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Abstract. This work investigates the response and reliability of a class of nonlinear elastic 
and inelastic systems with impacts arising in mechanical and civil engineering applications. 
The study focuses on civil engineering applications related to bridges equipped with seismic 
stoppers to resist earthquakes. These systems are represented by structural models with 
piecewise linear elastic stiffness elements and often involve strong inelastic behavior due to 
yielding of the piers. In order to gain useful insight into the behavior of these systems, one 
degree of freedom piecewise linear elastic mechanical models are first analyzed and the be-
havior to short duration sine pulses as well as longer duration transient and stochastic earth-
quake excitations is investigated. The analysis is then extended to nonlinear single degree of 
freedom structural models possessing combined piecewise linear elastic and elasto-plastic 
restoring force characteristics. The analysis is concentrated on the estimation of the sensitiv-
ity of the deterministic and probabilistic response spectra characteristics to system and load-
ing parameters such as stiffness ratio, gap sizes between deck structure and stoppers, 
inelastic parameters, excitation strength and frequency content. The subset simulation method 
is used to efficiently estimate the probabilistic response spectra The analysis is then extended 
to investigate the response and reliability of the four-span Kavala bridge, located in northern 
Greece. The bridge deck is supported on columns through elastomeric bearings. Seismic 
stoppers are used, designed to be activated well under the design earthquake level, thus criti-
cally contributing to the main earthquake resisting mechanism. A multi degree of freedom fi-
nite element models of the bridge, involving piecewise linear stiffness elements, is used to 
simulate its behavior. Deterministic short duration sine pulse excitations as well as white 
noise stochastic excitations are used to simulate the earthquake excitations. The sensitivity of 
the response and failure probability to the size of gaps is explored in order to gain insight on 
the performance of  the bridge structure and the effect of gap sizes. 
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1 INTRODUCTION

Nonlinear elastic and inelastic systems with impacts arise in mechanical and civil engineer-
ing applications. In mechanical engineering applications, the behavior of the systems with 
impacts are often analyzed using single or multi degree of freedom mechanical models with 
piecewise linear elastic stiffness elements [1,2]. The interest concentrates on the response and 
stability of piecewise linear elastic systems to periodic excitation and it has been shown that 
these systems manifest complex nonlinear behavior. In civil engineering applications, such 
systems arise in the analysis of bridges with seismic stoppers [3-5] or the analysis of pound-
ing of adjacent buildings. These systems are represented by single and multi degree of free-
dom models with piecewise linear elastic stiffness elements that often involve strong inelastic 
behavior in parts of the system.  

The present study focuses on the analysis of bridges that involve impacts due to the seis-
mic stoppers designed to effectively withstand earthquake loads and reduce the size of the 
piers. A simple bridge with seismic stoppers is shown in Figure 1a. The bridge deck is con-
nected to the piers by elastomeric bearings and seismic stoppers are added on the pier caps 
that have a small gap with the deck structure so that the elastomeric bearings are free to move 
under ambient or traffic loads, while they impact on the stoppers only under moderate or 
strong earthquake loads. Activation of the stoppers due to impact results in sudden increase of 
the stiffness of the structure. The gaps between the stoppers and the bearings are usually se-
lected such that the impact with the stoppers occurs before the pier yielding. Assuming a 
heavy undeformed deck of mass M  and representing the stiffness of the piers and the elas-
tomeric bearing by massless linear or inelastic springs, one can construct a single degree of 
freedom (SDOF) simplified model of the bridge as shown in Figure 2a. For the case of stop-
per activation but no pier yielding, the springs are linear and the simplified system in Figure 
2a behaves as a SDOF piecewise linear elastic system. For the case of elastoplastic spring rep-
resenting the inelastic behavior of the deck, the system in Figure 2a behaves as a SDOF 
piecewise linear inelastic system. 
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Figure 1: Schematic diagram of (a) single span bridge and (b) Kavala bridge. 

In order to gain useful insight into the behavior of these systems, the response characteris-
tics of the SDOF piecewise linear elastic systems, shown in Figure 2b, are first analyzed and 
the behavior to short duration sine pulses as well as longer duration transient excitations is 
investigated. The analysis is then extended to nonlinear systems possessing combined piece-
wise linear elastic and elasto-plastic restoring force characteristics. The analysis is concen-
trated on deterministic and probabilistic response spectra characteristics and the estimation of 
the sensitivity of these spectra to system and loading parameters, such as stiffness ratio, size 
of gaps, inelastic parameters, excitation strength and frequency content. It is shown that the 
performance of such systems to transient excitation can be enhanced by optimally designing 
the system parameter values. Issues related to the computational efficiency of the subset simu-
lation method [6] and the two-stage subset simulation method [7] for computing the probabil-
istic response spectra are addressed. The analysis is then extended to investigate the response 
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and reliability of the four-span Kavala bridge (Figure 1b), located in northern Greece, under 
deterministic short duration sine pulse excitations as well as white noise stochastic excitations. 
The sensitivity of the response to the size of gaps is explored.  
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Figure 2: (a) Simplified SDOF system with bilinear stiffness and (b) elastic force-displacement relationship. 

