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1. Introduction

The plane Poiseuille and thermal creep flows are two of the classical problems
in rarefied gas dynamics and have been solved, over the years, with various ana-
lytical and numerical methods [1,2]. The numerical approaches are based on the
Boltzmann equation or simplified kinetic equations including the BGK model [3],
the S-model [4] and variable collision frequency models. Today with the help of
powerful computers it is possible to solve numerically complex geometry problems,
supplemented by advanced kinetic models. The analytical results however, in most
cases are limited to simple geometries and models. It is always advisable to com-
pare the numerical results with analytical solutions in order to justify the accuracy
to expect from the computational schemes. This is not always possible, since most
of the available exact analysis is based only on the BGK model. It seems necessary
to extend the existing analytical approaches and develop new ones in order to face
analytically more challenging problems.

Recently an analytical variation of the discrete-ordinates method has been de-
veloped [5-8] to establish particularly concise and accurate solutions to a number
of classical kinetic theory problems. All this analysis is based again on BGK type
equations. In the present work an attempt is made to extend this novel analytical
approach to more sophisticated kinetic models. The plane Poiseuille and thermal
creep problems are solved, based on the S-model kinetic equations.

The S-model has been extensively used in the past [9] and also recently [10-12]



Vol. 54 (2003) An analytical solution of the S-model kinetic equations 113

to describe efficiently, at the same time, isothermal and non-isothermal flows. It
is known that in these cases the classical BGK can not provide simultaneously
accurate results and yields erroneous Prandtl numbers. Typical examples are the
Poiseuille and thermal creep problems, where the produced mass and heat fluxes
are due to the combined effect of the imposed pressure and temperature gradients.
Most of the numerical work with the S-model is based on the discrete velocity
method [9-12]. A thorough review of all related work in internal rarefied gas flows
is given by Sharipov [2]. The results of the present work allow a validation of the
existing numerical results and also demonstrate the ability of the new analytical
approach to solve accurately more complicated kinetic models.

The linearized S-model kinetic equations [2,10] for the plane Poiseuille and
thermal creep problems are described by
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respectively. In the above equations x denotes the longitudinal direction and
y the vertical direction, c is the molecular velocity vector and the rarefaction
parameter θ is the Knudsen number. The bulk velocity u(y) and the heat flow
q(y) are expressed via the unknown linearized distribution functions hP(y, c) and
hT(y, c) as
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dc, (4)

where i = P for the Poiseuille problem and i = T for the thermal creep problem.
When the bulk velocity and the heat flow are integrated over the distance between
the two plates, yield the flow rates VP , VT and the heat fluxes QP , QT , due
to the pressure and temperature gradients respectively. If only the flow rates are
to be computed, then Eq. (2) need not be solved, since the well known Onsager’s
relation [13,14]

VT = QP (5)

may be used. In this work both Eqs (1) and (2) are solved in order to have a
complete solution and also to test the precision of the implemented semi analytical
numerical scheme satisfying Eq. (5).
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2. Formulation of the Poiseuille and thermal creep problems

The mathematical manipulation of Eqs (1) and (2) is similar. For that reason the
detailed formulation of the method is presented only for Eq. (1). To eliminate the
variables cx and cz , two new functions
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where the P denotes the Poiseuille problem, are introduced. Equation (1) is mul-
tiplied by cxe−c′x
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2
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successively and it is integrated
accordingly, to deduce the following two coupled equations:
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The quantities uP(y) and qP(y) in terms of the two new functions are defined by

uP(y) =
1√
π

∫ ∞

−∞
ZP

1 (y, c′y)e−c′y
2
dc′y (10)

and

qP(y) =
1√
π

∫ ∞

−∞
(c′y

2− 5
2
)ZP

1 (y, c′y)e−c′y
2
dc′y +

2√
π

∫ ∞

−∞
ZP

2 (y, c′y)e−c′y
2
dc′y. (11)

