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We study a variant of the stochastic economic lot scheduling problem (SELSP) encountered in process 
industries, in which a single production facility must produce several different grades of a family of 
products to meet random stationary demand for each grade from a common finished-goods (FG) 
inventory buffer that has limited storage capacity. When the facility is set up to produce a particular 
grade, the only allowable changeovers are from that grade to the next lower or higher grade. Raw material 
is always available, and the production facility produces continuously at a constant rate even during 
changeover transitions. All changeover times are constant and equal to each other, and demand that 
cannot be satisfied directly from inventory is lost. There is a changeover cost per changeover occasion, a 
spill-over cost per unit of product in excess whenever there is not enough space in the FG buffer to store 
the produced grade, and a lost-sales cost per unit short whenever there is not enough FG inventory to 
satisfy the demand. We model the SELSP as a discrete-time Markov decision process (MDP), where in 
each time period the decision is whether to initiate a changeover to a neighboring grade or keep the set up 
of the production facility unchanged, based on the current state of the system, which is defined by the 
current set up of the facility and the FG inventory levels of all the grades. The goal is to minimize the 
(long-run) expected average cost per period. For problems with more than three grades, we develop a 
heuristic solution procedure which is based on decomposing the original multi-grade problem into several 
3-grade MDP sub-problems, numerically solving each sub-problem using value iteration, and 
constructing the final policy for the original problem by combining parts of the optimal policies of the 
sub-problems. We present numerical results for problem examples with 2-5 grades. For the 2- and 3-grade 
examples, we numerically solve the exact MDP problem using value iteration to obtain insights into the 
structure of the optimal changeover policy. For the 4- and 5-grade examples, we compare the 
performance of the decomposition-based heuristic (DBH) solution procedure against that obtained by 
numerically solving the exact problem. We also compare the performance of the DBH method against the 
performance of three simpler parameterized heuristics. Finally, we compare the performance of the DBH 
and the exact solution procedures for the case where the FG inventory storage consists of a number of 
separate general-purpose silos capable of storing any grade as long as it is not mixed with any other 
grade. 
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1. Introduction 
Scheduling the production of multiple products, each with random demand, on a single facility 

with limited production capacity and significant changeover costs and times between products is 

a classical problem in production planning research that is often referred to as the stochastic lot 

scheduling problem (SLSP). Sox et al. (1999) distinguish between two versions of the SLSP, for 

consistency with the deterministic-demand literature: the stochastic capacitated lot sizing 

problem (SCLSP) and the stochastic economic lot scheduling problem (SELSP). The SCLSP 

assumes a finite planning horizon and allows for non-stationary demand, while the SELSP 

assumes an infinite planning horizon and stationary demand. The SCLSP is more appropriate for 

discrete-parts manufacturing, whereas the SELSP is better suited for continuous-process 

manufacturing. Discrete-parts manufacturing is characterized by individual parts that are clearly 

distinguishable, and is often encountered in the industries of computer and electronic products, 

electrical equipment and appliances, transport equipment, machinery, fabricated metal, furniture 

products, etc. Process industries, on the other hand, operate on material that is continuously 

flowing, as is the case with petroleum and coal products, metallurgical products, nonmetallic 

mineral products, basic chemicals, food and beverages, paper products, etc. Generally, process 

industries are capital intensive and focus on non-stop, high-volume, low-variety production. 

This paper focuses on the SELSP. The deterministic version of the SELSP, the so-called 

ELSP, has received considerable attention in the literature over the past decades (e.g., see the 

surveys of Elmaghraby, 1978 and Salomon, 1991). Both analytical and heuristic solutions for the 

ELSP derive rigid cyclic production plans. Unfortunately, cyclic plans do not work well for the 

stochastic problem, for two reasons. Firstly, they focus on lot-sizing and not on dynamic capacity 

allocation, which is necessary to respond to random changes in demand. Secondly, in the 

stochastic problem, finished-goods (FG) inventories serve not only to reduce the number of 

changeovers, as is the case in the deterministic problem, but also to hedge against stock-outs. In 

the stochastic problem, both lot-sizing and capacity allocation have to be considered 

simultaneously, and the dynamics have to be included in the plan (Graves, 1980). 

In many process industries it is often the case that the products coming out of the production 

facility are variants of the same family that differ in one or more attributes, such as quality, color, 

consistency, weight, size, thickness, etc. These variants are frequently referred to as “grades”. 

Often, the different grades are related in such a way that the only allowable changeovers are 
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from one grade to the next higher or lower grade in the chain. This is because a grade 

changeover means a change in the physical or chemical properties of the product coming out of 

the facility (e.g., intrinsic viscosity) and results from the gradual change of the production 

conditions, i.e., the chemical reaction process variables, e.g., temperature, pressure, catalyst flow 

rate. For example, if the facility produces three grades, A, B, and C (A being the lowest and C 

being the highest), the allowable changeovers are A-B and B-C, but not A-C. To indicate this 

ordering in the chain of allowable changeovers, we use the notation “A-B-C”. Traditionally, 

multi-grade plants have been operated using cyclic production plans that take the form of rigid 

product slates or wheels, whereby all products are produced sequentially in a cycle of two 

phases: one phase with increasing order of grades, and the other in decreasing order. Nowadays, 

the product slate mode is often considered inadequate as it does not cope well with varying 

demands (Tousain and Bosgra 2006). 

In many process industries it is also often the case that the production facility (usually a 

reactor) is never shut down, because of the tremendous cost of bringing it up or shutting it down, 

so the facility keeps producing 24 hours a day even during grade changeover transitions. The 

production rate of the facility may be fine-tuned once in a while in the long run so as to match 

the total long-run expected demand for all grades, in case the demand has seasonal or other long-

run variations. For the purposes of short-term and medium-term scheduling, however, the 

production rate is considered to be constant and equal to (or very close to) the total medium-term 

expected demand for all grades. It has often been pointed out that in large-scale continuous 

processes, 100% utilization is often a policy objective because of the high capital cost of such 

processes and because variable costs are lowest at maximum throughput. In this case, it is the 

demand rate which is set equal to the (maximum) production rate, rather than the opposite. This 

can be accomplished by effectively managing the demand, e.g., finding customers and markets 

that are willing to absorb large fluctuations is sales volume in exchange for a low price. (Cooke 

and Rohleder, 2006). Whether the production rate is set equal to the demand rate or the reverse, 

the result is that on average, the FG inventory of the different grades remains unchanged. With 

this in mind, the main managerial concern is not to minimize the FG inventory holding cost, but 

to minimize the number of changeover transitions, while keeping the FG inventory within the 

bounds of the storage capacity. Avoiding grade changeovers is important, because during a 
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changeover transition, the grade produced is off-specifications and the process is difficult to 

control. 

The FG inventory buffer itself is finite and often consists of several separate silos, where 

each silo can store one type of grade at a time, so the FG inventories of the different grades are 

kept separately. In many cases, the number of silos is much larger than the number of grades. In 

other cases, the final grades are not kept in silos but are packed in small quantities (rolls, big 

bags, etc.) and stored in a common FG warehouse that can hold a large number of such 

quantities. In both situations, assuming that the FG inventory is common is realistic. 

Our work in this paper was motivated by the need to find the optimal production schedule in 

a real continuous-process multi-grade Polyethylene Terephthalate (PET) resin plant. This need 

led to the development of two different mathematical models that address the production 

scheduling problem at two different levels: a short-term level and a medium-term level. The 

short-term scheduling problem, which is presented in Liberopoulos et al. (2009), is formulated as 

a deterministic, discrete-time, finite-horizon mixed integer linear programming (MILP) 

optimization model. It describes in great detail the real production scheduling problem in the 

short term (typically one week), where the orders for the different grades are known. Given that 

in real life, production and demand continue after the end of the scheduling horizon, the 

production schedule must be designed so as to hedge against the uncertainty of the unknown 

random demand after the end of the scheduling horizon. To accomplish this, it is necessary to 

develop a more macroscopic medium-term model that describes the system in less detail but 

takes into account the stochastic nature of demand. The goal of this paper is to develop and solve 

such a model. 

More specifically, in this paper we study a variant of the SELSP in which a single production 

facility must produce several grades to meet random stationary demand for each grade from a 

common FG inventory buffer with limited storage capacity. Demand that cannot be satisfied 

directly from stock is lost. Raw material is always available, and the production facility produces 

at a constant rate continuously even during changeover transitions. When the facility is set up to 

produce a particular grade, the only allowable changeovers are from that grade to the next lower 

or higher grade. In many industries, including the PET industry that motivated this work, it is 

customary to divide the intermediate grade produced during a changeover, say from grade A to 

grade B, into two halves, and classify the first half as A and the second half as B, although in 
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reality the grade of the product coming out of the production facility during the changeover 

transition is gradually changing from A to B. In this paper, we assume that the grade produced 

during a changeover from A to B is classified as A, and that the grade produced during the 

reverse changeover is classified as B. Under this assumption, the amounts of grades A and B that 

will be produced in the long run will be the same as those that would have been produced had we 

divided the produced grade during a changeover into two halves. We also assume that all 

changeover times are deterministic and equal to each other. 

