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Abstract

An integro-di4erential form of the linearized S-model kinetic equations for describing 'ow in a cylin-9
drical tube is projected in such a way as to yield a pair coupled transport equations that de7ne the desired
velocity and heat-'ow pro7les. This system is then solved symbolically to yield a pair of coupled integral11
equations for the physical quantities required. At this point some transformations are carried out to yield
a restatement of the original problem in terms of a “pseudo-problem” de7ned by plane-geometry vari-13
ables. An analytical version of the discrete-ordinates method is then used to solve the pseudo-problem,
and so, after both MATLAB and FORTRAN versions of the developed algorithm are implemented,15
results thought to be highly accurate are obtained for the case of di4use re'ection from the walls of
a cylindrical tube. In addition to the velocity and heat-'ow pro7les, for the cases of Poiseuille 'ow17
and thermal-creep 'ow, the velocity slips, the heat-'ow pro7les evaluated at the wall, the particle-'ow
rates and the heat-'ow rates for these two problems are reported for selected values of the tube radius.19
? 2001 Published by Elsevier Science Ltd.

Keywords: Rare7ed gas dynamics; Discrete ordinates21

1. Introduction

Internal rare7ed gas 'ows de7ne a 7eld of major interest in the general area of rare7ed-gas23
dynamics, and so the contributions to this body of knowledge are many. While the books of
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Cercignani [1,2] and Williams [3] provide excellent material relevant to this 7eld, a comprehen-1
sive review recently reported by Sharipov and Seleznev [4] is also a useful up-to-date source
that pays much attention to comparing di4erent computational methods as well as di4erent3
mathematical formulations basic to rare7ed-gas dynamics. It is made clear in Ref. [4] that the
thermal transpiration phenomena, which exist in internal 'ows produced by a temperature or5
pressure gradient, continue to attract the attention of scientists. Moreover there is additional re-
cent interest in these e4ects due to applications in micro-electro-mechanical systems (MEMS).7
This is a fast growing industry, and so there is need for further improvement of calculations
and modeling for the 'ow of micro'uids. In many cases the 'ow conditions are in the transition9
regime and as a result the well known and commonly used Navier–Stokes equations cannot be
applied. In these cases the Boltzmann equation or suitable kinetic models should be utilized. And11
so it follows that we should continue to develop precise and accurate numerical schemes for the
computation of thermo-'uid parameters for particle 'ows, especially 'ows through capillaries13
of di4erent cross-sectional area.

It is clear, that in the general theory of particle transport theory, one must deal with the15
non-linear Boltzmann equation, and in such cases iterative, computationally intensive methods
or Monte Carlo methods are ways that are sometimes used in an attempt to obtain results of17
physical interest. On the other hand in special situations, for example when the density of par-
ticles is low, model equations can be used to provide meaningful physical results. Solutions19
to these model kinetic equations can also be used to establish test results for evaluating solu-
tion techniques developed for more exact formulations. In regard to 'ow in cylindrical tubes,21
Sharipov and Seleznev [4] report numerical results based on various computational approaches,
and while most works available for the cylindrical case are based on the classical BGK model23
[5], other more general models have also been used. It has been reported [4,6], for example,
that in the case of nonisothermal 'ows the S model of Shakhov [7], as quoted by Ref. [4],25
o4ers some improvement over the standard BGK model.

It is clear that the challenges of 'ow problems de7ned by cylindrical geometry are signif-27
icant, but some de7nite progress has been made, especially in regard to the BGK model. An
important work in this regard is that of Ferziger [8] who extended the use of the Mitsis [9]29
transformations, developed in the context of neutron-transport theory, in order to recast the
problem of 'ow in a cylindrical tube to a much simpler formulation in terms of plane-geometry31
variables. Subsequent works by Lang and Loyalka [10], Valougeorgis and Thomas [11] and
Siewert [12] used what we might call semi-analytical methods to establish and report numer-33
ical results for Poiseuille and thermal-creep 'ow, de7ned by the BGK model, in a cylindrical
tube.35

Here, following the work of Sharipov [6], we use the linearized S-model kinetic equations to
describe 'ow in a cylindrical tube. We start with a familiar form of the balance equation, and,37
following a similar work [13] that was based on the BGK model, we develop an alternative
formulation in terms of a system of coupled integral equations. Of course, the formulation of39
the originally stated problem in terms of an integral equation o4ers some good possibilities for
numerical work, but more importantly here, we use this new formulation to extend the ideas of41
Mitsis [9]. And so ultimately, we 7nd a so-called “pseudo-problem” de7ned by plane-geometry
variables that we are able to solve with good accuracy using an improved, analytical version43
[14,15] of the discrete-ordinates method [16].
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2. De�ning equations1

We start with the basic equation relevant to the S model, for applications in cylindrical
geometry with no variation in the axial direction, written as3 [

c⊥
(

cos�
@
@r

− sin�
r

@
@�

)
+ 1
]
h(r; c⊥; cz; �) =�−3=2I[h](r; c⊥; cz; �) + k(c⊥; cz); (1)

where the inhomogeneous driving term is

k(c⊥; cz) = − cz[k1 + k2(c2
⊥ + c2

z − 5=2)] (2a)

and the integral term is5

I[h](r; c⊥; cz; �) =
∫ 2�

0

∫ ∞

−∞

∫ ∞

0
e−c

2
h(r; c′⊥; c

′
z; �

′)K(c′: c)c′⊥ dc′⊥ dc′z d�′: (2b)

