
UNCORRECTED P
ROOF

*Corresponding author.
E-mail address: ces@ncsu.edu (C.E. Siewert).

Journal of Quantitative Spectroscopy &
Radiative Transfer 00 (2001) 000}000

The temperature-jump problem for a mixture of two gases

C.E. Siewert!,*, D. Valougeorgis"

!Mathematics Department, North Carolina State University, Raleigh, NC 27695-8205, USA
"Department of Mechanical and Industrial Engineering, University of Thessaly, Volos 38334, Greece

Received 11 September 2000; revised 6 November 2000; accepted 6 November 2000

Abstract

An analytical variation of the discrete-ordinates method is used to establish a concise and accurate
solution to the temperature-jump problem for a binary gas mixture. The analysis is based on Boltzmann
equations of the BGK-type subject to Maxwell's boundary conditions with arbitrary accommodation
coe$cients. The results include the complete temperature and density "elds for speci"ed mass, density and
collision frequency ratios. The numerical results are of benchmark quality, and the required computational
time is only a few seconds on a typical PC. ( 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of heat conduction in a slightly rare"ed gas adjacent to a solid wall is a classical
problem in kinetic theory. It is well known as the temperature-jump problem, and over the years
a complete treatment [1}3] has been given for the case of a single-component gas. However, the
corresponding problem for a multi-component gas mixture has received much less attention. This
is mainly due to the fact that for mixtures a system of coupled kinetic equations must be solved, and
so naturally the computational e!ort required is signi"cantly increased. Most of the existing work
in this direction is focused on the case of purely di!use molecular re#ection at the wall [4,5], or
it is concerned only with the estimation of the macroscopic discontinuities at the surface of the
wall [6,7].

Recently, a complete investigation of the temperature-jump problem for a two-component gas
was reported by Onishi [8]. In that work [8] linearized versions of the Boltzmann equation of the
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BGK type [9], along with specular-di!use boundary conditions, were transformed into a set of
integral equations, and the unknown temperature and density "elds were computed by the
application of a re"ned moment method [4,10]. It is the purpose of the present work to solve
Onishi's temperature-jump problem [8] for a binary gas mixture by following, however, a com-
pletely di!erent mathematical procedure. A semi-analytical, numerical approach, based on an
analytical version of the discrete-ordinates method [11}14], and some new computational ideas
[15], complimented by aspects of the method of elementary solutions [16], are used for this work.
While this present version of the discrete-ordinates method has been used recently to solve
a collection [17}21] of classical problems for single-component gases, the method has been used for
a binary mixture, so far, only for the Couette-#ow problem [22]. The present work is the "rst
implementation of the method for the coupled temperature}density problem relevant to two-
component gas mixtures. Here, a system of four coupled kinetic equations (two for each gas) is
solved. The focus of this work is on the formulation of a particularly elegant, concise and accurate
solution that de"nes an algorithm that is especially easy to implement.

2. Kinetic equations and boundary conditions

To begin our analysis, we consider that our mixture of two species of gas particles can be
modeled by a pair of coupled linearized Boltzmann}BGK equations which we write as
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Here our basic unknowns h
i
(x, c

x
, c

y
, c

z
), for i"1,2, are perturbations from Maxwellian distribu-

tions for the two species of gas particles, x is the dimensionless spatial variable and the normalized
particle velocity vector has components c

x
, c

y
, c

z
and magnitude c. As we intend to compare our

"nal results with those of Onishi [8], we chose to de"ne the physical parameters relevant to this
model in terms of those previously used, and so we write [8]
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a
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where n
2
/n

1
is the ratio of particle densities and the various k

ij
are collision-interaction parameters.

We note that Eqs. (1) are valid for x'0 and c
x
, c

y
, c

z
all 3(!R,R), and in addition to Eqs. (1),

we consider boundary conditions (at the wall) written as
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and the a
i
, i"1,2, are accommodation coe$cients. Having de"ned the basic starting equations for

this work, we will consider that the six basic parameters
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which characterize the gas mixture are prescribed, and subsequently we seek solutions for various
moments of h
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(x, c

x
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, c

z
) for i"1 and 2.