The cost structure of our model includes a changeover cost per changeover occasion, a spill-

over cost per unit of product in excess whenever there is not enough space in the FG buffer to 

store the produced grade, and a lost-sales cost per unit short whenever there is not enough FG 

inventory to satisfy the demand. As was explained earlier, on average, the FG inventory of the 

different grades remains unchanged, and the main managerial concern is to minimize the number 

of changeover transitions rather than FG inventory. For this reason, we chose not to include an 

inventory holding cost in our model, although we could have trivially included such a cost. In 

any case, excess inventory is penalized whenever the FG inventory buffer is full, in which case 

the grade coming out of the facility is spilled over. In many practical cases, the spilled-over 

material is discarded or is recycled into the raw material inventory. In other cases, it is driven 

into an evacuation buffer and from there it is disposed of at a discount price. In all cases, spilling 

over material is undesirable. If the long-run average percentage of spilled-over material is 

deemed high, then the management can take one or more of the following corrective actions: 1) 

lower the long-run production rate, 2) take measures to raise the long-run average demand, 3) 

take measures to lower the variability of demand, and 3) increase the FG buffer capacity. Actions 

1 and 2 can help reduce the amount of spilled-over material, but may cause an increase in lost 

sales. Actions 3 and 4 can help reduce both the amount of spilled-over material and lost sales.  

Our assumption that the FG inventory buffer is common is realistic, because as was 

explained earlier, in many practical situations each grade can be stored in extremely small 

storage units (e.g., big bags) compared to the total available space (e.g., warehouse). 

Nonetheless, in Section 6.2, we conduct further experiments after having redefined the inventory 

state space in our model by adjusting its outer face to accommodate the situation where the FG 

inventory storage consists of a number of separate general-purpose silos capable of storing any 

grade as long as it is not mixed with any other grade.  
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We model the SELSP problem described above as a discrete-time Markov decision process 

(MDP), where in each time period the decision is whether to initiate a changeover to a 

neighboring grade or keep the setup of the facility unchanged, based on the current state of the 

system, which is determined by the current setup and the FG inventory levels of all the grades. 

The goal is to minimize the (long-run) expected average cost per period. 

In theory, we can numerically solve the resulting MDP problem using the value iteration or 

any other appropriate method and obtain insight into the optimal changeover policy. We refer to 

this solution procedure as “exact”, because it solves the exact problem. In practice, the exact 

solution procedure cannot solve problems with a large number of grades, because of the curse of 

dimensionality. For problems with N grades, N > 3, we develop a heuristic solution procedure 

that is based on decomposing the original N-grade problem into (N – 2) 3-grade sub-problems 

and numerically solving each sub-problem using value iteration. Each 3-grade sub-problem is an 

approximation of the original N-grade problem, where the middle grade in the sub-problem 

corresponds to one of the grades in the original problem, the low (left) grade in the sub-problem 

is the “composite” of all grades in the original problem that are lower than the middle grade, and 

the high (right) grade is the composite of all grades that are higher than the middle grade. For 

example, if the original problem consists of five grades, A-B-C-D-E, we formulate the following 

3-grade sub-problems: A-B-(C+D+E), (A+B)-C-(D+E), and (A+B+C)-D-E, where the notation 

“(A+B)” indicates the composite grade formed by grades A and B. After solving all the sub-

problems, the final changeover policy for the original N-grade problem is constructed by 

combining parts of the optimal changeover policies of the sub-problems. We call the heuristic 

outlined above decomposition-based heuristic (DBH). 

Our assumption that all the changeover times are equal may be realistic in some cases, but 

may not hold in other cases. Assuming different changeover times would augment the state space 

of the MDP and would make the need for a heuristic solution procedure even more pressing. Yet, 

we don’t expect that it would change the structure of the optimal policy. 

The remainder of this paper is organized as follows. In Section 2, we review the literature on 

the SELSP that is most closely related to our work. In Section 3, we present the MDP model of 

the original N-grade problem, and we outline the value iteration method used to solve it. The 

DBH procedure for solving problems with more than three grades is presented in Section 4. In 

Section 5, we present numerical results for problem examples with 2-5 grades. For the 2- and 3-
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grade examples, we use the exact solution procedure to obtain insights into the structure of the 

optimal changeover policy. For the 4- and 5-grade examples, we compare the performance of the 

DBH solution procedure against that of the exact procedure. In Section 6, we perform a further 

numerical investigation. First, we compare the performance of the DBH method against the 

performance of three simpler parameterized heuristics. Then, we compare the performance of the 

DBH and the exact solution procedures for the case where the FG inventory buffer consists of a 

number of separate general-purpose silos capable of storing any grade as long as it is not mixed 

with any other grade. Finally, we draw our conclusions in Section 7. 

2. Literature review 
The SELSP has received considerable attention in the literature because of its theoretical and 

practical importance. A comprehensive review of related works can be found in Sox et al. (1999) 

and more recently Winands et al. (2011). From these reviews, it is apparent that there have been 

two approaches for tackling the SELSP. One approach is to develop a cyclic schedule, i.e., a 

fixed production sequence, usually using a deterministic approximation of the stochastic 

problem, and then develop a control rule for the stochastic problem to pursue that schedule. The 

attractiveness of this approach lies on its ability to provide a practical solution for problems with 

a large number of products, as it breaks up the difficult dynamic scheduling problem into two 

easier to manage sub-problems, namely, sequencing and lot sizing, which are solved 

sequentially. A drawback of this approach, however, is that it may not respond effectively to 

random changes in demand, as was mentioned earlier. 

The other approach, which we follow in this paper, is to develop a dynamic scheduling rule 

that determines which product to produce based on the current state of the system. Such a rule 

may be a simple heuristic or may be derived from an optimal control analysis of the problem. 

The literature on this approach, particularly the track that adopts an optimal control perspective, 

is scarce, because of the immense difficulty of obtaining an analytical solution even for problems 

of small size, and the computational challenge of numerically solving problems of realistic size. 

One of the first exploratory papers on the SELSP is that by Vergin and Lee (1978). They 

examine simple dynamic sequencing heuristics for the SELSP with changeover costs but no 

changeover times. Graves (1980) looks at the SELSP as a discrete-time stochastic control 

problem with dynamic sequencing. He first solves a one-product problem with inventory-
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backorder costs and changeover costs, but no changeover times, where the decision in each 

period is to produce or idle the facility. He then uses the solution of the one-product problem as 

the basis for a heuristic procedure to solve the multi-product problem. 

Qiu and Loulou (1995) look at a problem with Poisson demand, deterministic processing and 

changeover times, and changeover and inventory-backlog costs. They model the problem as a 

semi-MDP, where the objective is to decide in each “review” epoch which product, if any, to set 

up the facility to produce, in order to minimize the infinite-horizon, discounted cost. The review 

epochs are those points in time when either the production facility is idle and some demand 

arrives, or when a part has just been processed and the production facility is free. 

Bruin and van der Wal (2010b) propose a two-step approach for solving discrete-time, multi-

item production systems with generally distributed processing times, Poisson demands, unit 

changeover times, inventory holding costs and lost sales. In the first step, they find a good fixed-

cycle production schedule, using a methodology that they develop in Bruin and van der Wal 

(2010a). In the second step, they obtain a one-step improvement of this schedule by minimizing 

the future expected costs under the assumption that after this decision, the original cyclic policy 

will be resumed. 

In a recent paper, Löhndorf and Minner (2012) model the SELSP with compound Poisson 

demand and deterministic processing and changeover times as an infinite-horizon average-cost 

semi-MDP and develop an approximate value iteration method for solving it. This method is 

based on approximating the differential cost function with a linear combination of piecewise-

constant functions and using a simulation-based stochastic gradient algorithm to update the 

weights of the constant function segments. Based on a numerical study, they conclude that for 

problems of small size (up to three products) a particular version of the approximate value 

iteration method outperforms simpler fixed-cycle and base-stock policies that have been 

optimized with a global search, but for larger problems, a fixed-cycle policy with preemption is 

the most reliable choice and the base-stock policy is more often the better choice. 

Löhndorf et al. (2012) extend the model of Löhndorf and Minner (2012) to include sequence-

dependent changeover times and propose three cycling policies with base stock levels for solving 

the problem. Based on numerical experimentation, they conclude that a “balanced-cycle” policy, 

which balances between minimizing setup times and achieving a sequence with a regular 

production pattern, outperforms the simpler common-cycle and fixed-cycle policies. 
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Finally, Karmarkar and Yoo (1994) and Sox and Muckstadt (1997) develop finite-horizon 

stochastic mathematical programming models for the SELSP, that can also be classified as 

SCLSP, with deterministic production and changeover times, and use Lagrangian relaxation for 

finding optimal or near-optimal solutions for problems of small sizes. 

There has also been a somewhat parallel stream of works on the dynamic scheduling of 

failure-prone flexible manufacturing systems that are based on a flow control approach. In much 

of that literature, it is assumed that the production capacity changes randomly due to machine 

failures and repairs, while the demand rate remains constant. When the manufacturing system is 

not perfectly flexible but requires setups, several authors have looked at setup scheduling 

policies that use “corridors” in the product surplus/backlog space to determine the timing of the 

setup changeovers in order to guide the trajectory in the desired direction (e.g., Sharifnia et al., 

1991, Liberopoulos and Caramanis, 1997, Elhafsi and Bai, 1997). 

