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ABSTRACT

Analytical solutions based on two 13-bit (hexagonal and square) and

one 17-bit square lattice Boltzmann BGK models have been obtained

for the Couette flow, with a temperature gradient at the boundaries.

The analytical solutions for the unknown distributions functions are

written as polynomials in powers of the space variable and the

coefficients of the expansion are estimated in terms of characteristic

flow quantities, the single relaxation time and the lattice spacing. The

analytical solutions of the two 13-bit models contain some nonlinear

deviations from the thermal hydrodynamic constraints and the

analytical solutions, while the 17-bit square lattice model results

into an exact representation of the nonisothermal Couette flow

problem.
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I. INTRODUCTION

In the last few years the lattice Boltzmann method (LBM) has been
developed into an effective computational scheme for a broad variety of
thermo-fluid physical systems (Chen and Doolen, 1998). Since the appear-
ance of the LBM and its predecessor, the lattice gas automata (LGA) some
analytical solutions have been obtained for these methods for two and
three dimensional flows (Cornubert et al., 1991; Henon, 1987; Luo,
1997; Luo et al., 1991). More recently, analytical solutions of the distribu-
tion functions for Poiseuille and Couette flows are found for the triangular
and square LBMmodels (He et al., 1997; Zou et al., 1995). All these results
allow one to calculate the viscosity from given collision rules, to improve
the implemented boundary conditions and to justify the accuracy to expect
from the method. Overall analytical LB approaches are enhancing our
understanding of the method. Nevertheless no analytical solution has
been previously reported for thermal flow problems. It is well known
that one of the major shortcomings of the LBM is the lack of a satisfactory
thermal model for heat transfer problems. One of the methodologies to
develop thermal lattice Boltzmann models is the so-called ‘‘multi-speed
approach’’ (Alexander et al., 1993; Chen et al., 1994). Although this
approach has been shown to suffer from numerical instability
(McNamara et al., 1995), some recent work has provided new alternatives
and potential in this approach (Pavlo et al., 1998a; 1986b). Some of the
velocity discretization models studied in previous work include 13-bit
models for either the hexagonal (Alexander et al., 1993) or the square
(Qian, 1993) grids, as well as typical 17-bit square lattices.

In the present work an investigation on the accuracy to expect from
the aforementioned multi-speed models is attempted. The nonisothermal
Couette flow is chosen as a typical thermal flow model problem and an
analytical LBM formulation approach developed earlier (He et al., 1997;
Zou et al., 1995) is extended to include heat transfer effects. Analytical
expressions of the distribution functions are obtained and some guidance
is given for thermal flow applications.

The well-known lattice Boltzmann evolution equation is given by

f�, iðxþ e�, i�t, tþ �tÞ � f�, iðx, tÞ ¼ �
1

�
½ f�, iðx, tÞ � f

ð0Þ
�, i ðx, tÞ� ð1Þ

where f�, iðx, tÞ is the distribution function of the particle of type ð�, iÞ at
position x and time t, f

ð0Þ
�, i ðx, tÞ is the corresponding equilibrium function

of the particle, e�, i are the unit velocity vectors along the specified direc-
tions and � is the single relaxation time, which controls the rate at which
the system relaxes to the local equilibrium. All quantities in Eq. (1) are in
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nondimensional form (Sterling and Chen, 1996). The choice of f
ð0Þ
�, i ðx, tÞ is

critical in thermal lattice Boltzmann models. To accurately simulate
hydrodynamic phenomena Eulerian and Navier–Stokesian descriptions
of real fluids must be fully recovered. In two dimensions this may be
achieved by requiring that the moments of f

ð0Þ
�, i ðx, tÞ satisfy the relations

(McNamara and Alder, 1993)X
�, i

f
ð0Þ
�, i ¼ n ð2aÞ

X
�, i

e�, �, i f
ð0Þ
�, i ¼ nu� ð2bÞ

X
�, i

e�, �, ie�, �, i f
ð0Þ
�, i ¼ nu�u� þ n"��� ð2cÞ

X
�, i

e�, �, ie�, �, ie�, �, i f
ð0Þ
�, i ¼ nu�u�u� þ n"ðu���� þ u���� þ u����Þ ð2dÞ

X
�, i

e2�, ie�, �, ie�, �, i f
ð0Þ
�, i ¼ ðu2 þ 6"Þnu�u� þ ðu2 þ 4"Þn"��� ð2eÞ

where Greek subscripts indicate Cartesian components. For a thermal
fluid taking into account the symmetry of the moments under exchange
of any pairs of indices there are 13 such constrains in two dimensions
(26 constraints in three dimensions). This suggests the need for at least
13 different particle velocities in order to guarantee the linear indepen-
dence of the left hand side of Eq. (2) and the full recovery of the thermal
Navier–Stokes equations up to the fourth order terms. Typical
equilibrium function has the polynomial form (Pavlo et al., 1998b)

