
ACCELERATION SCHEMES OF THE DISCRETE VELOCITY
METHOD: GASEOUS FLOWS IN RECTANGULAR

MICROCHANNELS∗

D. VALOUGEORGIS† AND S. NARIS†

SIAM J. SCI. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. 000–000

Abstract. The convergence rate of the discrete velocity method (DVM), which has been applied
extensively in the area of rarefied gas dynamics, is studied via a Fourier stability analysis. The
spectral radius of the continuum form of the iteration map is found to be equal to one, which
justifies the slow convergence rate of the method. Next the efficiency of the DVM is improved by
introducing various acceleration schemes. The new synthetic-type schemes speed up significantly the
iterative convergence rate. The spectral radius of the acceleration schemes is also studied and the
so-called H1 acceleration method is found to be the optimum one. Finally, the two-dimensional flow
problem of a gas through a rectangular microchannel is solved using the new fast iterative DVM. The
number of required iterations and the overall computational time are significantly reduced, providing
experimental evidence of the analytic formulation. The whole approach is demonstrated using the
BGK and S kinetic models.
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1. Introduction. After the early work of Broadwell [4], Huang et al. [10], and
Cabannes [6], the discrete velocity method (DVM) has been developed into one of the
most common techniques for solving the Boltzmann equation [7, 12] and simplified
model equations [14, 23, 15] in the area of rarefied gas dynamics. The method has also
been applied to solve mixture problems [20, 8]. An extensive review article on internal
rarefied gas flows including DVM applications has been given lately by Sharipov [16].
Very recently, new models of discrete velocity gases [5] and mixtures [9] have been
introduced indicating that the method can be extended into more general models
including polyatomic gases with chemical reactions.

The method is based on a discretization of the velocity and space variables by
choosing a suitable set of discrete velocities and by applying a consistent finite dif-
ference scheme, respectively. Then the collision integral term is approximated by an
appropriate quadrature, and the resulting discrete system of equations is solved in
an iterative manner. Researchers implementing the DVM are well aware, however, of
its slow convergence, particularly when domains with thick subregions are considered
[17]. In these cases a large number of iterations are required, and calculations are
amenable to accumulated round-off error. Special attention is needed to sustain ac-
ceptable accuracy. Even more when multidimensional physical systems are examined,
computational effort and time are drastically increased. These types of calculations
are now needed to solve in an efficient and accurate manner fluidics applications in
micro-electrical-mechanical systems and nanotechnology problems. In these applica-
tions, due to the fact that the Navier–Stokes equations are restricted by the hydrody-
namic regime, kinetic-type equations and corresponding numerical approaches must
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be introduced. Recently, the DVM has been applied to solve the isothermal [18] and
nonisothermal [19] gas flow problems through rectangular microchannels.

The renewed increased interest for large-scale computational solutions based on
the DVM makes it necessary to study carefully its convergence rate and propose
novel accelerated iterative schemes. This type of fast iterative algorithms has been
well developed in the area of neutron transport [11, 1, 2]. They have been applied
effectively to speed up the iterative convergence of the discrete-ordinates method in
optically thick regions with low absorption and isotropic or anisotropic scattering [21].
As it is well known, the areas of neutron transport and kinetic theory are described by
similar-type linear integro-differential equations derived from the Boltzmann equation,
while the discrete ordinates and velocity methods are based on common principals and
they have similar characteristics and behavior. Thus it is reasonable to expect that
the acceleration schemes, which have been well developed for the discrete-ordinates
method, can be extended with certain modifications to speed up the convergence rate
of the DVM. In the present work we extend these ideas in the area of rarefied gas
dynamics, and we develop suitable new accelerated algorithms of the classical DVM
for the solution of the well-known BGK [3] and S [13] model kinetic equations [16].

We begin our analysis in section 2 with the stability Fourier analysis of the typi-
cal DVM, and the spectral radius of the method is found for the BGK and S model
kinetic equations. We continue in section 3 with the formulation of the proposed
acceleration schemes for both kinetic models, while in section 4 results of the theo-
retical convergence rates of certain acceleration methods are presented for the BGK
model. In section 5 we perform a numerical experiment, solving the two-dimensional
flow problem of a gas through a rectangular microchannel due to a pressure and tem-
perature gradient, and the performance of the accelerated schemes is demonstrated.
Finally, in section 5 a brief summary and some concluding remarks are given.

It is noticed that our theoretical solutions of the convergence rates in sections
2 and 4 are based on the analytic transport and acceleration equations with no dis-
cretization in velocity and space. Furthermore, the use of the infinite medium problem
for the Fourier analysis is highly idealized. However, previous experience with accel-
eration schemes [1, 21] has shown that these analytical results are indicative for the
associated discretized versions. This statement is shown to be true in section 5, where
the fully discretized schemes are implemented to solve the two-dimensional flow prob-
lem with Dirichlet boundary conditions.