Our work in this paper follows the stream of papers that view the SELSP as a discrete-time, 

periodic-review control problem with dynamic production sequencing and global lot sizing, and 

as such is more closely related to Graves (1980), Qiu and Loulou (1995), and Löhndorf and 

Minner (2012). It is also closely related to Sharifnia et al. (1991), Liberopoulos and Caramanis 

(1997), and Elhafsi and Bai (1997), as we use a qualitatively similar approach and obtain a 

similar setup changeover policy. Our work differs from previous works in that it considers a new 

variant of the SELSP, where the FG inventory buffer has finite storage capacity, the facility 

produces continuously at a constant rate, and the only allowable changeovers are from one grade 

to the next lower or higher grade. The latter feature renders problems with a large number of 

grades amenable to heuristic solution procedures that are based on decomposing the original 

problem into several smaller (i.e., with fewer grades) sub-problems which are computationally 

easier to solve and then constructing the final solution for the original problem by combining 

parts of the sub-problem solutions. We develop such a procedure in Section 4. Finally, we should 

point out that the feature of sequence restricted changeovers that we consider should not be 

confused with the completely different feature of sequence dependent changeover times that has 

received wider attention in the literature (e.g., see Karalli and Flowers, 2006 and Löhndorf et al., 

2012). 
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3. Problem formulation and dynamic programming solution 
We consider a discrete-time model of a production facility that can produce N different grades, 

one at a time. Grade changeovers are only allowed between neighboring grades, n and n + 1, n = 

1, …, N – 1. The changeover time is one period. In each time period, the production facility 

produces P units of the grade that it is set up for at the beginning of the period. The quantity 

produced is stored in a common FG inventory buffer which has a finite storage capacity of X 

units; any excess amount that does not fit in the buffer is spilled over, incurring a spill-over cost 

of $ CS per unit of excess product. The FG buffer is flexible in that it can contain any quantity of 

any grade at the same time, as long as the total amount does not exceed X. After the quantity 

produced by the facility has been added to the FG buffer, a vector of random demands, D ≡ (D1, 

…, DN), must be met from FG inventory, where Dn, n = 1, …, N, is the demand for grade n. The 

demands Dn are discrete random variables with known stationary joint probability distribution. 

For each grade n, the part of the demand that cannot be satisfied from FG inventory, if any, is 

lost, incurring a lost-sales cost of $ CLn per unit of unsatisfied demand. For the purposes of 

short- to medium-term scheduling that we consider in this paper, we assume that P is fixed and 

equal to the total expected demand for all grades. 

We formulate the dynamic scheduling problem of the production facility as a discrete-time 

MDP, where the state of the system at the beginning of each period is defined by the vector y ≡ 

(s, x1, …, xN), where s is the grade that the facility is set up for during that period (called the 

“setup” state) and xn, n = 1, …, N, is the FG inventory level of grade n at the beginning of the 

period. Note that s ∈ {1, …, N}, and the set of allowable inventory levels is determined by all 

integers xn, n = 1, …, N, such that  

 
1

0
N

n
n

x X
=

≤ ≤∑  (1) 

For each setup state s, the number of inventory level states (x1, …, xN) is equal to the number 

of ways X indistinguishable balls can be distributed to N + 1 labeled urns, where the (N + 1)st 

urn is for the unused or empty inventory storage space. This number is equal to Comb(X + N, N); 

hence the size of the state space is N(X+N)!/(X!N!).  

The decision, u, to be made at the beginning of each period is whether to initiate a 

changeover to a neighboring grade or leave the facility setup unchanged. Thus, if the current 

setup is s, the allowable decisions are given by the set U(s), where U(1) = {1, 2}, U(s) = {s – 1, s, 
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s + 1}, s = 2, …, N – 1, and U(N) = {N – 1, N}. If the decision is to initiate a changeover, then 

the new setup of the facility, i.e., after the changeover is completed, will be in effect at the 

beginning of the next period, since the changeover time is one period. A decision to initiate a 

changeover at the beginning of a period incurs a changeover cost of $ CC in that period. 

Suppose that the state of the system at the beginning of a period is y, decision u is taken, and 

demand D is realized. Let g(y,u,D) be the cost incurred during that period and let y′ ≡ (s′, x1′, …, 

xN′) = f(y,u,D) be the state of the system at the beginning of the next period. From the above 

discussion, it is clear that 

 s′ = u 

 xn′ = (xn + p(y)⋅In=s – Dn)+, n = 1, …, N 

where p(y) is the amount of material added to the FG buffer after the facility produces P units, 

minus any spillage, and before the demand is realized, and is given by  

 
1

( ) min ,
N

n
n

p P X x
=

 ≡ − 
 

∑y  (2) 

Ia is the indicator function which takes the value of 1 if a is true, and 0 otherwise, and (x)+ ≡ 

max(0, x). Moreover,  

 g(y,u,D) = CC⋅Iu≠s + CS⋅(P – p(y)) + Σn CLn⋅(Dn – xn – p(y)⋅In=s)+ 

The objective is to find a state dependent policy, u = μ(y), that minimizes the (long-run) 

expected average cost per period. To find such a policy, we need to solve Bellman’s dynamic 

programming equation, which for our problem can be written as 

 J + V(y) = minu∈U(s)Tu(V(y)) (3) 

where J is the optimal (minimum) expected average cost per period, V(y) is the optimal 

differential cost starting from state y, and Tu(⋅) is a mapping defined as Tu(V(y)) ≡ ED{g(y,u,D) + 

V(y′)}. The minimizer of the Bellman equation determines the optimal policy when the system is 

in state y, denoted by μ*(y). 

To solve Bellman’s equation, we use the method of successive approximations of the optimal 

differential cost functions, which is well-known as the value iteration method. We denote by 

Vk(y) the value of the optimal differential cost function at the kth iteration. Initially, we set V0(y) 

= 0, ∀ y. The values at the (k + 1)th iteration are obtained from the previous iteration by the 

recursion 
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 Vk+1(y) = T(Vk(y)) – T(Vk(ŷ)) (4) 

where T(Vk(y)) = minu∈U(s)Tu(Vk(y)) and ŷ is an arbitrarily chosen special state. This state must be 

recurrent to guarantee that the value iteration method converges to an optimal policy. Note that 

in each iteration the optimal differential cost of the special state is reset to zero. Assuming that 

the iteration scheme converges to some values V(y), then from recursion (4), these values must 

satisfy T(V(ŷ)) + V(y) = T(V(y)). A comparison of this equation and the Bellman equation (3) 

reveals that J = T(V(ŷ)).  

To implement the value iteration method, at each iteration k = 1, 2, …, we compute the 

maximum and minimum differences, Vk
U = maxy{Vk(y) – Vk–1(y)} and Vk

L = miny{Vk(y) – 

Vk–1(y)}. The procedure is terminated when |Vk
U – Vk

L| < ε⋅T(Vk(ŷ)), where ε is some small 

positive scalar. 

4. DBH solution procedure 
Although the exact method presented in the preceding section can in principle determine the 

optimal policy for any number of grades, it becomes computationally very demanding for more 

than three grades. In this section, we propose a heuristic procedure – the DBH – that decomposes 

any N-grade problem, N > 3, into several 3-grade sub-problems and then combines the sub-

problem solutions (determined by the exact method) to construct a final policy for the original 

problem. 

The DBH procedure that we propose works as follows. Let S denote the original N-grade 

problem. For each grade n, n = 2, …, N – 1, we formulate a 3-grade sub-problem, denoted by Sn, 

in which the middle grade is grade n, the low grade is the composite of all grades that are lower 

than n, i.e., grades 1, …, n – 1, and the high grade is the composite of all grades that are higher 

than n, i.e., grades n + 1, …, N; hence Sn is an approximation of the original problem S. For each 

sub-problem Sn, we define the state of the system by the vector yn = (sn, wn, xn, zn), where sn ∈ {n 

– 1, n, n + 1} and wn and zn are the “aggregate” inventory levels of the low and high composite 

grades, respectively, which represent in some aggregate way the total of their individual 

components through some function h, i.e., wn = h(x1, …, xn–1) and zn = h(xn+1, …, xN). It should 

be understood that when sn is equal to n – 1 or n + 1 in sub-problem Sn, the facility is set up to 

produce one of the grades that comprise the low grade or the high grade, respectively. In each 

sub-problem Sn, the demand distribution of the middle grade is the same as the demand 
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distribution of grade n in the original problem, the demand distribution of the low grade is the 

convolution of the demand distributions of grades 1, …, n – 1 in the original problem, and the 

demand distribution of the high grade is the convolution of the demand distributions of grades n 

+ 1, …, N in the original problem. 

We use the exact method presented in the previous section to obtain the optimal policy of 

each sub-problem Sn, denoted by *( )n nµ y . The DBH then constructs the changeover policy for 

the original N-grade problem, denoted by μh(y), by combining parts of the optimal policies of the 

sub-problems, as follows: 

 *
1 2 2 2 2(1, , , ) (1, , , )h

Nx x w x zµ µ=  

 *
1( , , , ) ( , , , ),    2, , 1h

N n n n nn x x n w x z n Nµ µ= = −   

 *
1 1 1 1 1( , , ) ( , , , )h

N N N N NN x x N w x zµ µ − − − −=  

Next, we discuss how to determine an appropriate form for function h. 

First, note that in S2, w2 = h(x1), i.e., w2 is the aggregate inventory level of a single grade, 

namely grade 1; therefore, it is reasonable to simply set h(x1) ≡ x1 so that w2 = h(x1) = x1. 

Similarly, in SN–1, we set h(xN) ≡ xN, so that zN–1 = h(xN) = xN. Let us next focus on wn, n > 2, as zn 

is obtained in a symmetric way. 

An obvious choice for the aggregate inventory level of the composite of grades 1, …, n – 1 in 

sub-problem Sn is to set it equal to the sum of the inventory levels of the individual grades, i.e., 

set wn ≡ x1 + … + xn–1. This is a reasonable choice, especially with respect to estimating potential 

spill-over costs; however, it fails to detect the situation where the sum x1 + … + xn–1 is high, 

implying that the composite grade has a low risk of stocking out, yet one (or more) of its 

individual components, x1, …, xn–1, is (are) low, implying that the corresponding individual 

grade(s) has(ve) a high risk of stocking out, which may lead to significant lost-sales costs. We 

refer to this situation as the “imbalance problem,” because one or more of the individual 

inventory levels are much lower than the average. 

