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Lattice kinetic simulations of 3-D MHD turbulence
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Abstract

A recently proposed lattice Boltzmann kinetic scheme offers a promising tool for simulating complex 3-D MHD flows. The algorithm
is based on the BGK modeling of the collision term. The conventional approach for implementing magnetic behavior in LBM methods is
based on one tensor-valued distribution function to present both the fluids variables (density and momentum) and the magnetic field.
This formulation, however, has been proven a rather inefficient approach. The present scheme calls for a separate BGK-like evolution
equation for the magnetic field which models the induction equation and enhances simplicity while allowing for the independent adjust-
ment of the magnetic resistivity. Furthermore the algorithm correctly recovers the macroscopic dissipative MHD equations. Numerical
results for the 3-D Taylor–Green vortex problem are presented with corresponding results computed with a pseudo-spectral code used as
benchmark.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Lattice Boltzmann methods (LBM) have proven to be
an efficient alternative to classical CFD solvers in many
areas of fluid flows [1,2]. Applications of the method range
from particulate and multiphase flows to porous media and
other complex flow systems. In general, LBM present supe-
rior ability in dealing with non-ideal fluids and complicated
geometries. They present an effective framework in order to
tackle physical phenomena that cannot be formulated in a
comprehensive macroscopic description.

LBM focus on the proper time integration of the
mesoscopic Boltzmann kinetic equation under specific con-
straints that reflect the macroscopic conservative processes.
The corresponding macroscopic behavior is recovered at
the long wave length limit. The explicit nature of the algo-
rithm is amenable to high parallelization. Despite the sig-
nificant advantages there are still unresolved problems
such as a comprehensive thermal configuration, high Mach
number flows and turbulence [2].
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Magnetohydrodynamics, in the context of LBM, have
initially utilized a tensor distribution function f r

a whose
moments produced all the relevant macroscopic quantities.
However this approach required the introduction of a sec-
ond base vector for the discrete particle velocities [3].
Although there has been efforts to optimize the approach
by reducing the complexity of the system, this formulation
adds significant burden on the numerics suggesting a cum-
bersome extension to 3-D geometry [4].

Recently a new approach was presented by Dellar [5].
He argued that the evolution of the magnetic field can be
formulated in terms of a kinetic BGK-type equation simi-
lar to Boltzmann’s equation. Although there is no analo-
gous microscopic process it can be seen [6] that any
conservative hyperbolic system can be formulated in this
way, under appropriate constraints. Thus, two distinct
kinetic equations provide the needed macroscopic variables
u and B.

The corresponding Lorentz force can be incorporated in
two ways. Either with an a priori derivation of the
extended Boltzmann equation to include an external accel-
eration term [7], on the left hand side of the Boltzmann
equation, or via an extension to the equilibrium function
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[5], on the right hand side, one that correctly accounts for
the modified stress due to the Lorentz force.

Here, following Dellar [5], we extend his treatment of
the equilibrium function in 3-D and implement the discret-
ization introduced in [7], in order to report results on the
ability of kinetic schemes to simulate complex fully 3-D
turbulent MHD flows. As a test case we consider a periodic
cube with deterministic initial conditions.

2. Formulation

2.1. Hydrodynamic field

The numerical implementation of the method is based
on the discretized Boltzmann equation with a BGK formu-
lation of the collision term (LBGK), which takes the form

otfi þ ni � rfi ¼ �
1

s
ðfi � f ð0Þi Þ ð1Þ

where fi = f(x,ni, t), with x the spatial vector, ni the micro-
scopic velocity set chosen, t the time and s the relaxation
time. All quantities are dimensionless unless otherwise sta-
ted. For the isothermal case, the equilibrium distribution
function is given by a low Mach number series expansion
of the Maxwellian as

f ð0Þi ¼ .wi 1þ ni � u
h
þ ðni � uÞ

2

2h2
� u � u

2h

" #
; ð2Þ

with the weighting factors wi depending on the lattice and
h ¼ c2

s . In 3-D space, there are several lattice models that
can be used for the hydrodynamic part of the problem, uti-
lizing 15, 19 or 27 discrete velocity vectors. It has been seen
that the 19-velocity lattice is efficient and stable enough to
recover the correct hydrodynamic response of a 3-D flow
[8]. We chose to perform our simulations with the 19-
velocity model (Fig. 1(a)) incorporating cs ¼ c=

ffiffiffi
3
p

with
c = dx/dt being the lattice speed and corresponding
weights,
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Fig. 1. Discrete velocity lattice for the (a) hydrodyn
Following the standard practice in LBM, we set
dx = dt = 1, postulating c = 1. The macroscopic quantities
can be computed by moments of f, i.e. . ¼

P
ifi and

.u ¼
P

inifi, where . and u are the density and velocity vec-
tor, respectively and the viscosity of the fluid is given by
m ¼ sc2

s .