f
ð0Þ
�, i ¼ n½A� þ B�ðe�, i � uÞ þ C�ðe�, i � uÞ

2
þD�u

2
þ E�ðe�, i � uÞ

3

þ F�ðe�, i � uÞu
2
þ G�u

4
þH�ðe�, i � uÞ

2u2 þ I�ðe�, i � uÞ
4
� ð3Þ

where the coefficients are functions of the local density n ¼
P

�, i f�, i and
the internal energy 2n" ¼

P
�, i f�, iðe�, i � uÞ

2, while the bulk velocity is
defined by nu ¼

P
�, i f�, ie�, i. The form of expression (3) is based on a

Taylor expansion of the Maxwellian equilibrium distribution in the local
velocity u keeping terms up to the fourth power. The coefficients of the
relaxation distribution (3) are obtained in such a manner to remove dis-
crete lattice effects and consequently the resulting relaxation distribution
is not the Maxwellian.

The Couette thermal-flow problem under investigation consists of a
fluid contained between two plates, the upper one moving with velocity u0

AQ2
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and the lower one is stationary, while a temperature difference exists
between the boundaries. The x and y components of the velocity
u ¼ ðux, uyÞ and normalized energy profiles must satisfy

uxð yÞ ¼ u0y ð4aÞ

uyð yÞ ¼ 0 ð4bÞ

and

"ð yÞ ¼ yþ
Br

2
u20yð1� yÞ

� �
ð4cÞ

respectively, where y is the normalized distance from the lower plate
and the Brinkman number Br is the product of the Prandtl and Eckert
numbers.

II. ANALYTICAL SOLUTIONS OF THE

13-BIT MODELS

First the 13-bit hexagonal lattice is considered. This model is
consisting of one rest particle,

e�i ¼ 0, ð5aÞ

for � ¼ 0, and two nonzero speeds for which

e�i ¼ � cos
�ði � 1Þ

3
, sin

�ði � 1Þ

3

� �
, ð5bÞ

for � ¼ 1, 2 and i ¼ 1, 2, 3, 4, 5, 6. Taking into account the constrains
mentioned above one can easily solve for the unknown coefficients of
the equillibrium distribution function. One possible solution is
(Alexander et al., 1993):

A0 ¼ 1�
5

2
"þ 2"2, A1 ¼

4

9
"�

4

9
"2, A2 ¼ �

1

36
"þ

1

9
"2,

B1 ¼
4

9
�
4

9
", B2 ¼ �

1

36
þ
1

9
",

C1 ¼
8

9
�
4

3
", C2 ¼ �

1

72
þ

1

12
",

D0 ¼ �
5

4
þ 2", D1 ¼ �

2

9
þ
2

9
", D2 ¼

1

72
�

1

18
",

E1 ¼ �
4

27
, E2 ¼

1

108
, F1 ¼ F2 ¼ 0:

ð6Þ
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At this point we note that using the above set of estimates for the
coefficients only the zeroth, first, and second moments of the imposed
constraints corresponding to Eqs. (2a), (2b), and (2c) respectively are
satisfied, while for the third moments, given by Eq. (2d), cubic deviations
are present. Actually none of the possible solutions satisfy exactly the
required constraints.