To illustrate the imbalance problem, suppose that in an N-grade problem, where N > 4, the 

facility is currently set up to produce grade 4 and that the inventory levels of grades 1-4 are x1 = 

15, x2 = 15, x3 = 0, x4 = 6. Then, in sub-problem S4, the inventory level of the middle grade 

would be x4 = 6, and the total inventory level of the low composite grade would be w4 = x1 + x2 + 

x3 = 30. In this case, the optimal policy obtained from solving S4 might indicate that it is optimal 
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for the facility not to change over to the low composite grade, because there is plenty of it (30 

units) in storage compared to the inventory level of the middle grade 4, which is much lower (6 

units). What the DBH fails to see here is that although w4 is relatively high, its individual 

components are quite imbalanced – in fact, one of them, namely x3, is zero. In this case, unless 

the facility changes over to grade 3, a heavy lost-sales cost is likely to be incurred in the current 

and in the following period. 

In case of an imbalance among the individual inventory levels x1, …, xn–1, we need to find an 

alternative definition for the aggregate inventory level, wn, which reflects this imbalance. To this 

end, let ILSn(x1, …, xn–1) denote the total expected lost sales over the individual grades 1, …, n – 

1, as a function of x1, …, xn–1, i.e., 

 ( )1
1 1 1

( , , ) n
n n i ii

ILS x x E D x− +
− =

 ≡ − ∑  

Also, let CLSn(wn) denote the expected lost sales of the composite of grades 1, …, n – 1, as a 

function of the aggregate inventory level, wn, i.e.,  

 ( )( )1

1
( ) n

n n i ni
CLS w E D w

+−

=

 ≡ −  
∑  

The expected lost sales is a measure of the effect of stock-outs. A desirable property of wn is 

that it should yield the same measure of the effect of stock-outs as that yielded by the individual 

grades, i.e., wn should satisfy 

 CLSn(wn) = ILSn(x1, …, xn–1)  (5) 

If ILSn(x1, …, xn–1) = 0, then there is little risk of a grade stocking out; hence, there is no 

imbalance problem. In this case, setting wn = x1 + … + xn–1 would make CLSn(wn) = ILSn(x1, …, 

xn–1) = 0. If ILSn(x1, …, xn–1) > 0, on the other hand, then there is a more significant risk that one 

or more grades may stock out; hence, there is an potential imbalance problem. In this case, 

setting wn = x1 + … + xn–1 would make CLSn(wn) ≤ ILSn(x1, …, xn–1); hence, wn would 

underestimate the effect of a possible stock-out, due to the imbalance. To remedy this, we should 

choose a smaller value of wn that satisfies (5). Let vn(x1, …, xn–1), denote the value of wn that 

satisfies (5), i.e., 

 ( )1
1 1 1 1( , , ) ( , , )n n n n nv x x CLS ILS x x−

− −≡    

It can be easily shown that vn(x1, …, xn–1) ≤ x1 + … + xn–1. To compute vn(x1, …, xn–1), we 

need the probability distribution of the demand of the composite grade, which we can derive by 
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convolving the probability distributions of the demands of the individual grades. We propose a 

faster alternative that is based on approximating ILSn(x1, …, xn–1) and CLSn(wn) by the following 

expressions, respectively: 

 ( )1
1 1 1

( , , ) [ ]n
n n i ii

ILS x x E D x− +
− =

≈ −∑  (6) 

 ( )( )1

1
( ) [ ]n

n n i ni
CLS w E D w

+−

=
≈ −∑   

If ILSn(x1, …, xn–1) > 0, the above approximations allow us to approximate vn by the 

following expression: 

 ( )1 1
1 1 1 11 1

( , , ) [ ] ( , , ) min , [ ]n n
n n i n n i ii i

v x x E D ILS x x x E D− −

− −= =
≈ − =∑ ∑   (7) 

Although vn(x1, …, xn–1) reflects the imbalance between the individual inventory levels x1, …, 

xn–1, it may be significantly smaller than the sum x1 + … + xn–1, which is the natural candidate for 

the aggregate inventory level of the composite grade. With this in mind, we propose to set wn 

equal to a linear combination of x1 + … + xn–1 and vn(x1, …, xn–1) (rounded to the nearest integer), 

if ILSn > 0; otherwise, set it equal to x1 + … + xn–1, namely, 

 1 1 1 1
1 1

1 1 1 1 1 1

, if ( , , ) 0
( , , )

( , , ) (1 )( ), if ( , , ) 0
n n n

n n
n n n n n

x x ILS x x
w h x x

v x x x x ILS x xα α
− −

−
− − −

+ + =
= =  + − + + >

 



  

   (8) 

where α is a coefficient, such that 0 ≤ α ≤ 1, and ILSn(x1, …, xn–1) and vn(x1, …, xn–1) are 

approximated by (6) and (7), respectively. Note that if α = 0, the rule prescribed by (8) becomes 

wn = x1 + … + xn–1, irrespectively of whether there is an imbalance problem or not, whereas if α = 

1, wn is set equal to x1 + … + xn–1, if ILSn(x1, …, xn–1) = 0, and equal to vn(x1, …, xn–1) if ILSn(x1, 

…, xn–1) > 0. It is reasonable to expect that the smaller the imbalance problem, the smaller the 

optimal value of α, and the better the performance of the DBH. In Section 5.3, we investigate the 

performance of the DBH as a function of coefficient α. 

The DBH policy that we described above, as any feedback policy, satisfies an expression 

similar to Bellman’s equation (3), without the minimization, i.e., it satisfies 

 ( ) ( ( ))h
h h h

u
J V T V+ =y y  (9) 

where Jh is the expected average cost per period and Vh(y) is the differential cost starting from 

state y, when the DBH policy uh = μh(y) is used. Note that Jh, Vh(y), and μh(y) also depend on α, 

but we omitted this dependence here for notational simplicity. 
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One way to evaluate the DBH policy is to use the method of successive approximations of 

the functions Vh(y) (value iteration). More specifically, if we denote by ( )h
kV y  the values of the 

differential cost function at the kth iteration, then the values at the (k + 1)th iteration are obtained 

from the previous iteration by a recursion similar to (4), without the minimization, i.e., 

 1 ˆ( ) ( ( )) ( ( ))h h
h h h

k k ku u
V T V T V+ = −y y y  (10) 

Note that as in (4), at each step of iteration (10), the differential cost of the special state ŷ is reset 

to zero. Assuming that the iteration scheme converges to some value Vh(y), for each state y, then 

the expected average cost per period of the DBH policy is given by ˆ( ( ))h
h h

u
J T V= y . 

An alternative way to evaluate the DBH policy is to use simulation. Our numerical 

experience for 4-grade and 5-grade problems showed that simulation is faster than the method of 

value iteration by as much as 100 times. 

5. Numerical results 
In this section, we present numerical results for problem examples with 2-5 grades. First, we 

solve some indicative 2-grade and 3-grade examples using the exact solution procedure. For 

these examples, we briefly discuss the optimal changeover policy and performance. More cases 

and discussion of the results for the 2-grade and 3-grade examples can be found in 

Hatzikonstantinou (2009). Then, we solve 4-grade and 5-grade examples using both the exact 

and the DBH solution procedures. We discuss the performance and computational efficiency of 

the DBH procedure, and we explore how they are affected by the distribution of the relative 

market size of the different grades and the size of weight α in expression (8). In all the examples, 

we set ŷ to be the state where s = 1 and xn = 0, n = 1, …, N. For practical purposes, this state will 

be recurrent under mild assumptions on the distribution of the demand and the relative lost-sales 

cost of grade 1. For example, if Pr(Dn > P) > 0, n = 1, …, N, state xn = 0, n = 1, …, N will be 

accessible from any other state. In addition, if the lost-sales cost of grade 1 is comparable to that 

of the other grades, the set-up state s = 1 should be visited infinitely often under the optimal 

policy.  
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5.1 2-grade example 
First, we consider a 2-grade example (N = 2), where P = 5, and the demand distribution for the 

two grades is given in Table 1; the last column shows the coefficient of variation (C.V.) which is 

defined as the standard deviation over the mean. 

 

Table 1: Probability distribution of demand, Pr(Dn=i), for the 2-grade example 

  i    
n   0 1 2 3 4 5 6  E[Dn] C.V.[Dn] 
1  0.1 0.15 0.15 0.2 0.15 0.15 0.1  3 0.6055 
2  0.15 0.15 0.4 0.15 0.15 0 0  2 0.6124 

 

We run the value iteration procedure outlined in Section 3 for six combinations of storage 

capacity, X, and cost rate parameters, CC, CS, CL1 and CL2, where we assumed that CL1 = CL2 = 

CL. The results are shown in Table 2, spread in three rows for each case. The first row shows the 

number of iterations until convergence, denoted by kc, for convergence tolerance criterion ε = 

0.001, the total CPU time in hours on an Intel Pentium PC at 2.99 GHz with 1 GB RAM, and the 

resulting optimal expected average cost per period, J. The second row shows the per period 

expected average number of changeovers, units spilled over, and lost sales for each grade, 

denoted by E[C], E[S], E[L1] and E[L2], respectively. These quantities are related to J by the 

expression J = CC⋅E[C] + CS⋅E[S] + CL⋅E[L1] + CL⋅E[L2]. The third row shows the elements of 

the inventory level vector that minimizes V(s, x1, x2), denoted by (x1
*(s), x2

*(s)), for s = 1, 2.  