We note that the problems of Poiseuille 'ow and thermal-creep 'ow discussed later in this
work are de7ned, respectively, by the choices k1 = 1; k2 = 0 and k1 = 0; k2 = 1 in the driving7
term k(c⊥; cz). In addition, the kernel that de7nes the integral term is

K(c′ : c) = 1 + 2[c′zcz + c′⊥c⊥ cos(�′ − �)] + (2=3)(c′2 − 3=2)(c2 − 3=2) +M (c′ : c); (3)

where9

M (c′: c) = (4=15)[c′zcz + c′⊥c⊥ cos(�′ − �)](c′2 − 5=2)(c2 − 5=2) (4)

is the term [4,6] added to the BGK kernel to yield the kernel for the S model. Also, we note
that11

c2 = c2
⊥ + c2

z (5a)

and

c′2 = c′2⊥ + c′2z : (5b)

In regard to boundary conditions, we write our versions, of what Williams [3] has, as13

h(R; c⊥; cz; �) = �D + (1 − �)h(R; c⊥; cz; �+ �); �∈ [�=2; �] (6a)

and

h(R; c⊥; cz; �) = �D + (1 − �)h(R; c⊥; cz; �− �); �∈ [�; 3�=2]; (6b)

where the constant D is given by15

D=
2
�

(∫ �=2

0
+
∫ 2�

3�=2

)∫ ∞

−∞

∫ ∞

0
h(R; c⊥; cz; �)e−c

2
c2
⊥ cos� dc⊥ dcz d�: (7)
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We consider that the distribution function h(r; c⊥; cz; �) de7ned by the basic kinetic equation,1
written as Eq. (1), and the boundary condition, written as Eqs. (6), depends on the spatial vari-
able r ∈ (0; R), written in dimensionless units, and the particle velocity vector c expressed, also3
in dimensionless units, in the cylindrical coordinates, c⊥ ∈ [0;∞), �∈ [0; 2�] and cz ∈ (−∞;∞).
To connect with the notation of Refs. [4] and [6], we note that we can write R= �, where5
�= a�1=2=(2�) is the “rarefaction” parameter. Here a is the physical radius of the considered
tube and � is a mean-free path.7

In this work we seek to compute physical quantities related to particle velocities and heat
'ow, and since some di4erent notations are used [4,6] and in order to be very clear about our9
terminology we refer to

u(r) =�−3=2
∫ 2�

0

∫ ∞

−∞

∫ ∞

0
e−c

2
h(r; c⊥; cz; �)czc⊥ dc⊥ dcz d� (8)

as the velocity pro7le and to11

q(r) =�−3=2
∫ 2�

0

∫ ∞

−∞

∫ ∞

0
e−c

2
(c2 − 5=2)h(r; c⊥; cz; �)czc⊥ dc⊥ dcz d� (9)

as the heat-'ow pro7le. We note that u(r) and q(r) are the basic quantities of interest, and so we
do not (fortunately) actually have to compute the complete distribution function h(r; c⊥; cz; �).13
Instead, we can obtain the results we seek from various moments, or integrals, of the distribution
function. And so to start our development, we multiply Eq. (1) by15

�1(cz) = cz exp(−c2
z ); (10)

integrate over all cz and introduce the new variables �= c⊥ and �′ = c′⊥ to 7nd[
�
(

cos�
@
@r

− sin�
r

@
@�

)
+ 1
]
h1(r; �; �) =I[h1; h2](r; �) + a1(�); (11)

where17

I[h1; h2](r; �) =
1
�

∫ 2�

0

∫ ∞

0
e−�

′2
[f1;1(�′; �)h1(r; �′; �′) + f1;2(�)h2(r; �′; �′)]�′ d�′ d�′ (12)

with

f1;1(�′; �) = 1 + (2=15)(�′2 − 1)(�2 − 1) (13)

and19

f1;2(�) = (1=5)(2=3)1=2(�2 − 1): (14)

Here

h1(r; �; �) =
∫ ∞

−∞
e−c

2
z h(r; �; cz; �)cz dcz; (15)

h2(r; �; �) = (2=3)1=2
∫ ∞

−∞
e−c

2
z (c2

z − 3=2)h(r; �; cz; �)cz dcz (16)
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and1

a1(�) = − (1=2)�1=2[k1 + k2(�2 − 1)]: (17)

Continuing, we next multiply Eq. (1) by

�2(cz) = (2=3)1=2cz(c2
z − 3=2) exp(−c2

z ) (18)

and integrate over all cz to 7nd3 [
�
(

cos�
@
@r

− sin�
r

@
@�

)
+ 1
]
h2(r; �; �) =J[h1; h2](r) + a2; (19)

where

J[h1; h2](r) =
1
�

∫ 2�

0

∫ ∞

0
e−�

′2
[f2;1(�′)h1(r; �′; �′) + f2;2h2(r; �′; �′)]�′ d�′ d�′ (20)

with5

f2;1(�′) = (1=5)(2=3)1=2(�′2 − 1) (21)

and

f2;2 = 1=5: (22)

In addition7

a2 = − (3�=8)1=2k2: (23)

At this point we can rewrite Eqs. (11) and (19) as[
�
(

cos�
@
@r

− 1
r

sin�
@
@�

)
+ 1
]
H(r; �; �) = I(r; �) + A(�); (24)

where9

I(r; �) =
1
�
Q(�)

∫ 2�

0

∫ ∞

0
e−�

′2
QT(�′)H(r; �′; �′)�′ d�′ d�′ (25)

with

Q(�) =

[
(2=15)1=2(�2 − 1) 1

(1=5)1=2 0

]
: (26)

Here the elements of the two-vector H(r; �; �) are h1(r; �; �) and h2(r; �; �). In addition the two11
elements of A(�) are a1(�) and a2 as de7ned by Eqs. (17) and (23).