2. Stability analysis of the DVM. In many cases, due to the complexity
of the collision term of the Boltzman equation, certain simplified kinetic models are
implemented. Two of the most commonly tested models are the BGK and the S
models, which have been applied to solve a large number of rarefied gas dynamics
problems based on the DVM [16]. Thus we base our stability analysis approach on
these two particular models.

For simplicity and demonstration purposes, the stability analysis approach will
be presented first for the one-dimensional linearized BGK model equation for shear
flow problems in slab geometry [7]. In this case the analytic version of the DVM is
described by the transport equation

µ
∂ψ(x, µ)(�+1/2)

∂x
+ ψ(x, µ)(�+1/2) = ϕ0(x)

(�) + S(x)(1)

with

ϕ0(x)
(�+1) =

1√
π

∫ ∞

−∞
ψ(x, µ)(�+

1
2 )e−µ2

dµ,(2)
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where x ∈ (−∞,∞) is the spatial variable, µ ∈ (−∞,∞) is the particle velocity in the
x direction, S(x) is a source term depending upon the problem under consideration,
and � denotes the iteration index. The term φ0 can be considered as the zeroth
Hermite moment of ψ. This concept is generalized later, in section 3, where higher
order Hermite moments of ψ are considered. The convergence rate of the iteration
map described by (1) and (2) is studied by the following Fourier analysis, which is
applied to the infinite medium problem. We define the correction (or error) functions

Y (x, µ)(�+1/2) = ψ(x, µ)(�+1/2) − ψ(x, µ)(�−1/2)(3)

and

Φ0(x)
(�+1) = ϕ0(x)

(�+1) − ϕ0(x)
(�)(4)

as the difference between successive iteratives of ψ and ϕ0, respectively. The rate
at which Y (x, µ)(�+1/2) and Φ0(x)

(�+1) tend to zero is the rate of convergence of the
DVM. By subtracting (1) and (2) for successive iterates we obtain

µ
∂Y (x, µ)

∂x

(�+ 1
2 )

+ Y (x, µ)(�+
1
2 ) = Φ0(x)

(�)(5)

and

Φ0(x)
(�+1) =

1√
π

∫ ∞

−∞
Y (x, µ)(�+

1
2 )e−µ2

dµ.(6)

To determine the convergence rate we seek eigenvalues ω and eigenfunctions y(µ) of
the form

Y (x, µ)(�+1/2) = ω�y(µ)eiλx(7)

and

Φ0(x)
(�+1) = ωΦ0(x)

(�) = ω2Φ0(x)
(�−1) = · · · = ω�+1α0e

iλx,(8)

where a0 is some unknown constant. In (7) and (8), ω is the eigenvalue corresponding
to the Fourier wavenumber λ and represents the error from one iteration to the next.
Equations (7) and (8) are introduced into (5) and (6) to obtain expressions for the
eigenfunction and the eigenvalue

y(µ) =
α0

1 + iλµ
(9)

and

ω = ωDVM =
1√
π

∫ ∞

−∞

e−µ2

1 + (λµ)2
dµ = Λ,(10)

respectively. To distinguish this result from the following ones obtained by the ac-
celerated schemes, the eigenvalue ω of the DVM is denoted by ωDVM. The spectral
radius supλ |ωDVM|, with −∞ < λ < ∞, represents the slowest possible reduction in
the error from one iteration to the next. The integral in (10) is computed numeri-
cally, and the complete plot of ω versus λ is given in Figure 1. The maximum value of
|ωDVM|, which occurs for λ = 0, is ωDVM = 1. For a finite system the flat λ = 0 mode,
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with the corresponding eigenfunction y(µ) = α0, cannot be present and thus the DVM
described by (1) and (2), when applied to more realistic finite systems with boundary
conditions, converges absolutely. At the same time, however, the slow convergence
rate of the method in the case of thick slabs is well understood and justified.

Next we consider the convergence rate of the one-dimensional linearized S-model
kinetic equations, which is commonly implemented when nonisothermal flows are
considered in order to obtain the correct Prandtl number. The analytic iteration map
of the DVM is described by the two-coupled equations

µ
∂ψ1(x, µ)

(�+ 1
2 )

∂x
+ ψ1(x, µ)

(�+ 1
2 ) = f(x)(�) +

2

15

(
µ2 − 1

2

)
g(x)(�) + S(x)(11a)

and

µ
∂ψ2(x, µ)

(�+ 1
2 )

∂x
+ ψ2(x, µ)

(�+ 1
2 ) = f(x)(�) +

2

15

(
µ2 +

1

2

)
g(x)(�) + S(x)(11b)

and the corresponding moments

f(x)(�+1) =
1√
π

∫ ∞

−∞
ψ1(x, µ)

(�+ 1
2 )e−µ2

dµ(12a)

and

g(x)(�+1) =
1√
π

∫ ∞

−∞

(
µ2 − 5

2

)
ψ1(x, µ)

(�+ 1
2 )e−µ2

dµ+
2√
π

∫ ∞

−∞
ψ2(x, µ)

(�+ 1
2 )e−µ2

dµ.