 

Table 2: Results for the 2-grade example 

      X = 40     X = 60     X = 80   
Case CC CS CL  kc CPU J -  kc CPU J -  kc CPU J - 

     Ε[C] E[S] E[L1] E[L2]  Ε[C] E[S] E[L1] E[L2]  Ε[C] E[S] E[L1] E[L2] 
     x1

*(1) x2
*(1) x1

*(2) x2
*(2)  x1

*(1) x2
*(1) x1

*(2) x2
*(2)  x1

*(1) x2
*(1) x1

*(2) x2
*(2) 

1 1 5 5  253 0.4045 0.9804 -  642 2.2917 0.6168 -  1210 7.5323 0.4494 - 
     0.1991 0.0777 0.0412 0.0374  0.1285 0.0486 0.0248 0.0243  0.0943 0.0353 0.0180 0.0177 
     1 21 22 0  2 32 34 0  2 44 46 0 

2 2 5 5  240 0.3808 1.1616 -  599 2.0880 0.7327 -  1125 7.2427 0.5343 - 
     0.1662 0.0825 0.0419 0.0415  0.1067 0.0517 0.0252 0.0270  0.0781 0.0377 0.0174 0.0206 
     1 22 23 0  1 35 36 0  1 48 49 0 

 

From the results, it can be seen that the values of kc and CPU range from 240 iterations in 

0.3808 hours (∼23 min), in case 2 (X = 40), to 1210 iterations in 7.5323 hours, in case 1 (X = 80). 
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As expected, kc and CPU are increasing in X, whereas E[C], E[S] E[L1], E[L2] and J are 

decreasing. Also, J is increasing in the cost rate parameters.  

Figure 1 shows the optimal changeover policy as a function of inventories x1 and x2, for cases 

1 and 2 of Table 2, for X = 40, and is representative of all other cases. The optimal policy 

partitions the inventory space in several regions, where each region is characterized by a 

different changeover action, as described in Table 3. If the inventory level vector is in region c, 

the facility changes over from one grade to the other in each period (“chattering”). If the 

inventory level vector is in region b, the facility keeps producing the grade it is set up for. As a 

result, the inventory level vector moves on a trajectory, which is more or less parallel to the outer 

face of the triangular state space, until it crosses one of the borders of region b, entering region a 

or d. At this point, the facility changes over to the other grade, and the inventory level vector 

reverses its direction, entering region b again, heading for the other border. Note that region b is 

wider in case 2, where the changeover cost is greater, indicating that in case 2, the facility 

produces longer runs (campaigns) of each grade with less frequent changeovers. In fact, the 

widening up of region b in case 2 is so big that it makes region c disappear. 

 

 
Figure 1: Optimal changeover policy for cases 1 (left) and 2 (right) of Table 2, for X = 40 

 

The borders of region b towards its wider end tend to align themselves to the orthogonal lines 

x1 = c1 and x2 = c2, respectively, where c1 and c2 are some constants. This means that when the 

facility is set up for, say, grade 2, it will change over to grade 1, if x1 drops below c1, 

irrespectively of the value of x2, as long as x2 is high.  
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Table 3: Optimal policy μ*(s, (x1, x2) ∈ R) for the 2-grade example 

  s   
R  1 2  Description 
a  1 1  Changeover to grade 1 
b  1 2  Do not changeover 
c  2 1  Changeover to the other grade 
d  2 2  Changeover to grade 2 

 

In all cases, the minimizer of V(s, x1, x2), (x1
*(s), x2

*(s)), for any given setup state s is such 

that xn
*(s) ≈ 0, for n = s, and 0 << xn

*(s) << X, for n ≠ s. For example, for the case where X = 40, 

x1
*(1) = 1 and x2

*(1) = 21. The vector (1, 21) can be thought of as the ideal value of the inventory 

level vector (x1(1), x2(1)), meaning that if the facility is set up to produce grade 1 (s = 1), the best 

place to be in terms of inventory is to have only one unit of grade 1 and 21 units of grade 2. This 

will allow a long production campaign of grade 1 with a low risk of stocking out of grade 2 or 

spilling over the produced grade 1, because of the lack of storage space. The line connecting the 

inventory level vectors that minimize the differential cost functions of the two setup states (i.e., 

the line connecting inventory points (1, 21) and (22, 0)) is shown as a dotted line in Figure 1 

(left) for case 1. Under the optimal changeover policy, the inventory level vector moves on 

average back and forth along the segment of that dotted line that falls in region b, as the facility 

changes over from one grade to the other, whenever the inventory level vector enters region a or 

d. 

The optimal inventory level of the grade that the facility is not set up for acts as a “safety 

stock”. Although not shown here for space considerations, it is increasing in CL to better hedge 

against stock-out occurrences, and decreasing in CS to better hedge against spill-over 

occurrences. From Table 2, it can be seen that this safety stock is insensitive to CC. CC primarily 

affects the width of region b and therefore the “cycle stock” and changeover frequency. 

5.2 3-grade example 
Next, we consider a 3-grade (N = 3) example that originated from the real dynamic scheduling 

application of a continuous-flow PET resin processing plant that produces three grades, 

presented in Liberopoulos et al. (2009). The production rate and the FG storage capacity are P = 

6 and X = 115. The distribution of the discretized demand for the three grades is given in Table 

4. The cost rate parameters that we used are CC = 1, CS = CL1 = CL2 = 2, to reflect the fact that 
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the plant manager wishes to avoid frequent changeovers, but is even more wary about material 

spill-over and lost sales. 

 

Table 4: Probability distribution of demand, Pr(Dn=i), for the 3-grade example 

  i    
n  0 1 2 3 4 5 6 7 8 9 10  E[Dn] C.V.[Dn] 
1  0.1676 0.1429 0.3214 0.1538 0.1016 0.0604 0.0247 0.0110 0.0137 0.0027 0.0000  2.3159 0.7625 
2  0.5000 0.1648 0.1071 0.0824 0.0604 0.0302 0.0220 0.0137 0.0027 0.0110 0.0055  1.4231 1.4254 
3  0.1519 0.2652 0.2956 0.0718 0.0663 0.0525 0.0442 0.0138 0.0276 0.0028 0.0083  2.2901 0.9067 

 

We solved the problem optimally using the value iteration method outlined in Section 3. The 

method converged after 533 iterations that took 269 hours on an Intel Pentium PC at 2.99 GHz 

with 1 GB RAM, for convergence tolerance criterion ε = 0.01. The resulting optimal expected 

average cost per period, J, is 0.4522. As in the 2-grade example, the optimal changeover policy 

partitions the inventory space in several regions, each characterized by a different optimal 

changeover action. Figure 2 shows the optimal policy as a function of inventory levels x1 and x3, 

for different values of x2. The optimal changeover action in each region is given in Table 5. 

 
Figure 2: Optimal changeover policy for x2 = 70 (left) and x2 = 10 (right), for the 3-grade 

example 

 

Figure 2 (left), shows the optimal changeover policy for x2 (= 70) >> x1 + x3. It can be seen 

that if (x1, x3) ∈ a, in which case x2 >> x3 >> x1, then the production facility must change over to 

the next lower grade so that it is eventually set up for grade 1, because x1 is significantly lower 

than x2 and x3. If (x1, x3) ∈ b, in which case x2 >> x3 > x1, then the facility must change over to 
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grade 1, if it is set up for grade 2. If it is set up for grade 3, however, it need not change over to 

grade 2 (to eventually change over to grade 1), because x1 is not that much lower than x3 to 

justify the cost of such a changeover. The optimal changeover policies in regions l and f are 

symmetric to those in regions a and b, respectively, with the roles of x1 and x3 being reversed. 

 

Table 5: Optimal policy μ*(s, R) for the 3-grade example 

  s   
R  1 2 3  Description 
a  1 1 2  Changeover to the next lower grade 
b  1 1 3  If set up for grade 2, changeover to grade 1 
c  1 2 2  If set up for grade 3, changeover to grade 2 
d  1 2 3  Do not changeover 
e  1 3 2  If set up for grade 2 or 3, changeover to grade 3 and 2, respectively 
f  1 3 3  If set up for grade 2, changeover to grade 3 

g  2 1 2  If set up for grade 1 or 3, changeover to grade 2; if set up for grade 2, changeover to 
grade 1 

h  2 1 3  If set up for grade 1 or 2, changeover to grade 2 and 1, respectively 
i  2 2 2  Changeover to grade 2 
j  2 2 3  If set up for grade 1, changeover to grade 2 

k  2 3 2  If set up for grade 1 or 3, changeover to grade 2; if set up for grade 2, changeover to 
grade 3 

l  2 3 3  Changeover to the next higher grade 
 

Figure 2 (right), shows the optimal changeover policy for x2 (= 10) << x1 + x3. It can be seen 

that, in addition to regions a, b, f and l, seven new regions enter the picture, and the overall 

optimal policy looks rather complicated. Moreover, the same changeover action may apply to 

more than one regions in different parts of the state space. The explanation of the optimal policy 

in different regions can be found in Hatzikonstantinou (2009).  

Table 6 shows the elements of the inventory level vector that minimizes the differential cost 

function V(s, x1, x2, x3), for each set up state s. As in the 2-grade example, the minimizing 

inventory level of the grade being produced is close to zero, whereas the minimizing inventory 

level of the grades not being produced are positive and quite big. In fact, the further away (in 

terms of number of changeovers) a grade is from the grade produced, the higher its minimizing 

inventory level. For example, when the production is setup to produce grade 1 (s = 1), x1
*(1) = 2, 

which is close to zero, x2
*(1) = 22, which is significantly higher than zero, and x3

*(1) = 47, which 

is even higher. 
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Table 6: Minimizing inventory level, xn
*(s), for the 3-grade example 

    n  
s   1 2 3 
1   2 22 47 
2   22 3 56 
3   47 31 3 

5.3 4-grade and 5-grade examples 
Finally, we consider a 4-grade (N = 4) and a 5-grade (N = 5) example. In each example, we 

assume that the demand for each grade is identically distributed to one of the random variables 

Dj, j = A, B, C, D, whose distributions are given in Table 7. 