If d is the distance between the plates, the boundary conditions for ZP
1 (y, cy) and

ZP
2 (y, cy) at the walls, for molecules leaving the wall, are given as

ZP
i [∓d/2,±cy] = (1− α)ZP

i [∓d/2,∓cy], (12)

for i=1,2, where α is the accommodation coefficient at the boundaries.
To continue our formulation it is essential at this point to find the particular

solutions of Eqs (8) and (9). To simplify notation let ξ = cy, τ = y/θ and
δ = d/2θ , where δ is half the distance between the plates. It is seen that
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are particular solutions of Eqs (8) and (9). Then ZP
i (x, ξ) , for i = 1, 2 can be

written as
ZP

i (τ, ξ) = Y P
ip(τ, ξ)− θY P

i (τ, ξ). (15)
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The unkown functions Y P
i satisfy the homogeneous vector equation
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The associated boundary conditions at τ = ∓δ are
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for ξ > 0 . Substituting Eq. (15) into Eqs (10) and (11), the velocity and the heat
flow profiles for the Poiseuille problem may be expressed in non dimensional form
as

uP(τ) =
1
2
(
11
10
− α2 + τ2)− 1√

π

∫ ∞

−∞
Y P

1 (τ, ξ′)e−ξ′2 dξ′ (22)

and

qP(τ) =
3
4
− 1√

π

∫ ∞

−∞
(ξ2 − 5

2
)Y P

1 (x, ξ′)e−ξ′2 dξ′ − 2√
π

∫ ∞

−∞
Y P

2 (x, ξ′)e−ξ′2 dξ′.

(23)
Operating similarly on Eq. (2) the thermal creep problem is formulated and

the corresponding expressions for the bulk velocity and heat flow profiles, due to
the imposed temperature gradient, are found. In this case the particular solutions
are
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where T denotes the thermal creep problem. The homogeneous part of the so-
lution Y T

i satisfies the same vector equation (16), coupled with the boundary
conditions
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and
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Finally the quantities of main interest, which are the flow rates and the heat
fluxes, are obtained from the integrals

Vi(δ) = − 1
2δ2

∫ δ

−δ

ui(τ) dτ. (28)

Qi(δ) = − 1
2δ2

∫ δ

−δ
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respectively, where i = P for the Poiseuille problem and i = T for the ther-
mal creep problem. In section 4, results of the above quantities are presented as
function of the rarefunction parameter and the accommodation coefficient.

3. The discrete-ordinates solution

The analytical version of the classical discrete ordinate (or discrete velocity) method
has already been implemented, based on the BGK model, in a series of classical
rarefied gas dynamics problems [5-8]. For that reason our discussion here is brief,
pointing out the new elements of the formulation related to the S-model kinetic
equations.

The problem has been reduced to the solution of Eq. (16), subject to the
boundary conditions (20), (21) and (26), (27) for the Poiseuille and thermal creep
problems respectively. Since Eq. (16) is common the superscript notation is not
used and it is assumed that it corresponds to both problems. Assuming that
Eq. (16) holds for a finite number of discrete velocities ξi , its discrete ordinate
approximation may be written as

±ξi
d
dx

Y (x,±ξi) + Y (x,±ξi) = A(ξi)
N∑

k=1

ŵkB(ξk)
[
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]
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where
ŵk = π−1/2wke−ξ2

k , (31)

for i = 1, 2, . . . , N , while a compatible quadrature scheme is applied to the integral
terms. Following the main idea of the method of elementary solutions [14], the
complete set of separable solutions

Y (x,±ξi) = Φ(ν,±ξi)e−x/ν , (32)

is substituted into Eq. (30) to find, after some algebraic manipulation,(
D− 2M−1SWM−1

)
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]
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]
, (33)
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for i = 1, 2, . . . , N . In the eigenvalue problem defined by Eq. (33), ν are the
separation constants, λ = 1/ν2 are the eigenvalues,
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{
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}
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{
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}
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are 2N × 2N block diagonal matrices. The 2N × 2N matrix W has N block
rows each given by
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The eigenvalue problem is solved to obtain the 2N eigenvalues and the corre-
sponding 2N (positive) separation constants. Then from Eqs (30) and (32) is
deduced that
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Equations (39) are multiplied by ŵiB(ξi) and the resulting equations are summed
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Here F(νj) is a vector in the null space of Ω(νj) . It is seen that after the
separation constants νj are determined and Ω(νj) is defined, the vector F(νj)
can be easily computed.