2 SDOF SYSTEM DESCRIPTION 

2.1 Elastic system with gap elements 
Consider in Figure 2a the SDOF model of the structure, shown in Figure 1a, with mass M , 

column stiffness , bearing stiffness  and base excitation , assumed same at both left 
and right supports. The equation of motion for the model is given by  

cK bK ( )z t

 ( )Mx Cx f x Mz+ + = −  (1) 

where the term Cx  accounts for the overall viscous damping on the system. The bilinear re-
store force due to the gap  is given by d

 
1 0

1 0 2 0 0

1 0 2 0 0

( ) ( )
( )

K x x x x
f x K x K x x x x

K x K x x x x

0⋅ − ≤ ≤⎧
⎪= ⋅ + − >⎨
⎪− ⋅ + + < −⎩

 (2) 

where  is the stiffness of the system before impact, and  is 
the stiffness of the system after impact, and 

1 2 /(1cK K κ= + ) 2 1 /(1 / 2)K K κ= +

0 (1 ) /x d κ κ= +  is the mass displacement at 
which impact occurs, where  is the column to bearing stiffness ratio. By introduc-
ing the following non dimensional parameters: 

/cK Kκ = b

 *01
1 02

( / ), , ( ) , , , , ( )g
N

N N N

a x

g

x t dx y y t p z
x x x

ω ωη τ δ τ ω
ω ω

= = = = = = ⋅ =
a

τ  (3) 

where 1 1 /ω = Κ Μ  is the initial natural frequency of the SDOF before impact, ω and ga  is a 
characteristic frequency and amplitude of the excitation, respectively, and Nx  is a characteris-
tic displacement, the equation of motion becomes: 

 ( )2
1 12 ( )y y F y p*ζη η τ′′ ′+ + = −  (4) 

The non-dimensional column force defined by 2/( )c c Nf F x Mω= , can be shown to be given 
by 

  (5) 2
1 (1 ) / 2c cf y η κ= +
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where /c c Ny xδ=  is the non-dimensional deflection (elongation) of the column spring, which 
can be shown to be given with respect to y  as 

 
0 0

0 0

( 1)

,
1

c

y y y y
y

y y y y y

κ
κ
κ

⎧ − ≤ ≤⎪ +⎪= ⎨
⎪

0y− < − >⎪⎩ +

 (6) 

The non-dimensional restoring force in (4) is given by 
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 (7) 

2.2 Inelastic system with gap elements 
In this case, the column springs are assumed to behave as elastic perfectly plastic elements 

with yield displacement yieldx  and yield force yieldF . The equation of motion for the system is 
given by (1) with the force  depending on the restoring force characteristics of the col-
umn spring. Due to the elastoplastic behaviour of the column springs, the force-displacement 
relationship of the equivalent piecewise-linear inelastic spring of the SDOF system is shown 
in Figure 3a. Figure 3b gives the force-displacement hysteretic loop computed using a har-
monic excitation. Note that 

( )F y

0x  denotes the mass displacement at impact, 1x  is the mass dis-
placement at the first yield of the column spring and 2x  is the mass displacement at the 
second yield of the other column spring. 
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Figure 3: (a) Elastic force-displacement relationship and (b) hysteretic loop. 

By introducing the non dimensional parameters (3), along with  the non-dimensional mass 
displacement 1 1 / Ny x x=  corresponding to the position of yield of the first column spring and  
the non-dimensional mass displacement 2 2 / Ny x x=  corresponding to the position of yield of 
the second column spring, the equation of motion is given by (4), where  is a piecewise 
linear restoring force derived from 

( )F y
( )f x  given in Figure 3. The non-dimensional yield dis-

placement and yield force of the column spring is /yield yield Ny x x=  and /( )yield yield gf F a M= , 
respectively. The ductility of the column is defined by 

 4



Kyriakos Perros, Costas Papadimitriou, Spyros Karamanos and Panagiotis Panetsos 

 c
c

yield yield

cx y
x y

μ = =  (8) 

where ( )c cx y  is the deflection (normalized deflection) of the top of the column or, equiva-
lently, the elongation of the column spring, and ( )yield yieldx y  is the respective yield deflection 
(normalized deflection) of the top of the column. The ductility of the system is defined by 

 
1 1

,s
x y
x y

μ = =  (9) 

where 1 1( )x y  is the displacement (normalized displacement) of the mass at the position of 
first yield. 