Of course, if we sought to compute the complete distribution functions h
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) then we

would have to work explicitly with Eqs. (1) and (2); however, here we seek only the temperature and
density perturbations ¹
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(x) and N
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(x), for i"1,2, which we can express in terms of moments

(integrals) of h
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for i"1,2, we "nd we can rewrite Eqs. (2) as
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Now to "nd de"ning equations for H
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and I is the 2]2 identity matrix. While Eq. (12) is the considered boundary condition at the wall
(x"0), we clearly must place constraints on the desired solution as x tends to in"nity. Here, we
follow Ref. [8] and impose the conditions
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where the vector-valued functions T(x) and N(x) have, respectively, the perturbed temperature and
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have been used. We wish ultimately to compute N(x) and T(x) for all x50.

3. The discrete-ordinates solution

As we have already used our version of the discrete-ordinates method [15] to solve a collection
[17}22] of problems in the area of rare"ed gas dynamics, our discussion of the method here will be
brief. To establish our discrete-ordinates equations, we replace the integral term in Eq. (11) by
a numerical quadrature representation and then evaluate the resulting equation at the nodes of the
quadrature scheme to obtain
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that it is to this feature of using a `half-rangea quadrature scheme that we partially attribute the
especially good accuracy we have obtained from the solution reported here. Now seeking exponen-
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Now, assuming that we have used numerical linear-algebra techniques to "nd the separation
constants l

j
and the vectors F(l

j
), we write a "rst version of the solution to our discrete-ordinates

equations as
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At this point, we wish to introduce a modi"cation to Eq. (43) that is important for the problem
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And so we now rewrite Eq. (43) as
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To conclude this section, we note that the solution of our discrete-ordinates equations, as given by
Eqs. (49) and (50), contains 8N arbitrary constants MA

j
N and MB

j
N that we must determine, from the

boundary condition at the wall and the imposed conditions as x tends to in"nity, so as to de"ne the
solution we seek.

4. Computational details and numerical results

Having developed the basic elements of our discrete-ordinates solution, we now are ready to
solve the problem of interest here, and so, restating from Section 2, we seek an unbounded (as
x tends to in"nity) solution of
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Making use of Eqs. (55) and (56), we express the desired solution as
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We note that there are still 4N!2 unknown constants in the solution given by Eq. (57), and so we
intend to determine these constants from the boundary condition at the wall. To pursue this, we
write a discrete-ordinates version of Eq. (52) as
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for i"1, 2,2, N. We have written both of Eqs. (59) in order to emphasize a particular feature of
the solution given by Eq. (57). We think of Eq. (57) as being comprised of two components, one
having to do with the vector R(m) that is de"ned for all m and the remaining part that is de"ned only
at M$m

i
N. And so when we wish to evaluate integrals involving Eq. (57), we integrate the terms

related to R(m) exactly (if we can) and we use our quadrature scheme to integrate the other
component.

The collection of equations de"ned by either of Eqs. (59) consists of 4N linear equations for the
4N!2 unknowns A and A

j
, for j"4, 5,2, 4N, and so the linear system is clearly overly

determined. While we could follow what was done in Ref. [18] and use a projection technique to
obtain a `squarea system, we intend to follow Ref. [21] and to solve the overly determined system
in a `least-squaresa sense. And so, we consider our solution complete. Of course, having de"ned the
vector-valued function Y(x, m), we can "nd the temperature perturbations from Eq. (23) and the
density perturbations from Eq. (22). We express these results as
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Table 1
The temperature-jump coe$cient for m
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2
"1

4
n
1
/n

2
"1

9

1.0 1.0 1.280169 1.255537 1.165513 1.039218 9.846511 (!1)
1.0 0.8 1.304651 1.306836 1.315429 1.329035 1.335453
0.8 1.0 1.829406 1.755089 1.502462 1.186776 1.061017
0.8 0.8 1.865788 1.828863 1.695355 1.511631 1.433446
0.5 0.5 3.560517 3.486483 3.223743 2.874439 2.729898

where f
k
(l

j
) is the kth component of F(l

j
). Finally

f"A (62)

is the so-called temperature-jump coe$cient.
Having formulated our results, we are ready to discuss a few of the computational details