(12b)
Operating on a similar manner as before we define the correction functions

R(x, µ)(�+1/2) = ψ1(x, µ)
(�+1/2) − ψ1(x, µ)

(�−1/2),(13a)

S(x, µ)(�+1/2) = ψ2(x, µ)
(�+1/2) − ψ2(x, µ)

(�−1/2),(13b)

Z0(x)
(�+1) = f(x)(�+1) − f(x)(�),(13c)

and

W0(x)
(�+1) = g(x)(�+1) − g(x)(�).(13d)

Then (11) is subtracted for successive iterates to yield

µ
dR(x, µ)(�+

1
2 )

dx
+R(x, µ)(�+

1
2 ) = Z0(x)

(�) +
2

15

(
µ2 − 1

2

)
W0(x)

(�)(14a)

and

µ
dS(x, µ)(�+

1
2 )

dx
+ S(x, µ)(�+

1
2 ) = Z0(x)

(�) +
2

15

(
µ2 +

1

2

)
W0(x)

(�)(14b)

with

Z0(x)
(�+1) =

1√
π

∫ ∞

−∞
R(x, µ)(�+

1
2 )e−µ2

dµ(15a)

and

W0(x)
(�+1)

=
1√
π

∫ ∞

−∞

(
µ2 − 5

2

)
R(x, µ)(�+

1
2 )e−µ2

dµ +
2√
π

∫ ∞

−∞
S(x, µ)(�+

1
2 )e−µ2

dµ.(15b)
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Applying a separation of variables, Fourier mode solution for the infinite-medium
model problem in the same manner as before we set

R(x, µ)(�+1/2) = ωlr(µ)eiλx,(16a)

S(x, µ)(�+1/2) = ωls(µ)eiλx,(16b)

Z0(x)
(�+1) = ωZ0(x)

(�) = ω2Z0(x)
(�−1) = · · · = ω�+1z0e

iλx,(16c)

and

W0(x)
(�+1) = ωW0(x)

(�) = ω2W0(x)
(�−1) = · · · = ω�+1w0e

iλx,(16d)

where z0 and w0 are unknown constants. Substituting the above Fourier mode ansatz
into (14), the expressions for the two eigenfunctions

r(µ) =

z0 +
2

15

(
µ2 − 1

2

)
w0

1 + iλµ
(17a)

and

s(µ) =

z0 +
2

15

(
µ2 +

1

2

)
w0

1 + iλµ
(17b)

are obtained. Introducing then (17) for r(µ) and s(µ) into (16) and the resulting
equations into (15) yields the 2× 2 matrix eigenvalue problem

(A− ωI)α = 0.(18)

In vector equation (18), ω are the two eigenvalues of A indicating the convergence
rate of the DVM, α = [z0, w0]

T are any of the two corresponding eigenvectors, and A
is a 2× 2 matrix given by

A(λ) =




Λ
2

15

[
1− Λ

λ2
− Λ

2

]

[
1− Λ

λ2
− Λ

2

]
3

10
Λ− 2

15

1

λ2

[
1− Λ

λ2
− Λ +

1

2

]


 ,(19)

where Λ is the integral defined in (10). Closed form expressions for the two eigenvalues
can be easily obtained by solving analytically the quadratic characteristic equation.
Then the closed form expressions are computed numerically as functions of λ and the
results are plotted in Figure 1. It is found that as λ approaches zero the values of
ω1(λ) and ω1(λ) are increased and the maximum values of |ω1| and |ω2|, which occur
for λ = 0, are ω1 = 1, and ω2 = 1

3 . Thus the spectral radius of the DVM for the S
model is equal to one, and it is the same with the spectral radius obtained for the
BGK model. Actually as it is shown in Figure 1, the values of the whole spectrum
of ω1(λ) for the S model is very close to the values of ω(λ) for the BGK model. The
second eigenvalue ω2(λ) is less than ω1(λ) for all λ ≥ 0. Again the slow convergence
rate of the DVM applied to the S model kinetic equation, particularly when thick
regions are considered, is explained.
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Fig. 1. Plots of ω versus λ for the typical DVM (BGK and S models).

The above Fourier mode analysis can be extended in a straightforward manner
in multidimensional Cartesian geometry. For example, in a two-dimensional case the
BGK equation may be written as

(20)

µ
∂ψ(x, y, µ, η)

∂x

(�+ 1
2 )

+ η
∂ψ(x, y, µ, η)

∂y

(�+ 1
2 )

+ ψ(x, y, µ, η)(�+
1
2 ) = ϕ

(l)
00 (x, y) + S(x, y)

with

ϕ
(�+1)
00 (x, y) =

1

π

∫ ∞

−∞

∫ ∞

−∞
ψ(�+ 1

2 )(x, y, µ, η)e−µ2−η2

dµ dη,(21)

where x, y ∈ (−∞,∞) are the spatial variables, µ, η ∈ (−∞,∞) are the particle
velocities in the x and y directions, respectively, ψ(x, y, µ, η) is the unknown function,
S(x, y) is a source term depending upon the problem under consideration, and �
denotes the iteration index. Subtracting (20) and (21) for successive iterates we find