3 RESPONSE TO PULSE EXCITATION 
The characteristics of the response of the structure to pulse excitation, representing near 

field earthquake excitations, are first considered. A sine pulse excitation of the form 

  
2sin ,

0,

ga t t
z

t

πω
ω

⎧ ≤ Τ =⎪= ⎨
⎪ > Τ⎩

 (10) 

is assumed. The normalized pulse load *( )p τ , defined in (3), is given by 

 * sin , 1
( )

0, 1
p

τ τ
τ

τ
≤⎧

= ⎨ >⎩
 (11) 

Parametric plots of the response of the elastic and inelastic SDOF systems are presented in 
Figures 4 and 5 for constant damping coefficient 5%ζ =  and stiffness ratio . 
Specifically in Figures 4a and b are presented the response spectra of the mass displacement 
for the elastic and inelastic system respectively, versus the non-dimensional period 

/ 10c bK Kκ = =

1 1 / /T T1η ω ω= =  and for different values of the non-dimensional gap length δ . For the elas-
tic system it is shown that the displacement of the mass is decreasing with respect to 1η  for 
given δ , whereas it is increasing with respect to δ  for given 1η . Next, in Figures 5a and b 
are presented the column force spectra for the elastic system and the column ductility spectra 
for the inelastic system, respectively, versus the non-dimensional period 1η  and for different 
values of the non-dimensional gap length δ . The inelastic spectra correspond to non-
dimensional yield force . For this value of yield force the mass of the system first 
impacts the stopper before the yielding of the column. It is shown that the force spectra for the 
elastic system exhibit complex behavior and that the maximum force for each 

0.5yieldf =

δ  appears to be 
in different values of the normalized excitation frequency 1η . 

For the cases of non dimensional gap lengths  δ →∞  or 0δ → , the system responds line-
arly. In the case of δ →∞  no impact occurs during the motion and the system corresponds, 
due to symmetry, to a linear SDOF system with natural frequency 1ω . In the second case of 

0δ →  the system also corresponds, due to symmetry, to a linear SDOF system with mass M  
and with equivalent stiffness composed from the stiffness of three springs, the spring that 
consists of a  spring on one side of the system connected in parallel with the group of the cK
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two springs (  and ) connected in series on the other side. The natural frequency of the 

SDOF system is 
cK bK

2 1 (2 ) / 2 1ω ω κ= + >ω . 
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Figure 4: Mass displacement for (a) elastic system and (b) inelastic system.
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Figure 5: (a) Column forces for elastic system and (b) ductility of inelastic system.

Thus, the linear system 0δ →  has lower period 2T T1<  than the linear system with δ →∞ . 
This clearly shows in the elastic response spectra since the period of excitation for which the 
peak response occurs shifts from 1 1η ≈  to lower values close to 1 2 /T T1η ≈ . For intermediate 
values δ , the maximum response in the nonlinear elastic response spectra occurs between the 
value of 1 1η ≈  and 1 2 /T T1η ≈ . In particular as the value of δ  reduces from δ →∞  to 0δ → , 
the system period reduces since the reduction of the gap δ  tends to increase the stiffness of 
the elastic system and, as a result, the peak in the response spectra moves to the left towards 
smaller values of 1η . For the inelastic system the opposite trend is true which is due to the fact 
that the equivalent period of the inelastic system, for a given value of the frequency 1ω  of the 
linear system tends to increase as the value of δ  reduces. This increase is caused by the sof-
tening behavior the column elastoplastic elements which dominates the hardening behavior of 
the nonlinear elastic system for the chosen value of the ultimate resistant load yf  for the elas-
toplastic column elements. 

It is worth noting that the intermediate values of the gap δ  amplifies by two or three times 
the normalized forces in the linear columns in relation to the forces for the linear systems 

0δ →  and δ →∞ . In contrast, the displacement response spectra of the mass for these in-
termediate values of δ  are contained within the displacement response spectra for the two 
linear systems 0δ →  and δ →∞ . Comparing the displacement spectra in Figure 4 for the 
elastic and inelastic system, it is observed that the displacements of the inelastic system are 
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amplified close to resonance in relation to displacements for the elastic system. As it is clearly 
seen in Figure 4, for relatively high values of the excitation period T  or 1η , which depend on 
the δ  values, the nonlinearities (elastic and inelastic) are not activated and thus the system 
behave linearly.  