 

Table 7: Probability distribution of demand, Pr(Dj = i), for the 4-grade and 5-grade examples 

  i    
j   0 1 2 3  E[Dj] C.V.[Dj] 
A  0.4 0.5 0.05 0.05  0.75 1.0220 
B  0.25 0.5 0.25 0  1 0.7071 
C  0.25 0.25 0.5 0  1.25 0.6633 
D  0.05 0.2 0.45 0.3  2 0.4183 

 

For each example (N = 4 and N = 5), we consider four different cases. In each case, the set of 

the probability distributions of the demands of the different grades is the same and such that the 

total expected demand is equal to the production rate. The difference between the cases is in the 

order in which these distributions appear in the chain of allowable changeovers. For instance, in 

all cases of the 4-grade example, we assume that the demands of two of the grades are identically 

distributed to random variable DB, which has an expected value of 1, and the demands of the 

other two grades are identically distributed to random variable DD, which has an expected value 

of 2. In other words, two grades have low demand and two grades have high demand. In case 1, 

the grades with the low demand are the end grades, 1 and 4, whereas the grades with the high 

demand are the middle grades, 2 and 3. To indicate this order we use the notation “B-D-D-B”. In 

case 2, the order is D-D-B-B, which means that grades 1 and 2 have high demand and grades 3 

and 4 have low demand, and so on. Hence, each case represents a different way that total 

expected demand is distributed among the individual grades.  

First, we solved each case optimally using the value iteration procedure described in Section 

3, for convergence tolerance criterion ε = 0.001. Then, we solved each case using the DBH 



23 

procedure described in Section 4. In the implementation of the DBH procedure we used 

expressions (6) and (7) to approximate ILSn(x1, …, xn–1) and vn(x1, …, xn–1), respectively, and 

expression (8) to estimate the aggregate inventory levels of the composite grades, wn, for 11 

values of α ranging from 0 to 1 with a step size of 0.1. In all cases, we assumed that CC = CS = 

CLn = 1, n = 1, …, 5, and P = 6. 

The results for the 4-grade example, for X = 30, are shown in Table 8. The CPU times 

reported are in hours on an Intel Core i7 PC at 2.67 GHz with 3 GB RAM. For the DBH, we 

show the total CPU time in hours that it took to solve the (N – 2) 3-grade sub-problems and 

generate the DBH policy – which is what counts here – but not the time it took to evaluate the 

DBH policy. As was mentioned at the end of Section 4, the time it takes to evaluate the DBH 

policy using the value iteration method is significant, whereas the alternative of using discrete-

time system simulation is much faster. In all cases of the 4-grade problem, we used the value 

iteration method. The optimal value of α, among the 11 values examined, is denoted by α*, and 

the corresponding expected average cost per period is denoted by Jh(α*). The last column of 

Table 8 shows the percent cost increase between the DBH and the optimal policy. 

 

Table 8: Performance of the exact and DBH procedures for the 4-grade example for X = 30 

 Demand  Exact  DBH  % cost 
Case pattern  kc CPU J  CPU α* Jh(α*)  increase 

1 B-D-D-B  55 8.57 1.0034  0.0461 0.7 1.2442  24.00 
2 D-D-B-B  156 24.29 1.0927  0.0574 0.5 1.2253  12.13 
3 D-B-D-B  187 29.12 1.1835  0.0748 0.1 1.3207  11.59 
4 D-B-B-D  110 17.13 1.2881  0.1040 0.1 1.3139  1.96 

 

In case 1, the grades with the highest expected demands are in the middle of the chain of 

allowable changeovers, whereas in case 4, they are at the two ends of the chain. Hence, in case 1 

the dispersion of the total expected demand among the individual grades is relatively low, 

because most of the time the production facility will be changing over between the highly 

demanded grades, 2 and 3, which are adjacent. In case 4, on the other hand, the dispersion of the 

total expected demand is relatively high, because most of the time the production facility will be 

changing over between the highly demanded grades, 1 and 4, which are spaced 3 grades apart. 

Cases 2 and 3 are intermediate cases. 
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From the results, it can be seen that as we move from case 1 to case 4, i.e., as the dispersion 

of the total demand among the individual grades increases, the expected average cost per period 

increases, because the number of changeovers needed to effectively meet the demands for all the 

grades increases. To see this, note that in case 1, every time the facility must change over 

between the highly demanded grades, 2 and 3, one changeover is needed, namely, 2→3. In case 

4, however, when the facility must change between the highly demanded grades, 1 and 4, three 

costly but inevitable changeovers are needed, namely 1→2, 2→3, and 3→4. During the latter 

two changeovers, the lowly demanded grades, 2 and 3, are each produced for one period. These 

inevitable single-period production runs prevent the inventory levels of grades 2 and 3 from 

dropping too much on average and causing a significant imbalance among the inventory levels of 

all the grades. This suggests that the bigger the dispersion of the total demand among the 

individual grades, the smaller the imbalance problem. Moreover, as was mentioned in Section 4, 

the smaller the imbalance problem, the smaller the optimal value of α, and the better the 

performance of the DBH. This explains why, as we move from case 1 to case 4, α* and the 

percent cost increase between the DBH policy and the optimal policy decrease. Actually, in all 

cases, except case 1, Jh(α) is relatively insensitive to parameter α, as can be seen from Figure 3.  

 
Figure 3: Expected average cost per period of the DBH, Jh(α), vs. α, for the 4-grade example 

 

Finally, the cost increase when using the DBH instead of the exact method is 12.43% on 

average and ranges between 2.00% for case 4 and 24% for case 1. Note, however, that the DBH 

method is between 160 and 420 times faster than the exact method. 

The results for the 5-grade example, for X = 20, are shown in Table 9. In all cases, we used 

discrete-time system simulation to evaluate the DBH policy. To obtain each estimate Jh(α) and 
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its 95% confidence interval, denoted by “c.i.”, we run 60 simulations, each with a time horizon 

of 100,000 time units. In all cases, the width of the resulting c.i. was approximately 1‰ of the 

estimated Jh(α) value. 

 

Table 9: Performance of the exact and DBH procedures for the 5-grade example for X = 20 

 Demand  Exact  DBH  % cost 
Case pattern  kc CPU J  CPU α* Jh(α*) (95% c.i.)  increase 

1 A-C-D-C-A  35 38.05 2.6520  0.0242 0.1 3.0355 ± 0.0016  14.46 
2 D-C-C-A-A  71 78.70 3.0016  0.0488 0.1 3.4512 ± 0.0015  14.98 
3 D-C-A-A-C  129 141.21 3.4916  0.0670 0 3.8759 ± 0.0020  11.00 
4 D-A-C-A-C  129 140.39 3.6572  0.0670 0 3.9348 ± 0.0020  7.59 

 

The results shown in Table 9 are qualitatively similar to those obtained for the 4-grade 

example. Namely, the smaller the imbalance problem, the smaller the optimal value of α, and the 

better the performance of the DBH. In all cases of this example, α* is quite small and Jh(α) is 

slightly increasing and relatively insensitive to parameter α, at least for values of α smaller than 

0.5, as can be seen from Figure 4. 

 

 
Figure 4: Expected average cost per period of the DBH, Jh(α), vs. α, for the 5-grade example 

 

The cost increase when using the DBH instead of the exact method ranges between 7.59% 

for case 4 and 14.98% for case 2 and is 12.01% on average, which is practically the same as the 

average cost difference in the 4-grade example. The DBH method, however, is between 600 and 

1700 times faster than the exact method, which is quite significant. 
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6. Further numerical investigation 
In this section, we further investigate the performance of the DBH. First, we compare it against 

the performances of three simpler parameterized heuristics, in order to better access its value. 

Then, we compare the performances of the DBH and the exact solution procedures for the case 

where the FG inventory buffer is not common but consists of a number of separate general-

purpose silos capable of storing any grade as long as it is not mixed with any other grade. 

6.1 Comparison of the DBH with three simple parameterized heuristics 
In Section 5.3, we compared the performance of the DBH solution procedure against the 

performance of the exact solution procedure, for 4-grade and 5-grade examples. For problems 

with more than 5 grades, although the DBH solution can be readily obtained, it is practically 

impossible to compare its performance against that of the exact solution, because it is impossible 

to even start the value iteration method to find the exact solution, as the state space grows 

dramatically with the number of grades and there is simply not enough computer memory to 

store it. For example, for a problem with N = 6 and X = 20, the state space contains 6(20 + 

6)!/(20!6!) = 1,381,380 points. 

To the best of our knowledge, in the relatively scarce literature on dynamic scheduling 

approaches to the SELSP, no paper except for Löhndorf and Minner (2012) compares the 

performance of heuristic solutions against the overall optimal dynamic global lot-sizing optimal 

policy, precisely because the curse of dimensionality makes it practically impossible to solve for 

the optimal policy. Löhndorf and Minner (2012) compare the performance of the policies that 

they develop against the optimal policy for a tractable case with three products. All the other 

related papers that we are aware of evaluate and compare heuristic lot-sizing policies only.  

One such example is Gascon et al. (1994) that compares six different heuristics for the 

classical SELSP. The classical SELSP differs from our problem in that changeovers are allowed 

from any item to any other item and not only to neighboring items, production is halted during 

changeovers, there is a FG inventory holding cost instead of a hard FG inventory storage 

capacity limit, it is possible to halt production (e.g., if the inventory levels are high), and the 

production rate is larger than the total expected demand rate. The heuristics that Gascon et al. 

compare are based on the notion of following economic rotation cycles but with the possibility of 

temporary departing from these cycles whenever potential stockout situations occur. The results 
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show that for the stationary demand case (they also look at non-stationary demand), when the 

utilization of the facility is high, the heuristic proposed by Vergin and Lee (1978) yields the 

smallest average changeover cost at the expense of a relatively high average inventory holding 

cost.  