A first version of the analytically deduced discrete ordinates solution of Eq. (16)
may be written as

Y (x,±ξi) =
2N∑
j=1

νj

[ Aj

νj ∓ ξi
e−(α+x)/νj +

Bj

νj ± ξi
e−(α−x)νj

]
A(ξi)F(νj), (43)

where the 4N constants {Aj} and {Bj} are, still arbitrary. Since the deter-
minant of Ω(νj) has a first order zero at infinity we ignore the contribution in
Eq. (43) from the largest separation constant and instead we include the easily



118 D. Valougeorgis ZAMP

deduced exact solution. In this case the modified version of the analytical solution
is

Y (x,±ξi) = Y 0(x,±ξi)+
2N∑
j=2
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The final step is the estimation of the coefficients Aj and Bj , j = 1, 2, ...2N .
They are found by substituting the solution (44) into the boundary conditions
(20) and (21) for the Poiseuille problem and into the boundary conditions (26)
and (27) for the thermal creep problem. For each problem the resulting algebraic
system of 4N equations is solved for the 4N unknown constants. Thus the two
systems are identical except for the right hand sides. Let the coefficients AP

j ,BP
j

and AT
j ,BT

j , j = 1, 2, ...2N denote the solution of the Poiseuille and thermal creep
problems respectively.

When Eq. (44) is substituted back into Eqs (22) and (23) the resulting expres-
sions for the local quantities of the velocity and heat flow profiles are
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respectively. These distributions are integrated over the distance between the
two plates according to Eqs (28) and (29), to obtain the following closed form
expressions for the overall quantities of the flow rate
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and the heat flux
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for the Poiseuille problem. The corresponding expressions for the thermal creep
problem are

uT(x) = AT + BTx +
2N∑
j=2

(
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j e−(δ−x)νj

]
f1(νj) (50)
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and
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for the gross quantities.
The method is considered to be a semi-analytical-numerical approach since the

only numerical work required, is related with the estimation of the eigenvalues and
the unknown coefficients via the solution of two linear systems.

4. Numerical results

To solve for the unknown coefficients first a set of collocation points must be
selected. Following previous work [5-8], it is chosen to map the initial interval
[0,∞) of ξi onto the new interval [0, 1] . Then a Gauss-Legendre scheme, mapped
also onto the interval [0, 1] , is used. This quadrature approximation has been
found to be very effective. After the quadrature points have been selected the
numerical implementation is simple and straightforward. The only pitfall, which
may rise, is when the term ŵk , defined by Eq. (31), for some values of ξk becomes
zero from a computational point of view. Then some of the separation constants νj

will be equal to some of the quadrature nodes ξk , and this clearly is not allowed
in Eq. (43). This problem is circumvented by simply omitting the quadrature
points which cause the singularity [5-8]. This is numerically justified since, from
a computational point of view, these nodes do not contribute to the right hand
side of Eq. (30). At the same time the number of separation constants is reduced
accordingly. After the linear systems are solved and all coefficients are found the
quantities of main interest are computed from expressions (50–53).

Since there are no exact results available in the literature to compare, it is
not possible to prove the accuracy of our solution. The confidence in our results
is established by increasing the value of N until convergence to the last digit
shown is achieved. Onsager’s relation (5) is also used. In addition the numerical
solution of the linear systems is obtained using independently developed Fortran
and Matlab routines. All presented results are originated with 40 < N < 80 . We
believe that the results are accurate to all significant figures shown. The required
computational time in a typical PC is 2-3 seconds.
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Table 1. Flow rates V and heat fluxes Q for the Poiseuille and thermal creep
problems based on the S-model for purely diffuse scattering.