Next in Figures 6 and 7 are shown the mass displacement, column force and system ductil-
ity spectra versus the non-dimensional gap length δ  for different values of the non-
dimensional system period 1η , for the elastic and inelastic systems. The mass displacement 
for both systems increases as δ  increases, until it reaches a high enough value beyond which 
there is no impact and the system responds linearly. Note that the straight line, given by 

(1 ) /y δ κ κ= + , that appears in Figure 6 and 7 divides the spectra in two areas. The left area 
is the one that at least one impact has occurred and therefore the system responds non-linearly. 
That is the non dimensional gap length is small enough so that there is at least one impact for 
each value of δ  and 1η . When the value of the non dimensional gap length is not small 
enough for impact to occur, the systems responds linearly and therefore there is no change in 
the response amplitude as the value of δ  increases. 

For the column force spectra it is shown that these forces are always greater when at least 
one impact has occurred, while the maximum column force appears for different δ . The in-
fluence of the non-dimensional gap length δ is also seen in these figures since it effects the  
stiffening or softening behavior of the system. Specifically as the non-dimensional gap length 
decreases, the “equivalent linear” stiffness of the system increases and so does the “equivalent 
linear” natural frequency. This results in resonance phenomena appearing for smaller values 
of the non-dimensional excitation period 1η  corresponding to smaller values of the non-
dimensional gap length. 

0 1 2 3 4 5
0

2

4

6

8

10

δ

y

 

 

η1
=0.1

η1
=0.3

η1=0.5

η1=0.75

η1
=1

η1
=2

0 1

10

2 3 4 5
0

2

4

6

8

y

 

 

η1
=0.1

η1
=0.3

η1=0.5

η1=0.75

η1
=1

η1
=2

 δ

Figure 6: Mass displacement for (a) elastic system and (b) inelastic system.
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Figure 7: (a) Column forces for elastic system and (b) ductility of inelastic system. 
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4 RESPONSE TO RECORDED EARTHQUAKE EXCITATION 

The response spectra of the system to recorded earthquake excitation are next obtained. 
The base acceleration recorded at Sepolia (Athens) metro station during the 1999 Ano Liosia 
(Athens) earthquake of magnitude 6 Richter is used as the excitation. The characteristic input 
frequency was chosen to be 4.22 (2 )ω π=  rad/sec and the value of  was 
based on . 

2/ 0.1N gx a ω= = 4

maxga z=

Response spectra of the mass displacement and column force for the elastic and inelastic 
system are presented in Figures 8 and 9 as a function of 1η  for different values of δ  and in 
Figures 10 and 11 as a function of δ  for different values of 1η . These figures should be com-
pared to Figures 4 to 7 for pulse excitation. It can be seen that the maximum response (dis-
placement, force or ductility) appears to occur for different values of 1η  which depend on the 
values of δ  that controls the hardening or softening behavior of the elastic and inelastic sys-
tems. The results observed for the earthquake excitation are similar to, in some respect, those 
obtained for the sine pulse excitation. 
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Figure 8: Mass displacement for (a) elastic system and (b) inelastic system.
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Figure 9: (a) Column forces for elastic system and (b) ductility of inelastic system. 

5 RELIABILITY ANALYSIS 

The response to a white noise stochastic base excitation is next considered. The levels b  
with fixed probability of not been exceeded by the response are obtained. These levels as a 
function of one of the systems parameters such as 1η  or δ  represent the probabilistic response 
spectra. In Figures 12 and 13 is shown the behavior of the probabilistic elastic and inelastic 
displacement response spectra that have 10-3 probability to be exceeded as a function of the 
system parameters 1η  and δ . For the calculation of the probabilistic response spectra, corre-
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sponding to fixed failure probability, the subset simulation method [6] is used for 500 samples 
for computing the intermediate  failure levels. 110−
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Figure 10: Mass displacement for (a) elastic system and (b) inelastic system.
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Figure 11: (a) Column forces for elastic system and (b) ductility of inelastic system.

The probabilistic response spectra for the mass displacement, corresponding to a fixed 
failure probability, show a very similar behavior to the mass response spectra obtained for the 
pulse excitation in Figures 4 and 6. The normalized period of excitation 1η  at which reso-
nance occurs depends on the gap value δ . For the elastic system, as the gap reduces from 
δ →∞  to 0δ =  values, the system shows a hardening behavior and the peak of the probabil-
istic response spectra moves to the left from 1 1η ≈  to 1 2 /T T1η =  values. For the inelastic sys-
tem the resonance peak is affected by the softening behavior of the column elastoplastic 
elements which can dominate the hardening effect caused by the impact. 
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Figure 12: Mass displacement levels for 310−  failure probability versus non-dimensional period for (a) elastic 

system and (b) inelastic system. 
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Figure 13: Mass displacement levels for 310−  failure probability versus non-dimensional gap length for (a) elas-

tic system and (b) inelastic system. 