2.2. Magnetic field

The evolution of a magnetic field follows an advection–
diffusion equation that, in conservative form, can be for-
mulated as

otBþr � ðuB� BuÞ ¼ gr2B ð3Þ
where g is the magnetic resistivity. Following the theoreti-
cal work of Bouchut [6], Dellar [5] suggested that a kinetic
equation of BGK-type can be used to simulate the above
equation in mesoscopic level as long as appropriate con-
straints are imposed to secure proper macroscopic behav-
ior. It should be noted that there are no physical grounds
to suggest that. The motivation stems from the fact that
the macroscopic induction equation is similar to the
Navier–Stokes momentum equation. However, unlike the
momentum flux tensor which is symmetric, the correspond-
ing electric field tensor is antisymmetric and thus cannot be
formulated as the second moment of a single distribution
function. The alternative is to use a vector distribution
function with its zeroth moment providing the magnetic
field vector,

B ¼
XM

j¼0

gj. ð4Þ

The evolution of gj obeys a BGK-type kinetic equation

otgj þ N � rgj ¼ �
1

sm
gj � g

ð0Þ
j

� �
ð5Þ

where g
ð0Þ
j are the corresponding equilibrium distribution

functions given by

g
ð0Þ
jb ¼ W j Bb þH�1NjaðuaBb � BaubÞ

� �
ð6Þ

with a, b denoting the spatial directions and N the corre-
sponding discrete velocity vector (not necessarily the same
as n). The relaxation time sm allows us to set the magnetic
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resistivity independently from the fluid’s viscosity, which is
related to s.

The first moment of g gives the electric tensor as

Kð0Þab ¼
XM

j¼0

Njagð0Þjb ¼ uaBb � Baub. ð7Þ

Note that we can also get consistent expressions for $ Æ B

and $ · B [5].
Dellar [5] modeled the Lorentz force with an additional

term in the equilibrium by expressing the Lorentz force as
the divergence of the Maxwell stress tensor,

ðr � BÞ � B ¼ r �M ¼ r � 1

2
dabjBj2 � BaBb

� �
. ð8Þ

This implies that the Euler momentum equation can be
written as

otð.uÞ þ r � P Iþ .uuþ 1

2
B2I� BB

	 

¼ 0. ð9Þ

It can be seen that the Taylor expansion of the equilibrium
function is equivalent to a moment expansion in tensor
Hermite polynomials. This is evident if we write (2) as

f ð0Þ ¼ wi .þ 1

h
ð.uÞ � niþ

1

2h2
½ðP � h.ÞIþ .uu� : ðnini� hIÞ

	 

.

ð10Þ
Thus an extension to the equilibrium function can be given
from

wi
1

2h2
ðnini � hIÞ : ðM� hIðTrMÞÞ; ð11Þ

where Tr stands for the trace of a matrix, with an error
consistent with the truncation error [5]. In three dimensions
and for h = 1/3 the above extension becomes

wi
9

2

1

3
jBj2jnij

2 � ðni � BÞ
2

	 

. ð12Þ

Adding this component to the equilibrium function (2)
would correctly, up to second moment, reproduce the mac-
roscopic Euler MHD equations. Note that the extra term
has the zeroth and first moment in terms of n equal to zero.
Thus the macroscopic dissipative MHD equations are
recovered at the hydrodynamic limit as

otð.uÞ þ r � ðP Iþ .uuÞ ¼ ðr � BÞ � Bþr � ð2m.SÞ; ð13Þ
with the strain tensor given by Sab ¼ 1

2
ðoaub þ obuaÞ.

The magnetic lattice has to retain a symmetry only up to
third order. Thus significantly fewer discrete velocity vec-
tors are required for accurate simulations. In the 3-D case
a 7-velocity lattice is adequate. The corresponding weights
in Eq. (6) are

W 0 ¼
1

4
; W j ¼

1

8
for j ¼ 1; 2; 3; 4; 5; 6 ð14Þ

while H = 1/4 and the magnetic resistivity is given as
g = smH. The above scheme maintains high accuracy in
all times.
3. Algorithm

The time integration of (1) and (5) can be carried out to
second order in dt by appropriate change of variables [2,5],

fiðx; tÞ ¼ fiðx; tÞ þ
dt
2s

fiðx; tÞ � f ð0Þi ðx; tÞ
� �

ð15Þ

gjðx; tÞ ¼ gjðx; tÞ þ
dt

2sm
gjðx; tÞ � g

ð0Þ
j ðx; tÞ

� �
ð16Þ

where one can compute the needed macroscopic quantities
from moments of the barred functions.