Poiseuille Thermal creep Ref. [2]
problem problem Direct numerical method

2δ VP QP VT QT VP QP or VT QT

0.01 3.0517 1.2469 1.2469 6.7341 3.0519 1.2470 6.7343
0.05 2.30720 0.87260 0.87260 4.83114 - - -
0.1 2.03955 0.73268 0.73268 4.05461 2.0397 0.7328 4.0553
0.5 1.61445 0.46294 0.46294 2.39170 1.6147 - -
1 1.55365 0.36546 0.36546 1.75375 1.5541 0.3656 1.7543
5 2.00543 0.16399 0.16399 0.61667 2.0080 - -
10 2.77990 0.098147 0.098147 0.34063 2.7863 0.09834 0.3407
100 17.69675 0.0115516 0.0115516 0.037155 - - -

Table 2. Flow rates VP for the Poiseuille problem based on the S-model and the
Boltzmann equation (BE) for diffuse-specular scattering.

α = 1.0 α = 0.75 α = 0.50

2δ S model BE[16] S model BE[17] S model BE[17]

0.01 3.0517 - 4.5319 - 7.2100 -
0.05 2.30720 - 3.35072 - 5.24276 -
0.1 2.03955 1.9318 2.93646 2.7860 4.58009 4.3628
0.5 1.61445 1.5607 2.28417 2.2128 3.57177 3.4748
1.0 1.55365 1.5086 2.17393 2.1204 3.39277 3.3270
5.0 2.00543 1.9637 2.60139 2.5555 3.78842 3.7496
10.0 2.77990 2.7350 3.38599 3.3407 4.58372 4.5490
100.0 17.69675 - 18.32685 - 19.53951 -

In Table 1 the flow rates and the heat fluxes are presented for different values of
the inverse Knudsen number 2δ , which represents the distance between the plates,
with diffuse boundary conditions for the Poiseuille and thermal creep problems.
In columns 3 and 4 the heat flux QP and the flow rate VT are given. It is seen
that Onsager’s relation (5) is satisfied very accurately. In the last three columns
of the same table relative results of previous work (see Tables 1, 11 and 18 of
Ref. [2]), using the S-model and a numerical discrete velocity method, are also
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Table 3. Heat fluxes QP and flow rates VT for the Poiseuille and thermal creep
problems respectively, based on the S-model and the Boltzmann equation (BE)

for diffuse-specular scattering.

α = 1.0 α = 0.75 α = 0.50

2δ S model BE[17] S model BE[17] S model BE[17]

0.01 1.2469 - 1.8020 - 2.7706 -
0.05 0.87260 - 1.20557 - 1.76508 -
0.1 0.73268 0.7966 0.98589 1.0864 1.40121 1.5632
0.5 0.46294 0.5036 0.56581 0.6225 0.71551 0.7903
1.0 0.36546 0.3890 0.41916 0.4505 0.49043 0.5285
5.0 0.16399 0.1574 0.16112 0.1570 0.15787 0.1566
10.0 0.098147 0.0898 0.093048 0.0871 0.087524 0.0842
100.0 0.011552 - 0.010643 - 0.0096702 -

Table 4. Heat fluxes QT for the thermal creep problem based on the S-model
and the Boltzmann equation (BE) for diffuse-specular scattering.