Next, a comparison between subset simulation method and the two stage subset simulation 
method for bilinear systems [7] is presented in order to investigate the efficiency of these two 
method for this specific non linear system. The probabilities of failure as a function of ex-
ceedance levels for the mass displacement of the elastic system are given in Figure 14 for the 
two methods, using 500 samples for computing the 110−  intermediate failure levels, and for 
several runs of the two algorithms. Besides the smallest computational effort required by the 
two stage subset simulation method, its accuracy seems to be better for these type of systems, 
as it can be inferred by comparing the scatter of the multiple simulation curves. 
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Figure 14: Comparison between subset simulation (SS) and two stage subset simulation (TSSS). 

6 RESPONSE AND RELIABILITY OF KAVALA BRIDGE 

The methodology is used to investigate the response and reliability of the four-span Kavala 
bridge [8], located in northern Greece, under earthquake excitations. A schematic diagram of 
the bridge is shown in Figure 1b. The bridge deck is supported on columns through elas-
tomeric bearings. The bridge system involves piecewise linear stiffness elements that arise 
from impacts between the deck and the columns during moderate to strong earthquake shak-
ing, while the columns of the bridge are allowed to behave inelastically. A multi degree of 
freedom finite element models of the bridge, involving inelastic elements and piecewise linear 
stiffness elements, is used to simulate its behavior. In order to have a better insight of the ef-
fect of such non linearities, a 2-D model of the four-span Kavala bridge is constructed. An 18 
degrees of freedom finite element model is constructed using one beam element for each 
spam and column, as well as spring elements to model the stiffness of the elastomeric bear-
ings. 

Deterministic short duration sine pulse excitations, given in (10), as well as white noise 
stochastic excitations are used to simulate the short and moderate duration earthquake excita-
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tions. The vulnerability of such bridge structure to these types of earthquake excitations is ex-
plored. Finite element analysis software OpenSEES [9] is used to perform the deterministic 
and stochastic dynamic analysis. 

The elastic displacement response spectra to sine pulse base excitation are shown in Figure 
15a as function of the frequency ω  of the pulse for fixed values of the normalized gap δ  and 
in Figure 15b as a function of the gap δ  for fixed values of the pulse frequency ω . It is clear 
from the Figure 15a that the structure hardens as the gap value reduces from δ →∞  to lower 
values. This behavior is evident by the shift of the peak value towards the right of the deck 
displacement spectra. In Figure 15b the displacement spectra are shown an irregular behavior 
that depends on the gap value δ  and the frequency ω  of the excitation. 

The probabilistic response spectra of the normalized deck displacement and the left pier 
force to white noise base excitation are shown in Figures 16a and 16b as a function of the nor-
malized gap δ . The behavior of the probabilistic response spectra levels for the deck dis-
placement corresponding to fixed failure probability levels of 110 , 10 2− −  and  is similar to 
the behavior of the deterministic response spectra curves for the deck displacement shown in 
Figures 15b for the pulse excitation The column forces increase for intermediate values of the 
normalized gap 

310−

δ . 

7 CONCLUSIONS  
Single degree of freedom mechanical systems with piecewise linear elastic and elastoplas-

tic behavior exhibit complex nonlinear behavior when subjected to transient and stochastic 
excitations. It is shown that the performance of piecewise linear elastic and inelastic SDOF 
systems to transient excitation, such as short sine pulse, earthquake-like and stochastic excita-
tions, depends, among other system parameters, on the gap sizes which affect the determinis-
tic and probabilistic response spectra. Studies on multi-degree-of-freedom model of a four-
span Kavala bridge also show that the response spectra are affected by the size of the gap be-
tween the deck structure and the seismic stoppers of the pier cap. The design of the gap is 
critical in assessing the behavior of the bridge under transient earthquake excitation. The re-
sponse and reliability characteristics of such systems can be enhanced by optimally designing 
the system parameter values. The proposed analysis framework is useful for investigating the 
vulnerability of such bridge systems to earthquake excitations. 
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Figure 15: Deck displacement (a) as a function of ω  for given δ  and (b) as a function of δ  for given ω . 
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Figure 16: (a) Deck displacement and (b) column force for different failure levels. 
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