Now suppose that there is a solution f�, iðx, tÞ of Eq. (1) that exactly
represents the Couette flow with a temperature gradient between the
boundaries. The solution must contain the following properties:

f�, iðx, tÞ is time independent denoted by f�, iðxÞ ð7aÞ

f�, iðxÞ is a function of one space variable denoted by f�, ið yÞ ð7bÞ

X
�, i

f�, ið yÞ ¼ n ð7cÞ

X
�, i

f�, ið yÞex, �, i ¼ nuxð yÞ ¼ nu0y ð7dÞ

X
�, i

f�, ið yÞey, �, i ¼ 0 ð7eÞ

X
�, i

f�, ið yÞ
ðe�, i � u

2
Þ

2
¼ n"ð yÞ ¼ n yþ

Br

2
u20yð1� yÞ

� �
ð7fÞ

Equations (7a) and (7b) are due to the fact that the particular flow under
investigation is steady and fully developed. Equations (7c–7f ) are derived
using the definitions of the local density, the x and y components
of velocity and the internal energy respectively supplemented by the
well-known analytical velocity and temperature profiles given in Eqs. (4).

Using properties (7a) and (7b) for � ¼ 1, 2 and i ¼ 0, 1, 4, which
correspond to the rest particle and the two particles with motion along
the x-axis, Eq. (1) may be written as

f�, ið yÞ ¼ f�, ið yÞ �
1

�
ð f�, ið yÞ � f

ð0Þ
�, i ð yÞÞ: ð8Þ

Hence for � ¼ 1, 2 and i ¼ 0, 1, 4 we obtain f�, ið yÞ ¼ f
ð0Þ
�, i ð yÞ. To find the

remaining distribution functions we note that the equilibrium distribu-
tions are functions of powers of y up to y3 through linear dependence
on the x-component of the velocity. Thus, the following form of the
remaining unknown distribution functions is suggested:

f�, ið yÞ ¼ nða�, i þ b�, i yþ c�, i y
2
þ d�, i y

3
Þ, ð9Þ
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for � ¼ 1, 2 and i ¼ 2, 3, 5, 6. The 32 unknown coefficients are
estimated by implementing evolution Eq. (1) in all eight velocity
directions accordingly. For example for � ¼ 1 and i ¼ 2 we have

f1, 2ð yþ �Þ ¼ f1, 2ð yÞ �
1

�
ð f1, 2ð yÞ � f

ð0Þ
1, 2ð yÞÞ, ð10Þ

where � is the vertical spacing between the lattice rows. The expressions
for f1, 2ð yÞ and f

ð0Þ
1, 2ð yÞ given by Eqs. (3) and (9) respectively, are sub-

stituted in Eq. (10) and then the left hand side of Eq. (8) is expanded
using Taylor series. Equating terms of equal powers in y in the resulting
equation leads to an algebraic system of linear equations to be solved for
the unknown coefficients. Applying the same procedure to all directions
for which the distribution function is unknown and solving the systems
symbolically yields

a1, 2 ¼ a1, 5 ¼ A1 � b1, 2�� � c1, 2�
2� � d1, 2�

3�,

a1, 3 ¼ a1, 6 ¼ A1 � b1, 3�� � c1, 3�
2� � d1, 3�

3�,

a2, 2 ¼ a2, 5 ¼ A2 � 2b2, 2�� � 4c2, 2�
2� � 8d2, 2�

3�,

a2, 3 ¼ a2, 6 ¼ A2 � 2b2, 3�� � 4c2, 3�
2� � 8d2, 3�

3�,

b1, 2 ¼ �b1, 5 ¼
B1

2
u0 � 2c1, 2�� � 3d1, 2�

2�,

b1, 3 ¼ �b1, 6 ¼ �
B1

2
u0 � 2c1, 3�� � 3d1, 3�

2�,

b2, 2 ¼ �b2, 5 ¼ B2u0 � 4c2, 2�� � 12d2, 2�
2�,

b2, 3 ¼ �b2, 6 ¼ �B2u0 � 4c2, 3�� � 12d2, 3�
2�,

c1, 2 ¼ c1, 5 ¼
C1 þ 4D1

4
u20 � 3d1, 2��,

c1, 3 ¼ c1, 6 ¼
C1 þ 4D1

4
u20 � 3d1, 3��,

c2, 2 ¼ c2, 5 ¼ ðC2 þD2Þu
2
0 � 6d2, 2��,

c2, 3 ¼ c2, 6 ¼ ðC2 þD2Þu
2
0 � 6d2, 3��,

d1, 2 ¼ �d1, 5 ¼
E1

8
u30, d1, 3 ¼ �d1, 6 ¼ �

E1

8
u30,

d2, 2 ¼ �d2, 5 ¼ E2u
3
0, d2, 3 ¼ �d2, 6 ¼ �E2u

3
0:

ð11Þ

Putting these results into Eq. (9) we obtain analytical expressions for
all 13 distribution functions. These analytical expressions are substituted
finally into Eqs. (7c–7f ) to findX

�, i

f�, i ¼ n ð12aÞ
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X
�, i

ex, �, i f�, i ¼ nyþ
1

3
ny�ð2� � 1Þ�2 ð12bÞ

X
�, i

ey, �, i f�, i ¼ 0 ð12cÞ

X
�, i

ðe�, i � uÞ
2

2
f�, i ¼ n"�

1

3
ny2�ð2� � 1Þ �

2

3
n"�ð2� � 1Þ

� �
�2 ð12dÞ

It is noticed that the conservation of mass and y-momentum equations
are satisfied exactly, while there is a second order discrepancy in the
x-momentum and energy equations. It is seen that the derived analytical
solutions although represent an exact solution of the LB model, Eq. (1)
do not represent an exact solution of the nonisothermal Couette flow
problem. The analytical solution depends on � and �. It is seen that as �
goes to zero or � approaches 1/2 the exact solution is recovered.

Next the 13-bit square lattice is considered. This model has one rest
particle

e�, i ¼ 0 ð13aÞ

for � ¼ 0 and three nonzero speeds for which

e�, i ¼ e�ðcos�i, sin�iÞ ð13aÞ

for � ¼ 1, 3 and i ¼ 1, 2, 3, 4 where e1 ¼ 1, e3 ¼ 2, �i ¼ ði � 1Þ�=2 and

e�, i ¼ e�ðcos�i, sin�iÞ ð13aÞ

for � ¼ 2 and i ¼ 1, 2, 3, 4 where e2 ¼
ffiffiffi
2

p
, �i ¼ ði � 1=2Þ�=2. Using the

constraints given by Eqs. (2) and the above set of discrete velocities we
find the coefficients of the equilibrium function (3) to be

A0 ¼
1

2
ð2� 5"þ 4"2Þ, A1 ¼

2

3
ð"� "2Þ, A3 ¼

1

24
ð�"þ 4"2Þ,

B1 ¼
1

3
ð2� 3"Þ, B2 ¼

"

4
, B3 ¼

1

24
ð�1þ 3"Þ,

C1 ¼
1

3
ð2� 3"Þ, C2 ¼

1

8
, C3 ¼

1

96
ð�1þ 6"Þ,

D0 ¼ �
5

4
þ ", D1 ¼

1

3
", D2 ¼

1

8
ð�1� 2"Þ, D3 ¼

1

24
",

E1 ¼
1

3
, E2 ¼

1

8
, E3 ¼

1

96
, F1 ¼ �

1

2
, F2 ¼ �

1

8
,

G0 ¼
1

4
, H1 ¼ �

1

6
, H3 ¼

1

96
:

ð14Þ
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The coefficients, which are not included in the above equations, are
taken equal to zero. Higher order terms have been added to the expres-
sion of the equilibrium function and as a result in this case the first four
moments of the equilibrium, given by Eqs. (7a–7d), are recovered.
However, still it is not possible to find a solution to satisfy the fourth
order constraints given by Eq. (2e).

Introducing Eqs. (7a) and (7b) we obtain f�, ið yÞ ¼ f
ð0Þ
�, i ð yÞ for � ¼ 1, 3

and i ¼ 0, 1, 3. In this case the remaining unknown distribution functions
take the form

f�, ið yÞ ¼ nða�, i þ b�, i yþ c�, i y
2
þ d�, i y

3
þ e�, i y

4
Þ ð15Þ

for � ¼ 1, 2, 3 and i ¼ 2, 3, 4, 6, 7, 8. Following the same procedure as
before we find