In the Vergin and Lee heuristic, production changes over to the product with the fewest days 

of stock on hand or most days of backorders, if that item has fewer than L days of stock on hand, 

where L is a policy parameter. Otherwise, if the item currently produced does not exceed its 

maximum absolute inventory level (a policy parameter) or its maximum relative inventory level 

(a computed parameter), then the production of that item continues in the next period. If none of 

these three conditions hold, then the production facility is idled in the next period. 

In what follows, we propose three simple, practical, parameterized heuristics that are inspired 

by the Vergin and Lee heuristic. We then evaluate the performances of these heuristics for the 4-

grade and 5-grade examples that were presented in Section 5.3, and we compare these 

performances against those of the DBH and the exact solution procedures. All three heuristics 

are global in that the changeover policy that they prescribe depends on the entire state of the 

system, y = (s, x1, …, xN); in other words, the setup state in the next period, s′, is a function of the 

system state y in the current period. As there is no inventory carrying cost and no possibility to 

change the production rate, in all the heuristics, there are no conditions for idling the facility, and 

the changeover decision is based only on a condition that detects potential stockout situations. 

Minimum individual coverage heuristic (MICH) 

Step 1: Given y = (s, x1, …, xN), compute { }* arg min [ ]n nn
n x E D=   

Step 2: If * *[ ]
n n

x E D L≤  then s′ = s + sign(n* – s)  

The MICH first finds the individual grade with the smallest expected number of periods that 

can be covered from on hand stock, n*. If the expected number of periods that can be covered 

from on hand stock for that grade is less than or equal to a threshold value, L, then the facility 

changes over to the next neighboring grade in the direction of n*, aiming to eventually reach n*. 

Of course, if n* = s, then there is no changeover. L is a policy parameter which acts as a safety 

time (analogous to a safety stock). 

Because of the changeover-to-neighbor-only restriction, a seemingly more suitable variant of 

the MICH would be to replace the actual expected number of periods that can be covered from 
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on hand stock for grade n, xn/E[Dn], with the “effective” expected number of periods that can be 

covered from on hand stock, where the latter is defined as the actual expected number of periods 

that can be covered by stock on hand minus the number of periods needed to start producing 

grade n, |n – s|. In other words, the variant replaces xn/E[Dn] with xn/E[Dn] – |n – s| in the rule. 

We tried this variant, but it performed very poorly, as it produced a changeover policy where 

production was limited to the middle grades only. The reason is that the variant seems to embark 

to changeover to the most extreme grade, due to the |n – s| term, but never reaches that grade, 

because the extreme grade changes during the course. 

The MICH is one of the simplest heuristics that one may think of. A potential problem with it 

is that it considers the individual grades in isolation without taking into account which side of the 

current grade (low or high) they are in. Thus, it may happen that the individual grade with the 

smallest expected number of periods that can be covered from on hand stock is on the low side of 

the current grade, but there are many other grades on the high side with slightly higher but still 

quite small expected number of periods that can be covered from on hand stock. In such a case, it 

might be better to changeover to the next high grade than to the next low grade. The next 

heuristic is designed to address this issue. 

Minimum average aggregate coverage heuristic (MAACH) 

Step 1: Given y = (s, x1, …, xN), compute 
1
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1
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Step 2: Compute { }min min , ,l s hm m m m=  

Step 3: If minm L≤ then s′ = s + sign(ml – mh)⋅sign(ms – mmin) 
 

The MAACH first finds the average expected number of periods that can be covered by the 

aggregate on-hand inventory of the low, current, and high grades, where the low and high grades 

are defined as in the DBH. Then it computes the minimum of the three averages. Note that if the 

current grade is an extreme grade (1 or N), then either the low or high grade term does not exist, 

so it is omitted from the minimization. If the minimum of the averages is less than or equal to a 

threshold value, L, then the facility changes over in the direction of the grade that this minimum 

corresponds to (low, current, or high). Of course, if this grade is s, then there is no changeover.  
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The MAACH takes into account the fact that the candidate for changeover grades are on one 

or the other side (low or high) of the current grade; however, it may suffer from the “imbalance 

problem” that we described in Section 4, because it may happen that average expected number of 

periods that can be covered by the aggregate on-hand inventory of a composite grade (e.g., the 

low grade) is relatively high, signaling that there is no need to changeover towards that 

composite, but the expected number of periods that can be covered by one of the components of 

the composite grade is small. The next heuristic is designed to address this issue. 

Maximum average aggregate shortfall heuristic (MAASH)  

Step 1: Given y = (s, x1, …, xN), compute 
1

1

1
1 [ ]

s
n

l
n n

xm L
s E D

+
−

=

 
= − −  

∑ , 
[ ]

s
s

s

xm L
E D

+
 

= − 
 

, 

and 
1

1
[ ]

N
n

h
n s n

xm L
N s E D

+

= +

 
= − −  

∑  

Step 2: Compute { }max max , ,l s hm m m m=  

Step 3: s′ = s + sign(mh – ml)⋅sign(mmax – ms) 

The MAASH first finds the average expected shortfall of the number of periods that can be 

covered by the aggregate on-hand inventory of the low, current, and high grades, from a 

threshold value, L. Then it computes the maximum of the three averages. Note that if the current 

grade is an extreme grade (1 or N), then either the low or high grade term does not exist, so it is 

omitted from the maximization. Also note that if a term is zero, then it should also be omitted 

from the maximization. The facility changes over in the direction of the grade that this maximum 

corresponds to (low, current, or high). Of course, if this grade is s or if all terms are omitted from 

the maximization, then there is no changeover. Note that when L = 1, the expressions for the 

average expected shortfalls of the low and high grades, ml and mh, resemble expression (6) used 

in the DBH, except that (6) refers to the total expected lost sales expressed in product units, 

whereas the expressions for ml and mh, refer to the average expected lost sales (when L = 1) 

expressed in periods. 

All the heuristics presented above are practical and easy-to-use. The changeover decision that 

they prescribe can be computed on the spot for any given y, and does not have to be pre-
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calculated as is the case with the DBH. On the downside, all three heuristics require the sizing of 

the threshold parameter L.  

Tables 10 and 11 show the expected average cost of the exact procedure, the DBH, and the three 

parameterized heuristics, for the 4-grade and 5-grade examples presented in Section 5.3. The 

optimal value of L, denoted L*, is shown in parentheses, for the three parameterized heuristics. L* 

was found by successively trying different values of L in increments of one, starting from L = 0, 

until an increase in the expected average cost was observed. The percent cost increase of the 

heuristics with respect to the exact procedure is shown in square brackets. The results for the 

three heuristics were obtained by simulation, whereas those for the exact method and the DBH 

were taken from Tables 8 and 9, respectively. 

 

Table 10: Expected average cost of the exact procedure, the DBH, and the three parameterized 

heuristics for the 4-grade example for X = 30 

 
Case 

Demand 
pattern 

 
Exact 

DBH 
[% cost increase] 

MICH (L*) 
[% cost increase] 

MAACH (L*) 
[% cost increase] 

MAASH (L*) 
[% cost increase] 

1 B-D-D-B 1.0034 1.2442 [24.00] 1.1652 (4) [16.13] 1.3420 (6) [33.75] 1.1988 (4) [19.47] 
2 D-D-B-B 1.0927 1.2253 [12.13] 1.8309 (3) [67.56] 1.7019 (6) [55.75] 1.5580 (5) [42.58] 
3 D-B-D-B 1.1835 1.3207 [11.59] 4.5802 (1) [287.00] 1.6064 (5) [35.73] 1.5861 (6) [34.02] 
4 D-B-B-D 1.2881 1.3139 [2.00] 4.3619 (1) [238.63] 1.8826 (4) [46.15] 1.8801 (10) [45.96] 
 

Table 11: Expected average cost of the exact procedure, the DBH, and the three parameterized 

heuristics for the 5-grade example for X = 20 

 
Case 

Demand 
pattern 

 
Exact 

DBH 
[% cost increase] 

MICH (L*) 
[% cost increase] 

MAACH (L*) 
[% cost increase] 

MAASH (L*) 
[% cost increase] 

1 A-C-D-C-A 2.6520 3.0355 [14.46] 3.7225 (4) [40.37] 4.0426 (5) [52.44] 3.8389 (1) [44.75] 
2 D-C-C-A-A 3.0016 3.4512 [14.98] 4.2896 (3) [42.91] 4.3290 (5) [44.22] 4.1798 (2) [39.25] 
3 D-C-A-A-C 3.4916 3.8759 [11.01] 5.5017 (2) [57.57] 4.4721 (4) [28.08] 4.4376 (6) [27.09] 
4 D-A-C-A-C 3.6572 3.9348 [7.590] 6.7949 (3) [85.80] 4.3932 (5) [20.12] 4.3770 (7) [19.68] 
 

From the results, it can be seen that the DBH significantly outperforms the three heuristics in 

all cases except case 1 of the 4-grade example, where the DBH has the poorest performance and 

the MICH and MAASH incur slightly smaller costs. More specifically, for the 4-grade example, 

the average cost increase (with respect to the optimal solution) for the MICH, MAACH, and 

MAASH is 152.33%, 42.85%, and 35.51%, respectively, whereas the average cost increase for 

the DBH is 12,42%. For the 5-grade example, the average cost increase for the three heuristics is 

56.66%, 36.22%, and 32.70%, respectively, whereas the average cost increase for the DBH is 
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12,01%. This comparison shows that the complexity of the changeover decision problem, which 

is due to a large extent to the changeover-to-neighbor-only restriction and the inability to change 

the production rate, cannot be effectively tackled with simple rules, even if these rules are global 

and use an optimized threshold parameter to hedge against future uncertainty. The DBH seems to 

respond to this complexity much more adequately. Among the three heuristics, the MAASH 

performs slightly better than the MAACH, which itself performs much better than the MICH, 

except for case 1, where the MICH outperforms all other heuristics.  