concerning the numerical implementation of the solution. As much of this discussion follows
directly from Refs. [15,17], we can be brief. To start, we note that our solution is not de"ned until
we specify a quadrature scheme, and so, "rst of all, we have used either the transformation

u(m)"
1

1#m
(63a)

or the transformation

u(m)"e~m (63b)

to map the interval m3[0,R) onto u3[0,1], and we then used a Gauss}Legendre scheme mapped
onto the interval [0,1]. Of course other quadrature schemes could be used, but the scheme
mentioned has worked so well for us that we have not investigated other choices. In regard to the
choice of quadrature points, we consider it important to note, because of the way our basic
eigenvalue problem is formulated, that we must exclude zero from the set of quadrature points. Of
course to exclude zero from the quadrature set is not considered a serious restriction since typical
Gauss quadrature schemes do not include the end-points of the integration interval. Having
de"ned our quadrature scheme, we found the required separation constants Ml

j
N by using the driver

program RG from the EISPACK collection [23] to "nd the eigenvalues de"ned by Eq. (36). We
then used the subroutine DGECO from the LINPACK package [24] to compute the required null
vectors F(l

j
) as de"ned by Eq. (40), and so, after using the subroutines DQRCO and DQRSL, also

from the LINPACK package [24], to solve in a least-squares sense the linear system derived from
Eqs. (59) to "nd the constants A, A

j
, for j"4, 5,2, 4N, we consider our solution complete.

Finally, but importantly, we wish to take into account the fact that the right-hand side of Eq. (39)
can perhaps, for some values of l

j
and m

i
, be zero from a computational point-of-view. Of course, in

this event some of the constants from the collection Mpl
j
,l
j
N will be equal to some of the nodes from

the collection Mm
k
N, and this is clearly not allowed (without quali"cation) in Eq. (39). We have found

that as long as we seek qualities, such as the temperature and density perturbations, that are
de"ned in terms of integrals (that are evaluated by our de"ned quadrature scheme) of the basic
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Table 2
The temperature-jump coe$cient for m

1
/m

2
"2 with k

12
/k

11
"1 and k

22
/k

11
"1

a
1

a
2

n
1
/n

2
"9 n

1
/n

2
"4 n

1
/n

2
"1 n

1
/n

2
"1

4
n
1
/n

2
"1

9

1.0 1.0 1.392507 1.469677 1.648284 1.775597 1.810432
1.0 0.8 1.500504 1.678355 2.124802 2.482070 2.587171
0.8 1.0 1.888616 1.879540 1.860298 1.848145 1.845055
0.8 0.8 2.027199 2.137769 2.397594 2.586403 2.638622
0.5 0.5 3.860659 4.065070 4.559061 4.930632 5.035332

Table 3
The temperature and density perturbations for the case m

1
/m

2
"1/5.0415 with a

1
"0.5, a

2
"0.5, k

12
/k

11
"1.339 and

k
22

/k
11

"0.642

n
1
/n

2
"4 n

1
/n

2
"1

4

x ¹
1
(x) ¹

2
(x) N

1
(x) N

2
(x) ¹

1
(x) ¹

2
(x) N

1
(x) N

2
(x)

