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Lattice kinetic simulations in three-dimensional magnetohydrodynamics
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A lattice kinetic algorithm to simulate three-dimensional (3D) incompressible magnetohydrodynamics is
presented. The fluid is monitored by a distribution function, which obeys a scalar kinetic equation, subject to
an external force due to the imposed magnetic field. Following the work of Dellar [J. Chem. Phys., 179, 95
(2002)], the magnetic field is represented by a different three-component vector distribution function, which
obeys a corresponding vector kinetic equation. Discretization of the 3D phase space is based on a 19-bit
scheme for the hydrodynamic part and on a 7-bit scheme for the magnetic part. Numerical results for magne-
tohydrodynamics (MHD) flow in a rectangular duct with insulating and conducting walls provide excellent
agreement with corresponding analytical solutions. The scheme maintains in all cases tested the MHD con-
straint � ·B=0 within machine round-off error.
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I. INTRODUCTION

Lattice Boltzmann methods (LBM’s) have been imple-
mented in many areas of fluid flows [1]. They have been
proven to be an efficient alternative to classical CFD solvers
in incompressible low-Reynolds-number flows in complex
geometries, including porous media and particulate-
suspension multiphase flows [2]. They focus on the proper
time, space, and microscopic particle velocity discretization
of the mesoscopic BGK kinetic equation, in order to provide
exact Lagrangian-type solutions, subject to specific conser-
vation rules that reflect the macroscopic processes. Then, the
corresponding macroscopic behavior is recovered at the
long-wavelength limit. The explicit and local nature of the
algorithm is amenable to high parallelization.

LBM’s have been also applied in the field of two-
dimensional (2D) magnetohydrodynamics (MHD). The first
attempts were considered in the context of a second base
vector for the discrete particle velocities on an hexagonal
lattice [3,4]. Thus, for a lattice with N streaming directions,
N�N particle states must be considered and as a result vast
amounts of memory are required. This model has been sim-
plified by implementing only adjacent auxiliary vectors for
each lattice direction, while all other desired properties of the
model have been retained [5]. This approach has also been
extended in an octagonal lattice, due to its superior numeri-
cal stability properties compared to the hexagonal or square
lattices [6,7]. However, despite significant efforts to reduce
the complexity of the lattice MHD system, the applied mul-
tispeed formulation of the momentum and magnetic fields
adds a significant burden on the numerics, suggesting a cum-
bersome extension to 3D geometry.

Recently, a new approach was proposed by Dellar [8].
The magnetic field is represented by a separate vector distri-
bution function, which obeys a kinetic BGK-type evolution
equation. Although there is no analogous microscopic pro-
cess for the magnetic field, it can be argued that any conser-

vative system can be formulated in this way under appropri-
ate constrains [9]. Furthermore, the fluid momentum field is
simulated via a typical BGK lattice equation. This formula-
tion contains certain important advantages compared to the
earlier multi-speed models (i.e., significantly reduced com-
puter memory and independent adjustment of the fluid vis-
cosity and magnetic diffusivity).

There are a number of ways to include the effects of the
Lorentz force into the MHD formulation. Dellar opted for
the heuristic extension of the equilibrium function that would
induce an appropriate term to the second moment of the
distribution function and thus to the momentum equation. A
more systematic and general approach is based on the a pri-
ori derivation of the BGK equation with an external accel-
eration term included due to the imposed external potential
[10–12]. Then the Lorentz force can be introduced as a
pointwise force. It is noted that within this formulation the
discretized expanded equilibrium retains the same form as in
the hydrodynamic configuration.

In the present work, we apply the lattice kinetic scheme
introduced by Dellar for the treatment of the induction equa-
tion to three-dimensional MHD flows. However, we choose
to implement the more formal approach based on the ex-
tended Boltzmann equation in order to model the external
Lorentz force term. Following this procedure the integrated
scheme becomes more flexible and straightforward in its for-
mulation.