6.2 Investigation of the case of separate general-purpose FG silos 
Thus far, we have assumed that the FG inventory buffer is common and therefore each grade can 

be stored in any discrete quantity as long as the total inventory over all grades does not exceed 

the common buffer capacity X. In this section, we assume that grades are stored separately in M 

general-purpose, equal-sized FG silos, i.e., storage spaces that can store any grade as long as it is 

not mixed with another grade. The total storage capacity is still X, which means that each silo has 

a capacity of X/M. Figure 5 illustrates the inventory state space for a 2-grade system for different 

values of M. As can be seen, the number of silos affects the outer facet of the inventory storage 

state space. Clearly, the larger M, the more flexible the usage of the total storage capacity. The 

right-most drawing in Figure 5 shows the inventory state space for the limiting case where M = 

X, which represents the case of the single common FG inventory buffer that we have considered 

thus far in the previous sections. 

  
Figure 5: Inventory state space for a 2-grade system for different values of M 

 
When M < X, the definitions of the inventory state space and available storage capacity must 

be modified. More specifically, the set of allowable inventory levels is determined by all integers 

xn, n = 1, …, N, such that 
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where x symbolizes the ceiling of x, i.e., the smallest integer which is not smaller than x. Note 

that in the limiting case where M = X, expression (11) becomes identical to (1).  

Moreover, when the state of the system at the beginning of a period is y, where y ≡ (s, x1, …, 

xN), the amount of material that is added to storage after the facility produces P units, minus any 

spillage, and before the demand is realized is given by 

 ( ) min , n
s n s

xp P X x X M
X M≠

   
≡ − −       

∑y  (12) 

Again note that in the limiting case where M = X, expression (12) becomes identical to (2).  

The rest of the expressions that we developed for the case where M = X remain the same 

when M < X. It should be pointed out, however, that an additional layer of approximation is 

introduced in the DBH procedure that we developed in Section 4, regarding the definitions of the 

aggregate inventory state space and available storage capacity of the composite grades. This 

additional approximation stems from the fact that in each 3-grade sub-problem Sn, each 

composite grade (low and high) is treated as a single grade and can therefore be stored in a single 

silo, whereas in the original N-grade problem S, it consists of many individual grades which have 

to be stored in separate silos. 

To explore the impact of M on the performance of the optimal policy and on the relative 

performance of the DBH policy, we reran the 4-grade and 5-grade examples that were presented 

in Section 5.3 for different values of M. The results are shown in Tables 12 and 13. The first line 

in each case shows the results for M = X and is taken from Tables 8 and 9, respectively, for the 

two examples. 

From the results, it can be seen that in both examples, as M decreases, the expected average 

cost per period (both for the optimal and the DBH policy) increases significantly (70-110% for 

the 4-grade example and 30-40% for the 5-grade example). This is expected, because as was 

mentioned earlier, the larger M, the more flexible the usage of the total storage capacity. It 

should be noted, however, that the case where the number of silos is approximately equal to the 

number of grades (M = 5) is rather extreme for practical purposes. At the same time, as M 

decreases, the CPU to generate the optimal policy decreases, mainly because the state space 

decreases in M.  
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Table 12: Performance of the exact and DBH procedures for the 4-grade example for X = 30 and 

different values of M 

 Demand    Exact  Heuristic  % cost 
Case pattern  M  kc CPU J  CPU α* Jh(α*)  difference 

1 B,D,D,B  30  55 8.57 1.0034  0.0461 0.7 1.2442  24.00 
   15  49 6.37 1.1018  0.0461 0.7 1.3439  21.97 
   10  44 4.71 1.2280  0.0372 0.7 1.4913  21.44 
   5  44 2.54 1.7191  0.0214 0.5 2.1092  22.69 
2 D,D,B,B  30  156 24.29 1.0927  0.0574 0.5 1.2253  12.13 
   15  147 19.04 1.2194  0.0597 0.1 1.3342  9.41 
   10  125 13.87 1.3876  0.0537 0.1 1.4976  7.93 
   5  68 3.92 2.0260  0.0308 0 2.4463  20.75 
3 D,B,D,B  30  187 29.12 1.1835  0.0748 0.1 1.3207  11.59 
   15  158 20.42 1.3433  0.0761 0.1 1.4755  9.84 
   10  154 16.52 1.5472  0.0664 0.1 1.7005  9.91 
   5  56 3.22 2.1962  0.0403 0 2.8479  29.67 
4 D,B,B,D  30  110 17.13 1.2881  0.1040 0.1 1.3139  2.00 
   15  103 13.25 1.4664  0.1068 0 1.4881  1.48 
   10  92 9.86 1.6902  0.0964 0 1.7162  1.54 
   5  59 3.39 2.5215  0.0598 0 2.7484  9.00 

 

Table 13: Performance of the exact and DBH procedures for the 5-grade example for X = 20 and 

different values of M 

 Demand    Exact  Heuristic  % cost 
Case pattern  M  kc CPU J  CPU α* Jh(α*)   increase 

1 A,C,D,C,A  20  35 38.05 2.6520  0.0242 0.1 3.0355 ± 0.0016   14.46 
   10  38 26.36 2.9816  0.0187 0.1 3.3421 ± 0.0016  11.21 
   5  39 11.58 3.7019  0.0110 0.1 4.0832 ± 0.0016  11.03 
2 D,C,C,A,A  20  71 78.70 3.0016  0.0488 0.1 3.4512 ± 0.0015   14.98 
   10  65 45.30 3.2787  0.0383 0.1 3.6564 ± 0.0019  11.52 
   5  50 14.80 3.9435  0.0217 0.1 4.4732 ± 0.0021  11.34 
3 D,C,A,A,C  20  129 141.21 3.4916  0.0670 0 3.8759 ± 0.0020   11.01 
   10  102 71.39 3.8277  0.0532 0 4.3633 ± 0.0019  13.99 
   5  44 13.06 4.5761  0.0351 0 5.3384 ± 0.0020  16.66 
4 D,A,C,A,C  20  129 140.39 3.6572  0.0670 0 3.9348 ± 0.0020   7.59 
   10  101 71.12 4.0060  0.0547 0 4.3579 ± 0.0018  8.78 
   5  54 16.58 4.7827  0.0342 0 5.2690 ± 0.0025  10.17 

 

Finally, in the 4-grade example, the cost increase, when using the DBH instead of the exact 

method, slightly drops as M decreases, except for the extreme sub-case where M is very small (M 

= 5). In the 5-grade example, the cost increase drops as M decreases in the cases where it is 
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relatively large (cases 1 and 2), whereas it increases in the cases where it is relatively small 

(cases 3 and 4), but the differences are not that significant. 

7. Conclusions 
We studied a new version of the SELSP, for which we developed an MDP model. For problems 

with 2 and 3 grades, we numerically solved the MDP problem and obtained useful insight into 

the structure of the optimal changeover policy. 

For problems with N grades, N > 3, we developed a heuristic solution procedure, called 

DBH, which is based on decomposing the original multi-grade problem into (N – 2) 3-grade sub-

problems, numerically solving each sub-problem, and constructing the final policy for the 

original problem by combining parts of the sub-problem optimal solutions. We tested the DBH 

for problems with 4 and 5 grades. For the 4-grade examples, the DBH procedure was 160-420 

times faster than the numerical procedure for solving the exact problem and the DBH solution 

performed on average 12.42% worse than the exact solution. For the 5-grade examples, the DBH 

procedure was 600-1700 times faster than the numerical procedure for solving the exact problem 

and the DBH solution performed on average 12.75% worse than the exact solution. The fact that 

the performance of the DBH solution is more or less the same for the 4-grade and 5-grade 

problems is an encouraging sign for problems with more than 5 grades. The numerical results 

showed that the DBH is best fit when the dispersion of the total expected demand among the 

individual grades is high. The DBH performed significantly better than three simpler dynamic 

heuristic rules that we tested. Moreover, its performance did not seem to change significantly 

when we assumed that the grades are stored in several separate, general-purpose, equal-sized FG 

silos, as opposed to a common FG buffer. 

The DBH has a lot of room for improvement in terms of its computational performance, if 

one enhances the performance of its main building block, which is the value iteration algorithm 

for solving 3-grade problems. In a recent work, Kalantzis (2012) compares the computational 

performance of the standard value iteration algorithm against a modified algorithm, called 

minimum difference criterion value iteration (Herzberg and Yechiali, 1994), which is based on 

applying relaxation at the value functions in each iteration to accelerate the standard algorithm. 

For the 2-grade SELSP, he also develops an action elimination procedure which he uses within 

the modified algorithm. He reports significant computational savings for the 2-grade examples, 
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and he finds that the modified value iteration compared to the standard value iteration can save 

on average 35% and 18% of CPU time for 3-grade and 4-grade examples, respectively. 

A possible direction for future research would be to try to develop a better heuristic that 

somehow uses the optimal differential cost functions of the sub-problems, although we should 

point out that our initial experimentation with this possibility has not been encouraging. An exact 

approach, with a less fine discretized buffer space might also be worth looking into, although we 

should caution that such an approach may result in distorting significantly key problem 

parameters, such as the production and demand rates, and therefore end up solving a problem 

which is different than the real problem.  

We believe that one of the contributions of this manuscript is that it introduces a new variant 

of the SELSP encountered in process industries, namely that of a non-stop multi-grade 

production facility with sequence-restricted setup changeovers. Our hope is that it may generate 

some interest in the research community which may lead to the development of new and possibly 

better heuristic solutions. As can be seen from Figure 2 (right), the optimal policy even for a 3-

grade problem can be quite complicated, so we expect that developing an efficient heuristic that 

performs much better than the one presented in this manuscript will be challenging. 
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