µ
∂Y (x, y, µ, η)

∂x

(�+ 1
2 )

+ η
∂Y (x, y, µ, η)

∂y

(�+ 1
2 )

+ Y (x, y, µ, η)(�+
1
2 ) = Φ

(�)
00 (x, y)(22)

with

Φ
(�+1)
00 (x, y) =

1

π

∫ ∞

−∞

∫ ∞

−∞
Y (�+ 1

2 )(x, y, µ, η)e−µ2−η2

dµ dη,(23)

where Y (x, y, µ, η) and Φ00(x, y) are the correction functions. Substituting

Y (x, y, µ, η)(�+1/2) = ω�y(µ, η)eiλ(xθx+yθy)(24)
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and

Φ00(x)
(�+1) = ωΦ00(x)

(�) = ω�+1α00e
iλx,(25)

where λ = λ(θx, θy), with θ2
x + θ2

y = 1, into (22) and (23) and after some routine
manipulation, the following closed form expressions are obtained for the eigenfunction:

y(µ, η) =
α00

1 + iλ(µθx + ηθy)
(26)

and the eigenvalue

ω(λ) =
1

π

∫ ∞

−∞

∫ ∞

−∞

e−µ2−η2

1 + λ2(µθx + ηθy)2
dµ dη.(27)

Applying a straightforward linear transformation, the double integral in (27) is re-
duced to the single integral in (10), which has been derived for the one-dimensional
case. As it is expected the continuous plane solutions of the exact kinetic equations
are reduced to the solutions of the corresponding slab geometry equations. Thus the
iteration scheme applied to the exact kinetic equations must perform equally well
or poorly in all Cartesian geometries. This conclusion holds also for the S model
kinetic equations as well as for the proposed acceleration schemes. Before we pro-
ceed with the formulation of the iterative acceleration schemes, it is pointed out that
transport (1), (11), and (20) coupled with the corresponding moments (2), (12), and
(21), respectively, represent a wide range of classical rarefied gas dynamics problem,
depending upon the types of the boundary conditions. Typical examples are the
Poiseuille and thermal creep flows in slabs, cylinders, and orthogonal ducts. On the
boundary conditions issue we will comment in section 5, where numerical results are
presented.

3. Formulation of the acceleration schemes for the BGK and S mod-
els. The development of fast iteration schemes for the solution of the neutron and
radiative transport equations has been carried out by many researchers and has led
to dramatic theoretical and practical success [1, 2, 21]. The most advanced of these
acceleration methods are based on the formulation of moment equations, the so-called
synthetic equations, which are solved coupled with the transport equation to improve
significantly the slow iterative convergence rate of the transport equation. Here sim-
ilar synthetic type equations are obtained for the BGK and S models. It is noticed
that although the DVM has been applied extensively to solve kinetic theory prob-
lems in an iterative manner, no effort has been made until now to accelerate the slow
convergence rate of the iteration map.

3.1. The BGK model kinetic equation. The proposed acceleration scheme
is formulated based on the linearized one-dimensional BGK transport equation. Ex-
tending earlier work in the areas of neutron and radiative transport [1, 2], (1) is first

multiplied by the exponential term 1√
π
e−µ2

and then the first N+1 Hermite moments

of the resulting equation are taken to obtain a set of ordinary differential equations

1

2

dϕ1(x)
(�+ 1

2 )

dx
+ ϕ0(x)

(�+ 1
2 ) = ϕ0(x)

(�), n = 0(28a)

1

2

dϕn+1(x)
(�+ 1

2 )

dx
+ n

dϕn−1(x)
(�+ 1

2 )

dx
+ ϕn(x)

(�+ 1
2 ) = 0, n = 1, 2, . . . , N,(28b)
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where

ϕn(x)
(�+ 1

2 ) =
1√
π

∫ ∞

−∞
Hn(µ)ψ(x, µ)

(�+1/2)e−µ2

dµ,(29)

with Hn(µ) denoting the nth order Hermite polynomials. Then the accelerated syn-
thetic equations are defined as

dϕ1(x)
(�+1)

dx
= 0, n = 0,(30a)

1

2

dϕn+1(x)
(�+1)

dx
+ n

dϕn−1(x)
(�+1)

dx
+ ϕn(x)

(�+1) = 0, n = 1, 2, . . . , N − 1,(30b)

and

N
dϕN−1(x)

(�+1)

dx
+ ϕN (x)(�+1) = −1

2

dϕN+1(x)
(�+ 1

2 )

dx
, n = N.(30c)

It is noticed that all moments of ψ(x, µ), except the N + 1 moment, are acceler-
ated. The above set of equations is coupled with the transport equation (1) and they
are solved in an iterative manner. More specifically the proposed accelerated DVM
consists of the following steps:

1. Assume ϕ0(x)
(�) and compute ψ(x, µ)(�+1/2) from (1).

2. Estimate the N + 1 moment of ψ(x, µ), which is not accelerated, from (29).
3. Solve the system of differential equations (30) and find ϕn(x)

(�+1) for n =
0, 1, . . . , N .