a1, 2 ¼ a1, 4 ¼ A1 þ c1, 2�
2�ð�1þ 2�Þ þ e1, 2�

4�ð�1þ 8� � 12�2Þ,

a2, 1 ¼ a2, 3 ¼ A2 � b2, 1�� � c2, 1�
2� � d2, 1�

3� � e2, 1�
4�,

a2, 2 ¼ a2, 4 ¼ A2 � b2, 2�� � c2, 2�
2� � d2, 2�

3� � e2, 2�
4�,

a3, 2 ¼ a3, 4 ¼ A3 þ 4c3, 2�
2�ð�1þ 2�Þ þ 16e3, 2�

4�ð�1þ 8� � 12�2Þ,

b1, 2 ¼ �b1, 4 ¼ �2c1, 2�� þ 4e1, 2�
3�ð�1þ 3�Þ,

b2, 2 ¼ �b2, 4 ¼ �B2u0 � 2c2, 2�� � 3d2, 2�
2� � 4e2, 2�

3�,

b2, 1 ¼ �b2, 3 ¼ B2u0 � 2c2, 1�� � 3d2, 1�
2� � 4e2, 1�

3�,

b3, 2 ¼ �b3, 4 ¼ �4c3, 2�� þ 32e3, 2�
3�ð�1þ 3�Þ,

c1, 2 ¼ c1, 4 ¼ D1u
2
0 þ 6e1, 2�

2�ð�1þ 2�Þ,

c2, 1 ¼ c2, 3 ¼ ðC2 þD2Þu
2
0 � 3d2, 1�� � 6e2, 1�

2�,

c2, 2 ¼ c2, 4 ¼ ðC2 þD2Þu
2
0 � 3d2, 2�� � 6e2, 2�

2�,

c3, 2 ¼ c3, 4 ¼ D3u
2
0 þ 24e3, 2�

2�ð�1þ 2�Þ,

d2, 1 ¼ �d2, 3 ¼ ðE2 þ F2Þu
3
0 � 4e2, 1��,

d2, 2 ¼ �d2, 4 ¼ �ðE2 þ F2Þu
3
0 � 4e2, 2��,

d1, 2 ¼ �d1, 4 ¼ �4e1, 2��,

d3, 2 ¼ �d3, 4 ¼ �8e3, 2��,

e2, 1 ¼ e2, 3 ¼ ðG2 þH2 þ I2Þu
4
0,

e3, 2 ¼ e3, 4 ¼ G3u
4
0,

e2, 2 ¼ e2, 4 ¼ ðG2 þH2 þ I2Þu
4
0,

e1, 2 ¼ e1, 4 ¼ G1u
4
0:

ð16Þ
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Once the 13 distribution functions are estimated they are substituted
back into Eqs. (7) to find that all properties are fully satisfied. As a result
in the analytical solutions, based on the 13-bit square lattice model, all
flow characteristics are recovered and the LB evolution equation is
satisfied. Hence the solution is an exact representation of the thermal
Couette flow problem and it is valid for any relaxation time � and lattice
spacing. The only pitfall is that the Navier–Stokes equations are not
fully recovered since the fourth order constraints are not satisfied.
This drawback is circumvented in the next session by proposing a 17
discrete velocity model.

The obtained results of the two 13-bit models are indicative for the
accuracy to expect implementing the 13-bit hexagonal and square lattice.
It is seen that the accuracy of the 13-bit square lattice is improved
compared with the accuracy of the 13-bit hexagonal lattice. No remarks
however, can be made regarding stability issues of the two models.
Actually previous stability analysis performed on the two models
(Pavlo et al., 1998b) has shown that the 13-bit hexagonal model is
more stable than the 13-bit square model.

III. ANALYTICAL SOLUTIONS OF

THE 17-BIT MODEL

The 17-bit model introduced here is a straightforward extension of
the 9-bit model used in isothermal problems. It is consisting of one rest
particle,

e�, i ¼ 0, ð17aÞ

for � ¼ 0, and four nonzero speeds for which

e�, i ¼ e�ðcos�i, sin�iÞ, ð17bÞ

for � ¼ 1, 3 and i ¼ 1, 2, 3, 4 where e1 ¼ 1, e3 ¼ 2, �i ¼ ði � 1Þ�=2 and

e�, i ¼ e�ðcos�i, sin�iÞ, ð17cÞ

for � ¼ 2, 4 and i ¼ 1, 2, 3, 4 where e2 ¼
ffiffiffi
2

p
, e4 ¼ 2

ffiffiffi
2

p
, �i ¼ ði � 1=2Þ�.