Now the discretized evolution equations become

fiðxþnidt; tþdtÞ ¼ fiðx; tÞ�
dt

ðsþ0:5dtÞ fiðx; tÞ� f ð0Þi ðx; tÞ
h i

ð17Þ

gjðxþNjdt; tþdtÞ ¼ gjðx; tÞ�
dt

ðsmþ0:5dtÞ gjðx; tÞ�g
ð0Þ
j ðx; tÞ

h i
ð18Þ

with

f ð0Þ ¼ .wi 1þ ðn � uÞ
h
þ ðn � uÞ

2

2h2
� u2

2h

" #

þ wi
9

2

1

3
jBj2jnij

2 � ðni � BÞ
2

	 

ð19Þ

and g(0) given by (6).
The 7-velocity lattice (3DM7) used for the discretization

of the magnetic field evolution is depicted in Fig. 1(b). The
relations for viscosity and resistivity for the implemented
lattices are m = s/3 and g = sm/4, respectively.

Given the initial quantities of u and B, we compute first
the equilibrium distributions from (6) and (19), and then
the right hand sides of (17) and (18), which represent the
collision process. The next step includes the advection
along the discrete velocity vector. Finally, we compute
the new macroscopic quantities by the corresponding
moments and so forth.

4. Results

We test the algorithm for a simplified problem of decay-
ing isotropic turbulence in a 3-D cube with periodic bound-
ary conditions. Our numerical results are compared with
those of a pseudo-spectral code provided by Carati [9].

The configuration used as a prototype of MHD compu-
tations consists of an implementation of the Taylor–Green
vortex [10] with a corresponding magnetic field. The initial
conditions, in physical space, for the velocity and magnetic
field are given by

u ¼ ½sinðxÞ cosðyÞ cosðzÞ;� cosðxÞ sinðyÞ cosðzÞ; 0� ð20Þ
B ¼ ½sinðxÞ sinðyÞ cosðzÞ; cosðxÞ cosðyÞ cosðzÞ; 0� ð21Þ

with 0 < x, y, z < 2p. The kinetic and magnetic energies per
unit volume are defined as
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Ekinetic ¼
1

2L3

Z
juj2dx ð22Þ

Emagnetic ¼
1

2L3

Z
jBj2dx ð23Þ

with the corresponding enstrophies given by

Xkinetic ¼
1

2L3

Z
jr � uj2dx ð24Þ

Xmagnetic ¼
1

2L3

Z
jr � Bj2dx. ð25Þ

with L = 2p. In all simulations viscosity and magnetic
resistivity are set equal. The computer code implements
mpi parallelization and simulations have been carried out
in linux clusters.

A detailed comparison between the lattice kinetic
scheme and the spectral method is shown in Figs. 2 and 3
where the temporal evolution of the kinetic and magnetic
energies and their respective enstrophies are presented in
dimensional units. The formula for the relaxation time is

s ¼ UN
hRe

; ð26Þ

where U is the lattice velocity, h = 1/3, N is the number of
lattice units utilized and Re the Reynolds number of the
flow. The spectral scheme utilized a 323 mesh while the
Fig. 2. Temporal evolution of kinetic and magnetic energi

Fig. 3. Temporal evolution of kinetic and magnetic enstrop
LBGK simulation used N = 103 with Ma ¼ U=cs ¼
0:061

ffiffiffi
3
p

. The need for higher resolutions for the LBM sim-
ulations is due to the formulation of the scheme. It is
known that small values of s are troublesome in simula-
tions, thus for high Re, and low Mach number, one must
increase N to achieve stability, limited only by available
resources. Three sets of results are given for m = g equal
to 0.1, 0.05 and 0.01. The nominal Reynolds number is
Re = 2p/m and the dimensional time plotted in Figs. 2
and 3 is computed as t ¼ 2pU

N nt, where nt is the number of
iterations.

The results in Figs. 2 and 3 reproduce the well known
mechanism of energy transfer between magnetic and
hydrodynamic parts as the Reynolds number increases
while at the same time the dissipation rate is noticeably
enhanced through the creation of currents and vorticity
sheets [11]. It is seen that there is an excellent quantitative
agreement between the results of the implemented magne-
tohydrodynamic lattice kinetic scheme and those of the
pseudo-spectral method. The spectral approach is arguably
more computationally efficient at this range of the Rey-
nolds number. However as the complexity of the flow
increases the grid requirements posed by the flow field
should meet those needed by the kinetic scheme. Then,
the superior ability of the LBM in terms of parallel
es for m = g = 0.1, 0.05, 0.01 (bottom line to top line).

hies for m = g = 0.1, 0.05, 0.01 (bottom line to top line).
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programming and handling boundary conditions will bear
fruits.

5. Conclusion

Lattice kinetic simulations of 3-D homogeneous MHD
turbulence have been carried out. The configuration con-
sists of a periodic cube with deterministic initial conditions
for the velocity and magnetic field. The results indicate the
existence of a complex evolution through nonlinear inter-
action between current and vorticity. A fine quantitative
agreement with spectral simulations is found for the cases
tested here. A more detailed and time demanding compar-
ison study for high Reynolds number flows is currently
under way. These results suggest that lattice kinetic
schemes can handle 3-D MHD flows, such as those related
to fusion plasma research.
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