4. Check for convergence between ϕ0(x)
(�+1) and ϕ0(x)

(l) and if necessary go back
to step 1 and use the accelerated ϕ0(x)

(�+1) to compute the new ψ(x, µ).
Various acceleration schemes may be defined, depending upon the number of

accelerated moments. In general when the first N Hermite moments are accelerated,
we name the corresponding acceleration algorithm the “HN acceleration scheme,”
consisting of the transport equation, the N + 1(0, 1, . . . , N) synthetic equations, and
the integral expression for the nonaccelerated N + 1 moment. It is obvious that the
computational effort per iteration is increased. However, as it is proved in section 4
theoretically and in section 5 experimentally, the number of required iterations for
convergence is significantly reduced, and the overall computational scheme becomes
very efficient.

We now turn our attention to the formulation of the proposed acceleration algo-
rithms in the case of two-dimensional Cartesian geometry. The procedure is demon-
strated by applying an H1 acceleration scheme to the linearized BGK equation in
x-y geometry. To carry this out, (20) is multiplied first by 1

Πe−µ2−η2

and then suc-
cessively by H0(µ)H0(η), H1(µ)H0(η), and H0(µ)H1(η). The resulting equations are
integrated over µ and η yielding the following set of synthetic equations:

dϕ
(�+1)
10

dx
+

dϕ
(�+1)
01

dy
= 0,(31a)

dϕ
(�+1)
00

dx
+ ϕ

(�+1)
10 = −1

2

dϕ
(�+ 1

2 )
20

dx
− 1

2

dϕ
(�+ 1

2 )
11

dy
,(31b)

and

dϕ
(�+1)
00

dy
+ ϕ

(�+1)
01 = −1

2

dϕ
(�+ 1

2 )
02

dy
− 1

2

dϕ
(�+ 1

2 )
11

dx
,(31c)
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where

ϕ
(�+ 1

2 )
mn (x, y) =

1

π

∫ ∞

−∞

∫ ∞

−∞
ψ(�+ 1

2 )(x, y, µ, η)Hm(µ)Hn(η)e
−µ2−η2

dµ dη.(32)

The iterative procedure applied to the accelerated H1 algorithm, consisting of (20),
(31), and (32), is identical to the one-dimensional case. This two-dimensional H1

acceleration scheme is applied in section 5 to solve the gas flow problems.

3.2. The S model kinetic equation. The iterative acceleration scheme for
the solution of the more advanced S model kinetic equations may be formulated in a
similar manner. Some modifications are required, however, due to the special form of
the two-coupled transport equations. First (11) is rewritten in the revised form

µ
∂ψ

(�+ 1
2 )

1

∂x
+ ψ1(x, µ)

(�+ 1
2 )(33a)

= f0(x)
(�) +

2

15

(
µ2 − 1

2

)[
1

4
f2(x)

(�) − 2f0(x)
(�) + 2h0(x)

(�)

]

and

µ
∂ψ

(�+ 1
2 )

2

∂x
+ ψ2(x, µ)

(�+ 1
2 )(33b)

= f0(x)
(�) +

2

15

(
µ2 +

1

2

)[
1

4
f2(x)

(�) − 2f0(x)
(�) + 2h0(x)

(�)

]

where

fn(x)
(�+1) =

1√
π

∫ ∞

−∞
Hn(µ)ψ1(x, µ)

(�+ 1
2 )e−µ2

dµ(34a)

and

hn(x)
(�+1) =

1√
π

∫ ∞

−∞
Hn(µ)ψ2(x, µ)

(�+ 1
2 )e−µ2

dµ.(34b)

Next the two coupled kinetic equations (33) are first multiplied by the exponential

term 1√
π
e−µ2

and then the N + 1 Hermitian moments of the resulting equations

are taken. The coupling between the solution of the transport equations and the
accelerated synthetic equations is achieved through the two (in this case) N + 1
moments, which are not accelerated. Since the general HN acceleration algorithm
has been described in the previous section for the BGK model extensively and due
to the fact that the involved mathematical manipulation with the S model equations
is considerably increased, we demonstrate only the formulation of the H1 scheme.
Equations (33) are multiplied successively by 1√

π
H0(µ)e

−µ2

and 1√
π
H1(µ)e

−µ2

and

the resulting four equations are integrated over µ to yield

1

2

df1(x)
(�+ 1

2 )

dx
+ f0(x)

(�+ 1
2 ) = f0(x)

(�),(35a)

1

2

dh1(x)
(�+ 1

2 )

dx
+ h0(x)

(�+ 1
2 ) =

11

15
f0(x)

