belong to the same aggre-
gate state are restricted to have the same
cost, the optimal cost of the aggregate state)

• The aggregate problem could also be solved
approximately



AGGREGATION II

Feature
Vector

System/
Simulator

Feature 
Extraction 
Mapping

State

Aggregate System/
Simulator

Cost 
Approximator

Cost Approximation

Approximator for the
Aggregate System

• Main steps to define the aggregate system

• Form the aggregate states by partitioning the
original state space (features can be used for this).

− Each aggregate state is a subset S of states
of the original system

− Each state of the original system belongs to
a unique aggregate state.

• Define the dynamics of the aggregate system

Current aggregate state S �→ New aggregate state S′

Example: If the current aggregate state is S, gen-
erate a “typical” state i within S in some proba-
bilistic way, then generate j according to the pij ,
then declare S′ to be the aggregate state to which
j belongs.