α = 1.0 α = 0.75 α = 0.50

2δ S model BE[16] S model BE[17] S model BE[17]

0.01 6.7341 - 9.9081 - 15.5042 -
0.05 4.83114 - 6.80590 - 10.10061 -
0.1 4.05461 3.8669 5.55960 5.3371 7.97685 7.7430
0.5 2.39170 2.3918 2.98291 2.9969 3.79898 3.8420
1.0 1.75375 1.7846 2.06847 2.1077 2.46400 2.5136
5.0 0.61667 0.6319 0.64682 0.6602 0.67894 0.6903
10.0 0.34063 0.3467 0.34859 0.3540 0.35694 0.3616
100.0 0.037155 - 0.037235 - 0.037319 -

presented. The numerical results given in Ref. [2] are in good agreement with the
analytical results.

In Tables 2 , 3 and 4 the gross quantities VP , VT (or QP ) and QT are given
respectively, for different accommodation coefficients α and various distances be-
tween the plates. The corresponding results of Refs [16] and [17], obtained by a
discrete velocity numerical solution of the Boltzmann equation are also presented.
It is seen that the obtained results of the S-model and the Boltzmann equation are
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Table 5. Velocity and heat flow profiles for the Poiseuille and thermal creep
problems based on the S-model for α = 0.75 and 2δ = 0.1 .

2δ −uP(x) qP(x) uT(x) −qT(x)

0.0 0.15229 0.051946 0.051807 0.28808
0.2 0.15171 0.051669 0.051544 0.28702
0.4 0.14994 0.050814 0.050734 0.28377
0.6 0.14680 0.049297 0.049296 0.27799
0.8 0.14187 0.046895 0.047020 0.26884
1.0 0.13289 0.042444 0.042812 0.25194

Table 6. Velocity and heat flow profiles for the Poiseuille and thermal creep
problems based on the S-model for α = 0.75 and 2δ = 1.0 .

2δ −uP(x) qP(x) uT(x) −qT(x)

0.0 1.1875 0.24389 0.23414 1.1122
0.2 1.1768 0.24048 0.23166 1.1045
0.4 1.1439 0.22986 0.22398 1.0806
0.6 1.0862 0.21060 0.21012 1.0369
0.8 0.99608 0.17883 0.18750 0.96423
1.0 0.83112 0.11263 0.14182 0.81309

always in good agreement. The well known capability of the linearized S-model
to approximate reasonably well, both the Poiseuille and thermal creep problems
simultaneously, is confirmed even for diffuse-specular scattering.

Finally in Tables 5 , 6 and 7 the local quantities of the velocity and heat flow
profiles are given for an accommodation coefficient α = 0.75 and for typical values

Table 7. Velocity and heat flow profiles for the Poiseuille and thermal creep
problems based on the S-model for α = 0.75 and 2δ = 10.0 .

2δ −uP(x) qP(x) uT(x) −qT(x)

0.0 21.424 0.68318 0.52095 1.8525
0.2 20.908 0.67142 0.51772 1.8477
0.4 19.351 0.62971 0.50637 1.8300
0.6 16.714 0.53211 0.48039 1.7854
0.8 12.862 0.29559 0.41984 1.6641
1.0 6.5128 -0.72232 0.19532 1.0624
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of the distance between the plates equal to 0.1 , 1.0 and 10.0 . The change of sign
in the heat flow profile near the wall as the distance between the plates is increased,
is due to the influence of the surface and it is expected. More important it is noticed
that the accuracy to expect of the method remains the same either computing
gross or local quantities. Actually the estimation of all relative quantities, as it is
seen from Eqs (50-53), including the distribution function itself, is based on the
determination of the same 4N unknown coefficients. This is one of the advantages
of the present semi analytical approach.

5. Concluding remarks

The plane Poiseuille and thermal creep problems, described by the S-model kinetic
equations have been solved, based on a semi analytical numerical version of the
discrete ordinates method. This analytical approach is extended for first time to a
collision model other than the BGK. The implementation however, remains very
simple and the method is easy to use. The obtained results are of high accuracy
and allow the reliable testing of previous results obtained with direct numerical
approaches, based on the S-model approximation.

Following the present work, we are more optimistic now than before, about
applying this novel approach to other geometries and to even more sophisticated
kinetic models, including the variable frequency collision model.
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