Now in regard to boundary conditions, we project Eqs. (6) against �1(cz) and �2(cz) to13
obtain

H(R; �; �) = (1 − �)H(R; �; �+ �); �∈ [�=2; �] (27a)



UNCORRECTED P
ROOF

6 C.E. Siewert, D. Valougeorgis / Journal of Quantitative Spectroscopy & Radiative Transfer 000 (2001) 000–000

JQSRT1490

and1

H(R; �; �) = (1 − �)H(R; �; �− �); �∈ [�; 3�=2]: (27b)

Since the solution we seek has the symmetry property

H(r; �; 2�− �) =H(r; �; �); �∈ [0; �]; (28)

for all r and �, we let �= cos�, for �∈ [0; �], and3

I(r; �; �) =H(r; �; arccos�); �∈ [ − 1; 1] (29)

and so we can rewrite Eq. (24) as[
�
(
�
@
@r

+
1 − �2

r
@
@�

)
+ 1
]
I(r; �; �) = J(r; �) + A(�); (30)

where5

J(r; �) =
2
�
Q(�)

∫ 1

−1

∫ ∞

0
e−�

′2
QT(�′)I(r; �′; �′)�′ d�′

d�′

(1 − �′2)1=2 : (31)

We can also rewrite Eqs. (27) as

I(R; �;−�) = (1 − �)I(R; �; �); �∈ [0; 1]: (32)

To conclude this section, we multiply Eq. (30) by Q−1(�) and de7ne7

G(r; �; �) =Q−1(�)I(r; �; �) (33)

to obtain[
�
(
�
@
@r

+
1 − �2

r
@
@�

)
+ 1
]
G(r; �; �) =

∫ 1

−1

∫ ∞

0
�(�′; �′)G(r; �′; �′) d�′ d�′ + �; (34)

where the elements of � are9

�1 = − (15�=8)1=2k2 (35a)

and

�2 = − (1=2)k1�1=2: (35b)

In addition11

�(�; �) =
2

�(1 − �2)1=2Q
T(�)Q(�)� e−�

2
(36)
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and 7nally we can rewrite Eq. (32) as1

G(R; �;−�) = (1 − �)G(R; �; �); �∈ [0; 1]: (37)

3. A reformulation as an integral equation

It is clear that Eq. (34) provides a signi7cant challenge to workers who wish to proceed3
directly from that equation with numerical methods. It is for this reason that we avoid such an
approach and so wish to extend the ideas of Mitsis [9], as they were employed by Ferziger5
[8] for the BGK model. While to pursue the intended path requires a great deal of work, we
can bene7t greatly from a paper by Barichello et al. [13] that reported, in detail for the BGK7
model, the work we extend here to the case of the S model where we must deal with a system
of coupled equations. And, more importantly, we arrive ultimately at computational problem9
much simpler than the one de7ned by Eq. (34).

In order to have our development here closely follow Ref. [13], we restate our problem in11
slightly di4erent terms. We consider[

�
(
�
@
@r

+
1 − �2

r
@
@�

)
+ 1
]
G(r; �; �) =

∫ 1

−1

∫ ∞

0
�(�′; �′)G(r; �′; �′) d�′ d�′ + � (38)

for �∈ [ − 1; 1], �∈ [0;∞) and r ∈ (0; R) and13

G(R; �;−�) =F(�; �); �∈ [0; 1] and �∈ [0;∞); (39)

where we assume � and, for the moment, F(�; �) to be known. To obtain the required integral
equation, we start by thinking of the � variable as a parameter and then by introducing15

Ĝ(r) =G [r; �; �(r)]: (40)

We thus can write

d
dr
Ĝ(r) =

@
@r
G(r; �; �) +

(
d�
dr

)
@
@�
G(r; �; �): (41)

We now let17

d�
dr

=
1 − �2

r�
(42)

and rewrite Eq. (41) as

d
dr
Ĝ(r) =

1
�

[
�
@
@r
G(r; �; �) +

1 − �2

r
@
@�
G(r; �; �)

]
(43)

or, after we note Eq. (38),19

d
dr
Ĝ(r) +

1
��(r)

Ĝ(r) =H(r); (44)
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where now1

H(r) =
1

��(r)

[∫ 1

−1

∫ ∞

0
�(�′; �′)G(r; �′; �′) d�′ d�′ + �

]
: (45)