0.0 2.79361 2.19366 !2.95620 !2.25879 2.56297 2.30764 !2.72310 !2.42364
0.1 3.04683 2.58867 !3.18860 !2.61688 2.79451 2.57526 !2.93617 !2.66804
0.2 3.22320 2.83683 !3.34970 !2.84750 2.95650 2.75702 !3.08447 !2.83460
0.3 3.37782 3.04426 !3.49185 !3.04442 3.09910 2.91506 !3.21581 !2.98107
0.4 3.52044 3.22885 !3.62391 !3.22241 3.23115 3.06011 !3.33827 !3.11688
0.5 3.65521 3.39827 !3.74955 !3.38764 3.35642 3.19673 !3.45520 !3.24593
0.6 3.78440 3.55667 !3.87074 !3.54343 3.47695 3.32737 !3.56836 !3.37024
0.7 3.90937 3.70664 !3.98865 !3.69187 3.59397 3.45352 !3.67881 !3.49105
0.8 4.03106 3.84995 !4.10403 !3.83437 3.70830 3.57618 !3.78724 !3.60914
0.9 4.15011 3.98782 !4.21741 !3.97196 3.82052 3.69603 !3.89412 !3.72506
1.0 4.26698 4.12120 !4.32919 !4.10542 3.93102 3.81359 !3.99977 !3.83922
2.0 5.36790 5.31322 !5.39826 !5.30366 4.98636 4.91802 !5.02351 !4.92586
3.0 6.41246 6.38961 !6.42851 !6.38492 6.00539 5.96399 !6.02692 !5.96633
4.0 7.43529 7.42499 !7.44420 !7.42273 7.01328 6.98767 !7.02624 !6.98817
5.0 8.44791 8.44295 !8.45303 !8.44183 8.01693 8.00085 !8.02493 !8.00076
6.0 9.45521 9.45269 !9.45824 !9.45212 9.01875 9.00855 !9.02378 !9.00831
7.0 10.4596 10.4582 !10.4614 !10.4579 10.0197 10.0132 !10.0229 !10.0130
8.0 11.4623 11.4615 !11.4634 !11.4613 11.0203 11.0161 !11.0223 !11.0159
9.0 12.4640 12.4635 !12.4647 !12.4634 12.0206 12.0179 !12.0219 !12.0177

10.0 13.4650 13.4648 !13.4655 !13.4647 13.0208 13.0190 !13.0217 !13.0189
20.0 23.4671 23.4670 !23.4671 !23.4670 23.0212 23.0212 !23.0212 !23.0212

discrete-ordinates solution, then we can simply omit, some aspects from our calculation, all
N

0
o!ending quadrature points and all 4N

0
o!ending separation constants. While this procedure

can, we believe, be justi"ed in terms of the numerics of the problem, a more elegant (and perhaps
more complicated) procedure, as was reported in Ref. [18], could have been used here.

To complete this work, we use the accompanying tables to list our results, which we believe to be
correct to all digits given, for the temperature-jump coe$cient f and the temperature and density

C.E. Siewert, D. Valougeorgis / Journal of Quantitative Spectroscopy & Radiative Transfer 000 (2001) 000}000 11

JQSRT 1309



UNCORRECTED P
ROOF

perturbations, T(x) and N(x) (Tables 1}3). Of course, we have no proof of the accuracy of our
results, but we have done various things to establish the con"dence we have. First of all, we have
increased the value of N used in our computations until we found stability in the "nal results, and
we have also used both nonlinear maps given by Eqs. (63) to obtain the same results as given in our
tables. In regard to published results, we have found only Onishi's work [8], and so we have
con"rmed, except for two cases, all "ve of the signi"cant "gures for the temperature-jump
coe$cient reported by Onishi. Although Onishi [8] did not report his results for the temperature
and density perturbations in tabular form (and so a de"nitive comparison with those results cannot
be made), we have con"rmed the qualitative form of Onishi's results (given in a graphical format).
We have also obtained our "nal results from two independently developed FORTRAN and
MATLAB implementations of our solution, and so we believe we can justify the con"dence we
have in our reported numerical results.

We note that we have typically used N"50 to generate the results listed in our tables and that
our FORTRAN implementation (no special e!ort was made to make the code especially e$cient)
of our discrete-ordinates solution (with N"50) runs in less than a 3 s on a 400 MHz Pentium-
based notebook PC. Finally, to have some idea about N

0
, the number of quadrature points not

included in some parts of our calculation, we note that using e"10~14 to decide if an eigenvalue
and a quadrature point were the same `computationallya, we found N

0
"2 when N"50 and the

map de"ned by Eq. (63b) was used.

5. Concluding remarks

The classical half-space temperature-jump problem has been solved for the case of a binary gas
mixture. The solution is based on a concise analytical version of the discrete-ordinates method
which has been implemented to yield numerical results of high accuracy for the temperature-jump
coe$cient and temperature and density "elds. We believe the ease of use and particularly the
accurate results obtained justify our con"dence that the method can also be used to solve a much
larger class of problems in the general area of rare"ed-gas dynamics.
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