(�) +
1

30
f2(x)

(�) +
4

15
h0(x)

(�),(35b)
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and

df0(x)
(�+ 1

2 )

dx
+ f1(x)

(�+ 1
2 ) = −1

2

df2(x)
(�+ 1

2 )

dx
,(35c)

dh0(x)
(�+ 1

2 )

dx
+ h1(x)

(�+ 1
2 ) = −1

2

dh2(x)
(�+ 1

2 )

dx
,(35d)

respectively. Then the synthetic equations are

df1(x)
(�+1)

dx
= 0,(36a)

1

2

dh1(x)
(�+1)

dx
+

11

15

[
h0(x)

(�+1) − f0(x)
(�+1)

]
=

1

30
f2(x)

(�+ 1
2 ),(36b)

df0(x)
(�+1)

dx
+ f1(x)

(�+1) = −1

2

df2(x)
(�+ 1

2 )

dx
,(36c)

dh0(x)
(�+1)

dx
+ h1(x)

(�+1) = −1

2

dh2(x)
(�+ 1

2 )

dx
,(36d)

The accelerated DVM consists of the two-coupled kinetic equations (33) and the
synthetic equations (36), while the two second order moments of ψ1(x, µ) and ψ2(x, µ),
which are not accelerated, are defined by

f2(x)
(�+ 1

2 ) =
1√
π

∫ ∞

−∞
H2(µ)ψ1(x, µ)

(�+ 1
2 )e−µ2

dµ(37a)

and

h2(x)
(�+ 1

2 ) =
1√
π

∫ ∞

−∞
H2(µ)ψ2(x, µ)

(�+ 1
2 )e−µ2

dµ,(37b)

respectively. It is seen that the procedure is quite similar as before, although the
computational effort is doubled since twice as many synthetic equations are solved
per iteration. The overall efficiency, however, of the accelerated scheme compared to
the typical DVM is again significantly increased. The procedure can be extended in
a straightforward manner to various HN acceleration schemes.

4. Theoretical convergence rates of acceleration schemes for the BGK
model. Next the spectral radius of the proposed acceleration schemes is studied for
the case of the BGK model. The algorithm is amenable to Fourier analysis, and we
operate in a similar manner as for the typical iterative schemes studied in section 2.
Subtracting (1), (30), and (29) for successive values of � we obtain transport equation
(5) and the correction synthetic equations

dΦ1(x)
(�+1)

dx
= 0, n = 0,(38a)

1

2

dΦn+1(x)
(�+1)

dx
+ n

dΦn−1(x)
(�+1)

dx
+Φn(x)

(�+1) = 0, n = 1, 2, . . . , N − 1(38b)

and

N
dΦN−1(x)

(�+1)

dx
+ΦN (x)(�+1) = −1

2

dΦN+1(x)
(�+ 1

2 )

dx
, n = N,(38c)
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while the N + 1 moment, which is not accelerated is defined by

ΦN+1(x)
(�+ 1

2 ) =
1√
π

∫ ∞

−∞
HN+1(µ)Y (x, µ)(�+

1
2 )e−µ2

dµ.(39)

The single Fourier error mode

Φn(x)
(�+1) = ωΦn(x)

(�) = ω�+1αne
iλx, n = 0, 1, 2, . . . , N,(40)

along with (39) are introduced into (38), to yield after some algebraic manipulation
the vector equation

ωDa = −iλV GN+1,(41)

where aT = (a0, a1, . . . , aN ) and V T = (0, 0, . . . , 0, 1) are two constant vectors, D is a
tridiagonal matrix given by

D(λ) =




0
iλ

2
0

iλ 1
iλ

2· · ·
niλ 1

iλ

2· · ·
0 Niλ 1




,(42)

with n = 0, 1, 2, . . . , N and GN+1 is the scalar quantity

GN+1 =
1

2
√
π

∫ ∞

−∞
HN+1(µ)y(µ)e

−µ2

dµ.(43)

Introducing (9) for the eigenfunction y(µ), (43) is written in the more convenient
form

GN+1 = F · α,(44a)

where F is a row vector with components

F0(λ) =
1

2
√
π

∫ ∞

−∞
HN+1(x)µ

e−µ2

1 + iλµ
dµ(44b)

and

Fn(λ) = 0, n = 1, 2, . . . , N.(44c)

Then (41) leads to an eigenvalue problem written as

(A− ωI)α = 0(45)

with

A = −iλD−1V F.(46)

It is obvious that in this eigenvalue problem ω are the eigenvalues of A and a the
corresponding eigenvectors. According to (46), however, A is the product of a column
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Fig. 2. Plots of ω versus λ for various orders of HN acceleration and the typical DVM (BGK
model).

vector times a row vector and because of that its rank is equal to unity. Hence we
obtain one dominant eigenvalue, while the N remaining eigenvalues are identically
equal to zero. In fact, by multiplying both sides of the vector equation (45) by F , the
following scalar equation is reduced:

ω = −iλFD−1V.(47)

Thus study of the one nonzero eigenvalue is sufficient to obtain the convergence rate
of the acceleration scheme.