We can solve Eq. (42) to obtain

�(r) = ± �(r); (46)

where3

�(r) =
1
r

(r2 − a2)1=2 (47)

and where a is (for the moment) an arbitrary constant. Finding the integrating factor, we write
Eq. (44) as5

d
dr

(Ĝ(r) exp{±r�(r)=�}) =H(r) exp{±r�(r)=�} (48)

and so, after noting Eq. (40), we can rewrite Eq. (48) as

d
dr

(G [r; �;±�(r)] exp{±r�(r)=�}) = ± 1
��(r)

S(r) exp{±r�(r)=�}; (49)

where7

S(r) =
∫ 1

−1

∫ ∞

0
�(�′; �′)G(r; �′; �′) d�′ d�′ + �: (50)

We now can integrate Eq. (49), use �(r) =� and

a= r(1 − �2)1=2 (51)

and follow Ref. [13] to 7nd ultimately that we can write9

G(r; �; �) =B(r; �; �) +
∫ s0(r;�;�)

0
S[(r2 + s2�2 − 2rs��)1=2]e−s ds (52a)

and

G(r; �;−�) =B(r; �;−�) +
∫ s0(r;�;−�)

0
S[(r2 + s2�2 + 2rs��)1=2]e−s ds (52b)

for �∈ [0; 1]. Here11

s0(r; �; �) = [(R2 − r2 + r2�2)1=2 + r�]=� (53)

and

B(r; �; �) =F[�; �0(R; r; �)]exp{−[R�0(R; r; �) + r�]=�}; (54)

where, in general,13

�0(x; r; �) =
1
x

(x2 − r2 + r2�2)1=2: (55)
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Seeking to derive an integral equation for1

G(r) =
∫ 1

−1

∫ ∞

0
�(�; �)G(r; �; �) d� d�; (56)

we multiply Eqs. (52) by �(�; �), integrate over all � and � to 7nd, after some extensive
calculations analogous to those reported in Ref. [13],3

G(r) =B(r) +
2
�

∫ ∞

0
e−�

2
QT(�)Q(�)

∫ R

0
xS(x)

∫ 1

−1

exp{−p(x; r; �)=�}
p(x; r; �)(1 − �2)1=2 d� dx d�; (57)

where

p(x; r; �) = (x2 + r2 − 2xr�)1=2 (58)

and where the contribution from the boundary term is5

B(r) =
∫ 1

−1

∫ ∞

0
�(�; �)F[�; �0(R; r; �)]exp{−s0(r; �; �)} d� d�: (59)

Continuing, we make use of various Bessel function identities and changes of variables to 7nd,
again after much work closely related to what was reported in Ref. [13],7

G(r) =B(r) +
∫ R

0
xK(x → r)[G(x) + �] dx; (60)

where the kernel of the integral equation is

K(x → r) =
2
�1=2

∫ ∞

0
e−�

2
F0(x=�; r=�)�(�)

d�
�2 : (61)

Here9

�(�) =�0 + �2�2 + �4�4; (62)

where

�0 =

[
3=10 −(1=30)1=2

−(1=30)1=2 1

]
; (63a)

�2 =

[
−2=15 (2=15)1=2

(2=15)1=2 0

]
(63b)

and11

�4 =
[

2=15 0
0 0

]
: (63c)
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In addition1

F0(x; r) =
{
I0(x)K0(r); x¡ r;
K0(x)I0(r); x¿ r;

(64)

where I0(x) and K0(x) are used to denote modi7ed Bessel functions. If we now let

G(r) =Z(r) − � (65)

then the integral equation to be solved is3

Z(r) =B(r) + �+
∫ R

0
xK(x → r)Z(x) dx (66)

where B(r) is given by Eq. (59) and

�= − �1=2

2

[
(15=2)1=2k2

k1

]
: (67)

4. A pseudo-problem5

Looking back to Eqs. (8) and (9), we 7nd that the quantities of physical interest here, viz.
the velocity pro7le and the heat-'ow pro7le, can be written as7

u(r) =�−1=2[0 1]G(r) (68)

and

q(r) = [15=(2�)]1=2[1 0]G(r); (69)

where G(r) is expressed in terms of Z(r) by Eq. (65) and where Z(r) is a solution of the9
integral equation listed as Eq. (66). However, rather than attempting to solve Eq. (66), we
will make use of a transformation that is based on the work of Mitsis [9] and which allows a11
convenient reformulation in terms of a “pseudo-problem” that can be solved with a variation
of the discrete-ordinates method. And so we introduce13

 (r; �) =
1
�2

∫ R

0
xF0(x=�; r=�)Z(x) dx (70)

which can be di4erentiated to yield[
�2
(
@2

@r2 +
1
r
@
@r

)
− 1
]
 (r; �) + Z(r) = 0: (71)

Now rewrite Eq. (66) as15

Z(r) =B(r) + �+
∫ ∞

0
�(�) (r; �) d�; (72)
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where1

�(�) =
2
�1=2 e−�

2
�(�): (73)

And so we can rewrite Eq. (71) as[
�2
(
@2

@r2 +
1
r
@
@r

)
− 1
]
 (r; �) +

∫ ∞

0
�(�′) (r; �′) d�′ + B(r) + �= 0: (74)

Seeking a boundary condition subject to which we must solve Eq. (74), we can di4erentiate3
Eq. (70) to 7nd

K1(�) (R; �) + �K0(�)
@
@r
 (r; �)