II. FORMULATION

We start our analysis by noting that the proposed lattice
scheme simulates the incompressible MHD flow equations,
which consist of the momentum equation augmented by the
Lorenz force

�t��u� + � · �PI + �uu� = J � B + � · �2��S� �1�

and the induction equation, which in conservative form, can
be written as*Corresponding author. Electronic address: gbregian@mie.uth.gr
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�tB + � · �uB − Bu� = ��2B . �2�

Here, � is the density, u and B denote the velocity and
magnetic fields, respectively, S represents the strain rate ten-
sor, J is the current density, and � and � are the kinetic
viscosity and magnetic resistivity. In addition, the solenoidal
constrains of � ·u=0, and � ·B=0 are imposed.

At the mesoscale level, the flow can be monitored through
the time and space evolution of a distribution function
f�x ,� , t� which follows the BGK kinetic equation including
the external forcing term,

�t f + � · � f + a · ��f = − �1/���f − feq� , �3�

where � and a stand as the particle velocity and acceleration,
respectively, � is the relaxation time, and feq is the local
Maxwellian �12,13�. The acceleration is due to an imposed
mean external potential and, under the MHD formulation,

relates to the Lorenz force J�B. Equation �3� is integrated
along its characteristic using the trapezoidal rule �11,12�,
while the unknown forcing term is treated according to the
procedure in �10–12�. Note that considering a nonconstant
acceleration during the integration step is appropriate due to
the nature of the Lorenz force. Thus, the discrete distribution
function f i�x ,�i , t� satisfies the evolution equation

f i�x + �i�t,�i,t + �t� − f�x,�i,t�

=−
�t

2�
�f�x + �i�t,�i,t + �t� − f �0��x + �i�t,�,t + �t��

−
�t

2�
�f�x,�i,t� − f �0��x,�i,t��

+
�t

2
a�x + �i�t,�i,t + �t� · ��i

f�x + �i�t,�i,t + �t��t

+
�t

2
a�x,�i,t� · ��i

f�x,�i,t��t , �4�

where �t denotes the time step, �=� /�t is the dimensionless
relaxation time,

f i
�0� = �wi�1 +

��i · u�
�

+
��i · u�2

2� 2 −
u2

2�
� , �5�

and

a · ��i
f i = −

wi�

�2 ���i − u� +
��i · u�

� 2 �i� · �J � B� . �6�

In the present work, weights wi and discrete velocities 	i
reflect the 3DQ19 configuration �Fig. 1�a��, arguably the
most efficient lattice for 3D computations �14�, with �
=���t. Setting the lattice speed c=1, for computational effi-
ciency, we postulate �=cs

2=1/3. The hydrodynamic macro-
scopic quantities are given as �=�i=0

18 f i, �u=�i=0
18 �i f i.

Next, following the work of Dellar [8], we use a three-
component vector distribution function g�x ,� , t�, the zeroth
moment of which gives the magnetic field vector B=�gd�.
The evolution of g obeys a kinetic equation of the form

�t g + � · � g = − �1/�m��g − g�0�� , �7�

where g�0� is the corresponding equilibrium distribution func-
tion and ���m denotes a relaxation time, providing a second
degree of freedom in the model. Equation �7� is integrated
using the trapesoidal rule, yielding, in its discrete form, the
evolution equation

g j�x + � j�t,� j,t + �t� − g j�x,� j,t�

=−
�t

2�m
�g j�x + � j�t,� j,t + �t� − g j

�0��x + � j�t,� j,t + �t��

−
�t

2�m
�g j�x,� j,t� − g j

�0��x,� j,t�� , �8�

where g j�x ,� j , t� is the discrete-vector-valued distribution,
�m=�m /�t, and the discrete equilibrium takes the form

FIG. 1. Discrete velocity lattice for the (a) hydrodynamic
(3DQ19) and (b) magnetic (3DM7) fields.