Applying this HN acceleration analysis by accelerating the first two, three, and
four moments of the distribution function we find the explicit results

ω1 = Λ+
2

λ2
(Λ− 1),(48a)

ω2 = 3Λ +
2

λ2
(Λ− 1)− 2,(48b)

and

ω3 =
1

2 + 3λ2

{
3λ2Λ− 4 (1− Λ)

(
3 +

1

λ2

)
+ 2

}
.(48c)

The above closed form expressions are the eigenvalues of the acceleration algorithms
described by (1), (29), and (30), with N equal to one, two, and three, respectively,
while Λ is the integral defined in (10) and denotes the convergence rate ωDVM of the
typical DVM applied to the BGK equation.

Equations (48) are solved numerically and the results are plotted in Figure 2,
where the plot of ωDVM is also included for comparison. Some theoretical insight into
the behavior of ω as a function of λ is provided for the three acceleration schemes and
the DVM. Table 1 contains the spectral radius for the typical DVM and each of the
three iteration acceleration schemes (H1, H2, and H3) under consideration.
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Table 1
Spectral radius of the typical DVM and the synthetic acceleration methods H1, H2, and H3 for

the BGK model.

Method DVM H1 H2 H3

Spectral radius 1.00 0.320 2.00 0.211

The well-known inefficiency of the H2 scheme is easily observed [21]. The H1

acceleration scheme seems to be the most efficient acceleration scheme. Two H1

sweeps will reduce the error by a factor of about ten, while a single H3 sweep requires
at least the same computational time and will reduce the error only by a factor of
about five.

The convergence rate of the H1 acceleration scheme for the two-dimensional BGK
equation described by (20), (31), and (32) is studied next. Equations (31) are sub-
tracted for successive iterates and the ansatz

Φ00(x)
(�+1) = ωΦ00(x)

(�) = ω(�+1)α00e
iλx,(49a)

Φ10(x)
(�+1) = ωΦ10(x)

(�) = ω(�+1)α10e
iλx,(49b)

and

Φ01(x)
(�+1) = ωΦ01(x)

(�) = ω(�+1)α01e
iλx(49c)

is substituted into the resulting equations to yield

ω(iλθxa10 + λθya01) = 0,(50a)

ω(iλθxa00 + a10) = −1

2
i(λθxG20 + λθyG11),(50b)

and

ω(λθya00 + a01) = −1

2
i(λθyG02 + λθxG11),(50c)

where

Gmn(x, y) =
1

π

∫ ∞

−∞

∫ ∞

−∞
y(µ, η)Hm(µ)Hn(η)e

−µ2−η2

dµ dη.(51)

Thus in general there are three eigenvalues for each λ. Introducing (26) for the
eigenfunction y(µ, η) in (50) and after some routine manipulation we find ω1 = ω2 = 0
and the dominant eigenvalue

ω3 =
1

π

∫ ∞

−∞

∫ ∞

−∞

[
1− 2(µθx + ηθy)

2
]
y(µ, η)e−µ2−η2

dµ dη.(52)

The double integral in the explicit expression for ω3 can be evaluated analytically to
yield (48a), which has been obtained for the one-dimensional H1 acceleration. The
point to be stressed here is that the H1 scheme results in the same closed form ex-
pression for the dominant eigenvalue for both the one- and two-dimensional problems.
The same conclusion has been found earlier in section 2 for the DVM. Similar results
can be obtained for any HN acceleration algorithm.
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5. Gaseous flows in rectangular microchannels. In this section the theo-
retical results obtained earlier are confirmed experimentally. The flow of a gas in a
rectangular microchannel caused by small pressure and temperature gradients in the
axial direction is selected as a test case. Both the isothermal and nonisothermal flows
implementing the BGK and S models, respectively, have been considered. They are
described by two-dimensional transport equations similar to (20) and (21), by select-
ing the appropriate source terms. In the present work they are used as a test bed
for the proposed acceleration scheme. Both problems have been solved recently by
Sharipov [15] and Sharipov and Seleznev [16], and recent results exist for the whole
range of the Kn number and various ratios of width over height, based on the typical
DVM. Here the two problems are solved again using the DVM and also the H1 ac-
celeration algorithm. For the BGK model the formulation of the DVM is described
by (20) and (21) and of the H1 scheme by (20), (31), and (32). For simplicity, purely
diffused Maxwell boundary conditions [7] with no specular reflection are considered.
A similar formulation is derived for the two-dimensional S model.