∣∣∣∣
r=R

= 0; �∈ [0;∞): (75)

In regard to the terms B(r) and � that appear in Eq. (74), we note that � is a true inhomo-5
geneous term since it is known, as can be seen from Eq. (67). The other term, however, is not
a true inhomogeneous term unless, as can be seen from Eq. (59), the vector-valued function7
F(�; �) introduced in Eq. (39) is known. But in fact, for the general problem considered here,
we see from Eq. (37) that F(�; �) should be used to describe particles re'ected specularily9
from the wall of the tube that con7nes the 'ow. For this reason, we consider, in the remainder
of this work, only the case of di4use re'ection (�= 1). We therefore drop B(r) from Eq. (74)11
and consider our pseudo-problem to be de7ned by[

�2
(
@2

@r2 +
1
r
@
@r

)
− 1
]
 (r; �) +

∫ ∞

0
�(�′) (r; �′) d�′ + �= 0 (76)

for r ∈ (0; R) and �∈ [0;∞), and13

K1(�) (R; �) + �K0(�)
@
@r
 (r; �)

∣∣∣∣
r=R

= 0 (77)

for �∈ [0;∞). We 7nd that

 p(r; �) =
�1=2

4

[
(6=5)1=2k1 − 3(15=2)1=2k2

(r2 − R2 + 4�2)k1

]
(78)

is a particular solution of Eq. (76), and so we write15

 (r; �) = h(r; �) +  p(r; �); (79)

where the homogeneous component  h(r; �) is de7ned by[
�2
(
@2

@r2 +
1
r
@
@r

)
− 1
]
 h(r; �) +

∫ ∞

0
�(�′) h(r; �′) d�′; (80)

for r ∈ (0; R) and �∈ [0;∞), and the boundary condition17

 h(R; �) + �$(�)
@
@r
 h(r; �)

∣∣∣∣
r=R

=R(�) (81)
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for �∈ [0;∞). Here1

R(�) = − p(R; �) − �$(�)
@
@r
 p(r; �)

∣∣∣∣
r=R

(82)

and

$(�) =
K0(R=�)
K1(R=�)

: (83)

Before developing our discrete-ordinates solution to the problem de7ned by Eqs. (80) and3
(81), we note again that once we have a solution to the considered pseudo-problem, the basic
quantities we seek will be available from5

G(r) =
∫ ∞

0
�(�) (r; �) d� (84)

and so we proceed to develop an algorithm for establishing the discrete-ordinates solution we
require to complete this work.7

5. The discrete-ordinates solution

It is usual when working in cylindrical coordinates to anticipate Bessel function solutions,9
and so even though Eq. (80) de7nes a pseudo-problem, that equation is related to our problem
of 'ow in a cylindrical tube. Therefore it is reasonable to seek solutions of Eq. (80) of the11
form

 h(r; �) =%(�; �)I0(r=�): (85)

Clearly, because r= 0 is included in our domain, solutions based on the related Bessel function13
K0(r=�) are not appropriate here. And so we substitute Eq. (85) into Eq. (80) to 7nd

(�2 − �2)%(�; �) = �2
∫ ∞

0
�(�′)%(�; �′) d�′ (86)

which we should solve to 7nd the elementary vectors %(�; �). At this point we introduce a15
quadrature scheme and rewrite Eq. (86) as

(�2 − �2)%(�; �) = �2
N∑
k=1

wk�(�k)%(�; �k) (87)

where the N weights and nodes {wk; �k} are de7ned for use on the integration interval [0;∞).17
We now evaluate Eq. (87) at the quadrature points and write the resulting equations as

(1=�2
i )

[
%(�; �i) −

N∑
k=1

wk�(�k)%(�; �k)

]
= (1=�2)%(�; �i) (88)
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for i= 1; 2; : : : ; N . If we introduce the 2N × 1 vector1

%(�) = [%T(�; �1) %T(�; �2) · · · %T(�; �N )]T (89)

we can write Eqs. (88) as

(D −W)%(�) = �%(�); (90)

where �= 1=�2,3

D= diag{(1=�1)2I ; (1=�2)2I ; : : : ; (1=�N )2I} (91)

and W is a 2N × 2N matrix each 2 × 2N row of which is given by

Ri = (1=�i)2[w1�(�1) w2�(�2) · · · wN�(�N )] (92)

for i= 1; 2; : : : ; N . We note also that I is Eq. (91) is used here to denote the 2 × 2 identity5
matrix. And so we will solve the eigenvalue problem de7ned by Eq. (90) and (to start) write
our discrete-ordinates solution as7

 h(r; �k) =
2N∑
j=1

Aj%(�j; �k)Î 0(r=�j)e−(R−r)=�j ; (93)

where the 2 × 1 vectors %(�j; �k) are the block components of %(�j). Here the (positive)
separation constants �j = 1=�1=2

j and the eigenvectors %(�j) are available from the eigenvalue9
problem de7ned by Eq. (90), and the arbitrary constants Aj are to be determined from the
boundary condition. In this work we use, for computational reasons,11

Î n(z) = In(z)e−z (94a)

and

K̂n(z) =Kn(z)ez: (94b)

While Eq. (93) is a valid result, one improvement can be made in regard to in7nite values of13
the separation constant �, or equivalently, the eigenvalues of