FIG. 2. Configuration of duct flow under an initial magnetic
field B= �0,By ,0�.
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g j

�0� = Wj�B
 + �m

−1� j��u�B
 − B�u
�� , �9�

with � and 
 standing for the three components of the vector
quantities and ��
. The values of �m, Wj, and � j depend
upon the choice of the implemented lattice scheme for the
magnetic field, which is not necessarily the same as the one
for the hydrodynamic flow. The constrains for � j are � j Wj
=1 and � j Wj� j�� jb=�m�ab. Furthermore, the lattice has to
retain a symmetry up to third order; thus, � j Wj� j�=0 and
� j Wj� j�� j
� j=0 are imposed. Consequently, the required
number of discrete velocity vectors for accurate simulations
of the magnetic part of the scheme is significantly reduced.
The macroscopic quantity of interest is given by B=� j g j. In
the present work we introduce a 7-bit lattice configuration
for the magnetic field, shown in Fig. 1�b�, which proves to

be adequate. The corresponding weights are W0= 1
4 and Wj

= 1
8 for j=1, 2, 3, 4, 5, 6 while �m=1/4. The magnetic resis-

tivity is given as �=�m�m�t. This lattice configuration,
which we call 3DM7 to distinguish it from the hydrodynamic
one, coupled with the 3DQ19 scheme for momentum space
maintains high accuracy in all 3D MHD cases tested.

Equations (4) and (8) are implicit but one can circumvent
that by introducing [11]

f i�x,t� = f i�x,t� +
�t

2�
�f i�x,t� − f i

�0��x,t�� −
�t

2
a · �� f i�x,t�

�10�

and

FIG. 3. Velocity profiles and induced magnetic field for various
Ha numbers for the case of insulating side and Hartmann walls.
Comparison between analytical (solid line) and computational
��� results.

FIG. 4. Velocity profiles and induced magnetic field for various
Ha numbers for the case of perfectly conducting Hartmann walls
and insulating side walls. Comparison between analytical (solid
line) and computational ��� results.
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g j�x,t� = g j�x,t� +
�t

2�m
�g j�x,t� − g j

�0��x,t�� . �11�

Then the discretized evolution lattice kinetic MHD scheme
becomes

f i�x + �i�t,t + �t� = f i�x,t� −
�t

�� + 0.5�t�
�f i�x,t� − f i

�0��x,t��

+
�

�� + 0.5�t�
a · ��i

f i�x,t��t , �12�

and

g j�x + � j�t,t + �t� = g j�x,t� −
�t

��m + 0.5�t�
�g j�x,t� − g j

�0��x,t�� ,

�13�

where the equilibrium distributions f i
�0� and gj

�0� are given by
Eqs. �5� and �9�, respectively, and the forcing term can be
computed by Eq. �6�, while the macroscopic quantities of
interest are given by

� = �
i=1

N

fi, �u = �
i=1

N

�i f i + �J � B�
�t

2
, B = �

j=1

M

gi.

�14�

Equations �12� and �13�, along with the use of Eqs. �6� and
�14�, comprise the implemented LBM algorithm. The current
density J= � �B can be computed either from macroscopic
quantities or, more consistently, from higher moments of g
�8�.

III. RESULTS

The numerical benchmarking of the scheme is accom-
plished by solving a fully developed MHD flow in a rectan-
gular duct subject to various boundary conditions (Fig. 2).
Initially, the magnetic field B is aligned with the y axes.
Although the flow is pseudo-2D �u= (ux�y ,z� ,0 ,0)�, we ana-
lyzed fully 3D flow with periodic conditions in the stream-
wise direction. Both Dirichlet- and Newman-type boundary
conditions have been considered. This is one of the few
problems of 3D MHD flows where an analytical solution
exists [15]. Our numerical results match the corresponding
analytical ones with excellent agreement.

Figure 3 depicts the streamwise velocity profiles in the y
and z directions for various Ha numbers, along the corre-
sponding center lines of the duct. In addition, the induced
magnetic field component Bx�y ,0� is shown. Note that
Bx�0,z� is identically equal to zero for the above configura-
tion. Both the side and Hartmann walls are taken to be per-
fectly insulating. The corresponding results for perfectly con-
ducting Hartmann walls and insulating side walls are shown
in Fig. 4. Although the MHD constrain � ·B=0 is not explic-
itly imposed, the implemented lattice kinetic scheme fulfills
this requirement within machine round-off error. The overall
performance of the algorithm and the excellent agreement
with analytical results suggest that the present mesoscale
kinetic-type approach provides a promising tool in order to
tackle complex MHD flows such as plasma and liquid medal
flows.
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