The experimental investigation of the effectiveness of the algorithm is based on
the calculation of overall quantities, such as flow rates and heat fluxes, which are of
main interest for engineering purposes. Our objective here is to find and compare the
required number of iterations in order to achieve the same specified convergence crite-
rion and accuracy for the two approaches. For that reason we decide not to tabulate
explicitly the macroscopic quantities but only the required number of iterations for the
typical and the acceleration iterative methods in terms of the convergence criteria. To
achieve that, the analytic transport and synthetic equations have been discretized in
space using the diamond-difference scheme [22], while a typical double Gauss–Hermite
quadrature approximation has been applied for the velocity discretization. It is well
known that consistent differencing between the transport and the synthetic equations
is essential to avoid conditional instabilities in the acceleration schemes [1, 2, 21].
Exactly the same principal applies in the present formulation.

A first comparison between the DVM and the H1 acceleration scheme is shown
for the BGK model in Figure 3. The required number of iterations to satisfy the con-
vergence criterion in the computed results is plotted as a function of the convergence
criterion. The results are presented by Knudsen numbers equal to 1, 0.1, and 0.01
and for the case of a square microchannel, with a set of 64 discrete velocities and 21
spatial nodes in each direction. It is seen that for Kn = 1 the number of required
iterations is very small and there is no benefit in using the H1 scheme. For Kn = 0.1
and Kn = 0.01, however, the required number of iterations for the typical DVM is
significantly increased, while it remains small for the H1 acceleration scheme. More
specifically for a relative convergence criterion of about 10−4 the required iterations
for the H1 scheme are reduced roughly by a factor of 10 for the case of Kn = 0.1 and
by a factor of 103 for the case of Kn = 0.01. It is also noticed that in these cases (Kn
equal to 0.1 and 0.01) the required number of iterations for the acceleration scheme
remains actually constant even when very strict convergence criteria are applied. The
corresponding results in the case of the S model are shown in Figure 4 and they
are very similar with those of Figure 3. This is an interesting fact indicating that
the effectiveness of the acceleration algorithm is computationally independent of the
complexity of the kinetic model.

In Figures 5 and 6 the required CPU time to satisfy the convergence criterion in
the computed results is plotted in terms of the convergence criterion for the BGK and
the S models, respectively. The Knudsen number is taken equal to 0.01. It is seen that
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Fig. 3. Comparison between the DVM and the H1 acceleration method in terms of the required
number of iterations to satisfy the convergence criterion for the BGK model and various Knudsen
numbers.
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Fig. 4. Comparison between the DVM and the H1 acceleration method in terms of the required
number of iterations to satisfy the convergence criterion for the S model and various Knudsen
numbers.
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Fig. 5. Comparison between the DVM and the H1 acceleration method in terms of the required
CPU time to satisfy the convergence criterion for the BGK model and Kn = 0.01.

Fig. 6. Comparison between the DVM and the H1 acceleration method in terms of the required
CPU time to satisfy the convergence criterion for the S model and Kn = 0.01.

the reduction in the overall computational time is of the same order of magnitude with
the reduction in the required number of iterations. This is easily explained by the
fact that the additional computational effort per iteration is insignificant compared
to the computational gain due to the small number of iterations required. The results
have been obtained on a 700MHz, Pentium III.

All previous results are very encouraging, although no special treatment of the
boundary conditions has been applied. In the particular model problem, that was not
necessary since simple homogeneous Dirichlet conditions are used. When all moments
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of the distribution function at the boundaries are not known, then derivation of ac-
celeration equations at the boundary nodes incorporating the boundary conditions is
required. When this formulation is fully compatible with the acceleration formulation
for the internal nodes [22], then the efficiency of the overall acceleration algorithm
remains high. This is an interesting issue, which will be studied in later work.

Overall it is clearly seen that the number of required iterations is significantly
reduced when the accelerated scheme is applied, and this improvement becomes more
important for small Knudsen numbers. Even more in this case the typical DVM re-
sults suffer from accumulated round-off error due to the large number of iterations
required, and thus more strict convergence criterions do not always ensure more accu-
rate results. In general, when the H1 accelerated scheme is introduced we expect that
not only the computational effort is reduced but also the accuracy of the results is im-
proved. Finally, it is noticed that, as it is expected, in all cases tested the discretized
synthetic acceleration scheme performs equally well or even better than the exact
scheme, applied on the continuous form of the transport and synthetic equations.

6. Conclusions. A Fourier stability analysis is performed to evaluate the con-
vergence rate of the classical DVM implemented on the BGK and S models in slab
and x-y geometry. The spectral radius is found to be equal to unity, which justifies
the well-known slow convergence of the method. By taking Hermite moments of the
transport equation a set of synthetic equations is obtained. These acceleration equa-
tions are solved, coupled with the transport equation, and the convergence rate of
the iteration map is significantly improved. The H1 acceleration scheme seems to be
the most efficient speed up algorithm, from an overall computational point of view,
while the even order acceleration schemes perform badly. The theoretical results are
justified experimentally, solving the gaseous flow problem through a rectangular mi-
crochannel. The fact that the proposed acceleration scheme performs equally well
for the BGK and the more advanced S model make us optimistic for extending the
present work to the linearized Boltzmann equation with synthetic kernels.
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