A=D −W (95)

that approach zero as N tends to in7nity. We 7rst introduce15

&(z) = I + z2
∫ ∞

0
�(�)

d�
�2 − z2 (96)

and note that we consider &(z) to be the exact version of the discrete-ordinates quantity

'(z) = I + z2
N∑
k=1

wk�(�k)
1

�2
k − z2

: (97)
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We can show that the separation constants �j de7ned by the zeros of det'(z) are the same as1
those we compute from the eigenvalues of the matrix A, and so we base our discussion about
the eigenvalues of A (that accumulate at zero as N tends to in7nity) on the zeros of det&(z)3
as z tends to in7nity. We note that

&(∞) = I −
∫ ∞

0
�(�) d� (98)

can be evaluated to yield5

&(∞) =
[

2=3 0
0 0

]
: (99)

We note also that if

&(z) = I + z2
∫ ∞

0
�(�)

d�
�2 − z2 (100)

then7

det&(z) ∼ 1
3z2 (101)

as z tends to in7nity, and so we conclude that, as N tends to in7nity, A should have �= 0 as
a repeated eigenvalue. Therefore instead of using the discrete-ordinates result corresponding to9
the largest separation constant, say �1, we use the exact value �1 =∞ and the exact solution of
Eq. (80)11

%+ =
[

0
1

]
(102)

in order to write Eq. (93) as

 h(r; �k) =A1%+ +
2N∑
j=2

Aj%(�j; �k)Î 0(r=�j)e−(R−r)=�j : (103)

Now we can substitute Eq. (103) into a discrete version of Eq. (81), viz.13

 h(R; �i) + �i$(�i)
@
@r
 h(r; �i)

∣∣∣∣
r=R

=R(�i); (104)

for i= 1; 2; : : : ; N , to de7ne a linear system that can be solved to 7nd the constants Aj,
j= 1; 2; : : : ; N , required in Eq. (103). At this point we can use Eqs. (78), (79) and (103)15
to write our discrete-ordinates version of Eq. (84) as

G(r) = p;0(r) + A1%+ +
2N∑
j=2

AjN (�j)Î 0(r=�j)e−(R−r)=�j ; (105)
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where1

 p;0(r) =
�1=2

4

[
(6=5)1=2k1 − (15=2)1=2k2

(r2 − R2 + 2)k1

]
(106)

and

N (�j) =
N∑
k=1

wk�(�k)%(�j; �k): (107)

To complete our solution we wish to compute the velocity pro7le3

u(r) =�−3=2
∫

e−c
2
h(r; c)cz dc (108)

and the heat-'ow pro7le

q(r) =�−3=2
∫

e−c
2
(c2 − 5=2)h(r; c)cz dc: (109)

We also wish to compute (what we call) the particle-'ow rate5

U =
4
R3

∫ R

0
u(r)r dr (110)

the heat-'ow rate

Q=
4
R3

∫ R

0
q(r)r dr: (111)

We 7nd, in terms of our discrete-ordinates solution,7

u(r) =�−1=2[0 1]G(r) (112)

or

u(r) =
1
4

(r2 − R2 + 2)k1 + �−1=2


A1 +

2N∑
j=2

AjN2(�j)Î 0(r=�j)e−(R−r)=�j


 ; (113)

where N2(�j) is the lower component of N (�j). We can also 7nd9

q(r) = [15=(2�)]1=2[1 0]G(r) (114)

or

q(r) =
1
4

[3k1 − (15=2)k2] + [15=(2�)]1=2
2N∑
j=2

AjN1(�j)Î 0(r=�j)e−(R−r)=�j ; (115)
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where N1(�j) is the upper component of N (�j). Now using Eq. (113) in Eq. (110) and1
Eq. (115) in Eq. (111), we 7nd our 7nal results

U =
1

4R
(4 − R2)k1 + �−1=2


 2
R
A1 +

4
R2

2N∑
j=2

Aj�jN2(�j)Î 1(R=�j)


 (116)

and3

Q=
1

2R
[3k1 − (15=2)k2] +

4
R2 [15=(2�)]1=2

2N∑
j=2

Aj�jN1(�j)Î 1(R=�j): (117)

6. Numerical results

Repeating much of the discussion given in Ref. [12], where the version of the discrete-ordinates5
method used here was used to solve the Poiseuille and thermal-creep problems for 'ow, as de-
scribed by the BGK model, in a cylindrical tube, we note that what we must now do is to7
de7ne the quadrature scheme to be used in our discrete-ordinates solution. In this work we have
used both (non-linear) transformations9

u(�) = exp{−�} (118a)

and

u(�) =
1

1 + �
(118b)

to map �∈ [0;∞) into u∈ [0; 1], and we then used a Gauss–Legendre scheme mapped (linearly)11
onto the interval [0; 1]. Of course other quadrature schemes could be used. In fact we note
that recent works by Garcia [17] and Gander and Karp [18] have reported special quadrature13
schemes for use in the general area of particle transport theory. Such an approach clearly could
be used here. In fact the choice of a quadrature scheme based on the integration interval [0;∞)15
with a weight function exp(−�2) is a natural choice for this work. However, we have found the
use of a mapping de7ned by either of Eqs. (118) followed by the use of the Gauss–Legendre17
integration formulas to be so e4ective that we have not developed any special-purpose quadrature
schemes.19