The analytical formulation has been described extensively in the
previous section and so we will be brief here presenting only the new
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material. The coefficients of the 17-bit equilibrium distribution functions,
expressed by Eq. (3) are

A0 ¼
1

2
ð2� 5"þ 4"2Þ, A1 ¼

2

3
ð"� "2Þ, A3 ¼

1

24
ð�"þ 4"2Þ

B1 ¼
1

3
ð2� 3"Þ, B2 ¼

1

4
", B3 ¼

1

24
ð�1þ 3"Þ

C1 ¼
1

3
ð2� 3"Þ, C2 ¼

1

12
ð2� 3"Þ,

C3 ¼
1

96
ð�1þ 6"Þ, C4 ¼

1

384
ð�1þ 6"Þ

D0 ¼ �
1

8
ð5þ 7"Þ, D1 ¼

1

3
ð�1þ 4"Þ,

D2 ¼ �
1

2
", D3 ¼

1

48
ð1� "Þ, D4 ¼ �

1

32
"

E1 ¼ �
1

3
, E2 ¼ �

1

24
, E3 ¼

1

48
, E4 ¼

1

384
,

F1 ¼
1

2
, F2 ¼ �

1

8
, F3 ¼ �

1

16
,

G0 ¼
1

4
, G2 ¼

1

24
, G4 ¼ �

1

96
,

H1 ¼ �
1

6
, H2 ¼ �

1

24
, H3 ¼

1

96
, H4 ¼

1

384

ð18Þ

Again the coefficients, which are not included in the above expres-
sions, are taken equal to zero. The set of equilibrium functions resulting
from the above constants, unlike the ones obtained by the two 13-bit
models, satisfy all 13 constraints given in Eq. (2).

The distribution functions for � ¼ 1, 3 and i ¼ 0, 1, 3 are equal to the
corresponding equilibrium distributions. The unknown distribution
functions for the remaining directions have a polynomial form identical
to Eq. (15). The unknown coefficients for � ¼ 1, 3 with i ¼ 2, 4 and � ¼ 2
with i ¼ 1, 2, 3, 4 are given by Eq. (16), while the coefficients for � ¼ 4
and i ¼ 1, 2, 3, 4 are given by

a4, 1 ¼ a4, 3 ¼ A4 � 2b4, 1�� � 4c4, 1�
2� � 8d4, 1�

3� � 16e4, 1�
4�,

a4, 2 ¼ a4, 4 ¼ A4 � 2b4, 2�� � 4c4, 2�
2� � 8d4, 2�

3� � 16e4, 2�
4�,

b4, 1 ¼ �b4, 3 ¼ 2B4u0 � 4c4, 1�� � 12d4, 1�
2� � 32e4, 1�

3�,

b4, 2 ¼ �b4, 4 ¼ 2B4u0 � 4c4, 2�� � 12d4, 2�
2� � 32e4, 2�

3�,
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c4, 1 ¼ c4, 3 ¼ ð4C4 þD4Þu
2
0 � 6d4, 1�� � 24e4, 1�

2�,

c4, 2 ¼ c4, 4 ¼ ð4C4 þD4Þu
2
0 � 6d4, 2�� � 24e4, 2�

2�,

d4, 1 ¼ �d4, 3 ¼ 2ð4E4 þ F4Þu
3
0 � 8e4, 1��,

d4, 2 ¼ �d4, 4 ¼ �2ð4E4 þ F4Þu
3
0 � 8e4, 2��,

e4, 1 ¼ e4, 3 ¼ ðG4 þ 4H4 þ 16I4Þu
4
0,

e4, 2 ¼ e4, 4 ¼ ðG4 þ 4H4 þ 16I4Þu
4
0: ð19Þ

The resulting analytical distribution functions satisfy exactly all
properties described by Eqs. (7) and the LB Eq. (1) and can be considered
as an exact representation of the thermal Couette flow. The analytical
solution is independent of � and �.

IV. CONCLUDING REMARKS

In conclusion we have developed analytical solutions of the thermal
Couette flow with a temperature difference at the boundaries using
three different discrete velocity models. The analytical solutions for the
discretized distribution functions must satisfy all 13 thermal hydrodynam-
ic constraints in order to ensure full recovery of the Navier–Stokes
equations, the flow characteristics and the profiles of the macroscopic
solutions. It is seen that the solutions based on a 17-bit square lattice fulfils
all above requirements. The solution based on the 13-bit square lattice
although represents exactly the thermal flow problem does not recover
the fourth order constraint. Finally the solution based on the 13-bit
hexagonal model posses a second order error in the thermal flow solutions
and a third order deviation in the third order constraints.
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