Having de7ned our quadrature scheme and in developing a FORTRAN implementation of our
solution, we found the required separation constants {�j} by using the driver program RG from21
the EISPACK collection [19]. The required separation constants were then available as the recip-
rocals of the positive square roots of these eigenvalues. We then used the subroutines DGECO23
and DGESL from the LINPACK package [20] to solve the linear system obtained when Eq.
(103) was substituted into Eq. (104). And in this way our solution was established as a viable25
algorithm. As an alternative computation our solution was also evaluated using the MATLAB
software. Finally, but importantly, we have found, that elements of the matrix-valued function27
�(�) as de7ned by Eq. (73) can be essentially zero (from a computational point-of-view). In
such cases, we found that by de7ning an element to be precisely zero when that element is less29
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Table 1
Velocity and heat-'ow pro7les for the case R= 2

r=R −uP(r) qP(r) uT(r) −qT(r)

0.00 2.386147 4.389470(−1) 4.088331(−1) 1.458556
0.05 2.382966 4.384708(−1) 4.084530(−1) 1.457669
0.10 2.373416 4.370367(−1) 4.073086(−1) 1.454995
0.15 2.357468 4.346288(−1) 4.053878(−1) 1.450495
0.20 2.335079 4.312198(−1) 4.026700(−1) 1.444104
0.25 2.306182 4.267700(−1) 3.991252(−1) 1.435726
0.30 2.270689 4.212262(−1) 3.947133(−1) 1.425232
0.35 2.228483 4.145192(−1) 3.893822(−1) 1.412453
0.40 2.179415 4.065609(−1) 3.830660(−1) 1.397174
0.45 2.123296 3.972404(−1) 3.756817(−1) 1.379120
0.50 2.059884 3.864177(−1) 3.671254(−1) 1.357945
0.55 1.988870 3.739155(−1) 3.572657(−1) 1.333204
0.60 1.909852 3.595061(−1) 3.459354(−1) 1.304325
0.65 1.822296 3.428926(−1) 3.329176(−1) 1.270556
0.70 1.725481 3.236767(−1) 3.179239(−1) 1.230881
0.75 1.618383 3.013050(−1) 3.005569(−1) 1.183888
0.80 1.499485 2.749676(−1) 2.802418(−1) 1.127506
0.85 1.366352 2.433855(−1) 2.560820(−1) 1.058480
0.90 1.214573 2.042772(−1) 2.265030(−1) 9.710624(−1)
0.95 1.034121 1.525221(−1) 1.880381(−1) 8.526430(−1)
1.00 7.710133(−1) 6.071916(−2) 1.227525(−1) 6.400572(−1)

than, say, -= 10−20, we increased the ability of the linear-algebra package to yield the required1
number of independent eigenvectors when there is a (nearly) repeated eigenvalue.

To complete our work we list in Tables 1–3 some results obtained from our FORTRAN3
and MATLAB implementations of the developed solutions for Poiseuille 'ow (identi7ed by the
subscript P) and thermal-creep 'ow (identi7ed by the subscript T). In Table 1 the complete5
velocity and heat-'ow pro7les are given for the case R= 2. In Tables 2 and 3 the particle-'ow
rates and the heat-'ow rates, accompanied by the velocity slips and the heat-'ow pro7les7
evaluated at the wall, are given for selected values of R. It is interesting to observe that
the heat-'ow pro7le evaluated at the wall can, for the case of Poiseuille 'ow, actually have9
a change of sign as the rarefaction parameter increases from R= 3 to R= 3:5. As expected,
the Onsager reciprocity relation [6,10], viz. UT =QP, is clearly veri7ed for all cases listed in11
Tables 2 and 3. We note that our results are given with what we believe to be seven 7gures
of accuracy. While we have no proof of the accuracy achieved in this work, we have done13
some things to support the con7dence we have. First of all the fact that our results from the
FORTRAN implementation and the MATLAB implementation agreed gave us some con7dence15
in the programming aspect of the computations. We also found apparent convergence in our
numerical results as we increased N , the number of quadrature points used. Finally, we note17
that for the case of R= 2 we found agreement with results communicated by Sharipov [21].
While the agreement was not to as many 7gures that we believe we have correct, the degree19
of agreement was signi7cant.
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Table 2
Velocity slips and particle-'ow rates

R −uP(R) uT(R) −UP UT

1.0(−3) 5.615159(−4) 2.793541(−4) 1.499564 7.469327(−1)
1.0(−2) 5.484670(−3) 2.657321(−3) 1.477013 7.210237(−1)
2.0(−2) 1.077748(−2) 5.110821(−3) 1.461627 7.019628(−1)
3.0(−2) 1.593887(−2) 7.421781(−3) 1.450166 6.868658(−1)
4.0(−2) 2.099655(−2) 9.618488(−3) 1.441014 6.741078(−1)
5.0(−2) 2.596783(−2) 1.171873(−2) 1.433444 6.629545(−1)
7.0(−2) 3.569677(−2) 1.567695(−2) 1.421555 6.439594(−1)
9.0(−2) 4.519237(−2) 1.936570(−2) 1.412653 6.280139(−1)
1.0(−1) 4.986657(−2) 2.112361(−2) 1.409017 6.208757(−1)
3.0(−1) 1.370961(−1) 4.851826(−2) 1.386792 5.304811(−1)
5.0(−1) 2.179308(−1) 6.729058(−2) 1.400539 4.784350(−1)
7.0(−1) 2.955389(−1) 8.122695(−2) 1.426619 4.404396(−1)
9.0(−1) 3.711649(−1) 9.197151(−2) 1.458860 4.100247(−1)
1.0 4.084491(−1) 9.645221(−2) 1.476445 3.967500(−1)
1.5 5.914445(−1) 1.127909(−1) 1.573028 3.429561(−1)
2.0 7.710133(−1) 1.227525(−1) 1.677914 3.027037(−1)
3.0 1.125576 1.334554(−1) 1.899694 2.450111(−1)
3.5 1.301794 1.364345(−1) 2.014114 2.234706(−1)
4.0 1.477686 1.385637(−1) 2.130089 2.052718(−1)
5.0 1.829008 1.413013(−1) 2.365454 1.762377(−1)
6.0 2.180127 1.429115(−1) 2.604078 1.541579(−1)
7.0 2.531257 1.439333(−1) 2.844990 1.368475(−1)
9.0 3.233786 1.451138(−1) 3.331419 1.115442(−1)
1.0(1) 3.585202 1.454767(−1) 3.576236 1.020442(−1)
1.0(2) 3.527277(1) 1.474937(−1) 2.602506(1) 1.159143(−2)

While higher-order approximations were required to achieve the desired degree of accuracy1
for the case R= 0:001, we have typically used N = 80 to generate the results shown in Tables
1–3, and we note that our FORTRAN implementation (no special e4ort was made to make the3
code especially eQcient) of our discrete-ordinates solution (with N = 80) runs in a few seconds
on a 400 MHz Pentium-based PC.5

7. Final remarks

In successfully extending the use of the Mitsis transformations to 7nd a convenient pseudo-7
problem to describe 'ow, as described by the S-model kinetic equations, we have been able to
use e4ectively an analytical version of the discrete-ordinates method to solve especially well9
(we believe) the important problems of Poiseuille and thermal-creep 'ow in a cylindrical tube.
While the kinetic equations for the S model lead to a system of moment equations, in contrast11
to the scalar formulation obtained from the classical BGK model, the 7nal computations were
successfully implemented in what we consider to be a de7nitive manner. It can be seen clearly13
that a great deal of analytical work (calculus) has been used to obtain the forms that de7ned
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Table 3
Heat-'ow pro7les at the wall and heat-'ow rates

R qP(R) −qT(R) QP −QT

1.0(−3) 2.793537(−4) 1.261629(−3) 7.469327(−1) 3.369503
1.0(−2) 2.657105(−3) 1.219530(−2) 7.210237(−1) 3.284827
2.0(−2) 5.109436(−3) 2.371572(−2) 7.019628(−1) 3.216628
3.0(−2) 7.417747(−3) 3.472991(−2) 6.868658(−1) 3.159537
4.0(−2) 9.609956(−3) 4.532003(−2) 6.741078(−1) 3.109260
5.0(−2) 1.170357(−2) 5.553981(−2) 6.629545(−1) 3.063811
7.0(−2) 1.564123(−2) 7.501621(−2) 6.439594(−1) 2.983242
9.0(−2) 1.929858(−2) 9.338320(−2) 6.280139(−1) 2.912576
1.0(−1) 2.103640(−2) 1.022000(−1) 6.208757(−1) 2.880057
3.0(−1) 4.730447(−2) 2.431888(−1) 5.304811(−1) 2.425120
5.0(−1) 6.345393(−2) 3.420581(−1) 4.784350(−1) 2.136032
7.0(−1) 7.329508(−2) 4.160334(−1) 4.404396(−1) 1.920322
9.0(−1) 7.858345(−2) 4.733153(−1) 4.100247(−1) 1.748587
1.0 7.986698(−2) 4.972763(−1) 3.967500(−1) 1.674548
1.5 7.618417(−2) 5.852983(−1) 3.429561(−1) 1.383987
2.0 6.071916(−2) 6.400572(−1) 3.027037(−1) 1.179408
3.0 9.743156(−3) 7.016543(−1) 2.450111(−1) 9.082233(−1)
3.5 −2:172108(−2) 7.200142(−1) 2.234706(−1) 8.136837(−1)
4.0 −5:564367(−2) 7.338079(−1) 2.052718(−1) 7.365532(−1)
5.0 −1:283763(−1) 7.529442(−1) 1.762377(−1) 6.184590(−1)
6.0 −2:051841(−1) 7.654700(−1) 1.541579(−1) 5.324764(−1)
7.0 −2:844151(−1) 7.742648(−1) 1.368475(−1) 4.672002(−1)
9.0 −4:469509(−1) 7.857839(−1) 1.115442(−1) 3.748535(−1)
1.0(1) −5:294313(−1) 7.897641(−1) 1.020442(−1) 3.410421(−1)
1.0(2) −8:177668 8.214638(−1) 1.159143(−2) 3.715566(−2)

our 7nal computational problem, but the end result was a more or less analytical solution for1
the considered S-model 'ow problems that yields high quality numerical results at very modest
computational expense.3
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