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Abstract 
 
The Cercignani-Lampis boundary conditions are considered in detail for the problem of rarefied gas 
flow through a channel of rectangular cross-section. The linear BGK kinetic model and the discrete 
velocity method are employed for this study. The results are in good qualitative agreement with 
similar configurations for other cross-sections in the literature. The flow rate is tabulated for various 
values of the side ratio, the accommodation coefficients and the rarefaction parameter. The required 
computational effort is compared to a similar case using the Maxwell diffuse-specular kernel. 
 
1   Introduction 
 
Kinetic calculations employing Maxwell diffuse boundary conditions are often used for practical 
applications, including gas flows in microchannels. The Maxwell model (Ferziger & Kaper, 1974) 
is based on the hypothesis that all molecules arriving at a wall surface depart from it having a 
Maxwellian distribution according to the wall temperature. This gas-surface interaction model is 
simple, easily understood at both microscopic and macroscopic level, while the associated 
numerical effort for its implementation is minimal. Furthermore, in a variety of physical systems, it 
provides reliable results in very good agreement with corresponding experimental findings 
(Varoutis et al., 2009; Pitakarnnop et al., 2009). However, in several occasions it has been observed 
that the Maxwell scattering law is not adequate.  
 
As stated in (Sharipov, 2002; 2003), discrepancies between numerical and experimental data are 
found in flows through rectangular ducts and tubes. Reliable numerical data on the rarefied gas flow 
through a cylindrical capillary (Cercignani & Sernagiotto, 1966; Aoki, 1989; Sharipov, 1996; 
Siewert, 2000), assuming diffuse reflection, are available in the literature. An extensive list of 
works on these types of the flows is found in the review paper by (Sharipov & Seleznev, 1998). In 
some cases they are in disagreement with experimental data (Porodnov et al., 1974). In particular, 
the mass flow rate is in reality larger than it was expected by numerical calculations. As an 
alternative approach, the diffuse-specular boundary conditions have been introduced. It is assumed 
that a percentage of molecules equal to [ ]0,1α∈  is reflected diffusely, while, the remaining 
percentage equal to (1 )α−  is reflected specularly. This kernel has been used in many works (e.g., 
Sharipov, 1996; Porodnov et al., 1978; Breyiannis et al., 2008) and, in some cases (Porodnov et al., 
1974; 1978; Borisov et al., 1999), the so-called tangential momentum accommodation coefficient, 
taking values between zero and unity, has been chosen so that the numerical and experimental data 
would fit well. In other cases however, the diffuse-specular scattering model cannot describe 
properly the gas-surface interaction. As it is noted in (Sharipov, 2002; 2003), performing various 
types of experimental measurements of i) the Poiseuille flow rate ii) the thermal creep flow rate and 
iii) the viscous slip coefficient, but always with the same gas and surface yields different values of 
α . It seems that trying to integrate in only one free parameter all types of interaction mechanisms is 
not correct and cannot be physically justified. 
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Also, the implementation of the diffuse-specular model does not provide good estimates of the 
thermomolecular pressure difference (TPD) exponent ω . The TPD physical system is the one 
where the temperature driven flow is counterbalanced by the pressure driven flow deducing a zero 
net flow rate (Ritos, 2009). In the free molecular limit, the kinetic solution with diffuse-specular 
boundary conditions yields 1/ 2ω =  independent of α , while it has been shown based on 
experimental work that values of 1/ 2ω <  may be observed (Edmonds & Hobson, 1965). It may 
also be worth mentioning that the value of α  may differ for the free-molecular and hydrodynamic 
regimes. For example, the interaction between helium and glass has been examined in (Porodnov et 
al. 1974; 1978) and three different values of α  have been used to fit the experimental data in the 
whole range of rarefaction. Therefore, an attempt to examine a variety of gases and surfaces and 
store the corresponding values of α  in tables for practical purposes would not be effective.  
 
Another scattering kernel has been proposed in (Cercignani & Lampis, 1971). There are several 
advantages of their approach: Two parameters are involved, namely [ ]0,2tα ∈  and [ ]0,1nα , to 
quantify the accommodation of tangential momentum and the kinetic energy of the normal velocity 
component, respectively. The diffuse and specular scattering kernels are easily retrieved by setting 
the two coefficients equal to unity or zero, respectively. Furthermore, the case of backscattering, i.e. 
the reversal of the velocity vector after a collision with a wall, is simulated using 2tα = , 0nα = . It 
is clearly seen that the lobular distributions produced by the Cercignani-Lampis (CL) model, shown 
in Figure 1 of (Santos, 2007), are more physically realistic in comparison to the corresponding 
distributions of the diffuse-specular model. These boundary conditions also allow values of the TPD 
exponent lower than 1/ . A rigorous verification of this kernel should include a set of experiments 
investigating different transport phenomena for the same gas-surface combination. 

2

 
An adequate number of works employing the CL kernel in a variety of problems now exists in the 
literature (Frezzotti, 1989; Sharipov & Bertoldo, 2006; Santos, 2007). Lord also extended the CL 
model (Lord, 1991; Lord, 1995), including polyatomic gas flows and the case of diffuse scattering 
with incomplete energy accommodation. He has also applied it in the widely used Direct Simulation 
Monte Carlo (DSMC) method. However, implementation of the CL boundary conditions to gas 
flows through microchannels is limited so far in cylindrical tubes only.  
 
In this paper, the application of the CL kernel in gas flow through a channel of rectangular cross-
section is discussed. This may be useful to the microfluidics community since microflows through 
rectangular channels have been extensively studied and in some cases discrepancies between 
computational and experimental results have been observed.  
 
2   Scattering kernels 
 
In general, the boundary conditions are imposed using the expression 

( ) ( ) ( )
'

' ''

0n

n n
'f R f

ξ

dξ ξ ξ ξ ξ ξ
<

= →∫ ξ , (1) 

with ξ  and 'ξ  being the velocity vectors of the departing and impinging molecules, respectively, 

and ( ) ( ,Bf f r )ξ ξ≡  is the molecular distribution function, where Br  is the position vector of the 

boundary point being considered. The scattering kernel ( )'R ξ ξ→  represents the probability that a 

molecule approaching a wall with velocity 'ξ  will be reflected with ξ . Also, the n  subscript 
denotes the normal component of the corresponding velocity. The meaning of expression (1) is that 
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if we sum the molecules moving to the wall with any possible 'ξ  and scatter to ξ  with probability 

( 'R )ξ ξ→ , we obtain the flow of particles leaving with nξ , displayed in the left hand side of (1).  

 
All scattering kernels must obey certain general rules. Since R  denotes a probability it should be 
positive, i.e.,  
( )' 0R ξ ξ→ ≥ . (2) 

Also, assuming that the wall is not porous or absorbing, all molecules are scattered to some velocity 
after they collide with the wall and therefore the normalization property 

( )'

0

1
n

R d
ξ

ξ ξ ξ
>

→ =∫  (3) 

applies. Finally, the reciprocity condition 
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holds, with  being the molecular mass,  the Boltzmann constant and  the wall temperature. 
Equation (4) expresses a “detailed balance” and is clarified in (Cercignani & Lampis, 1971; 
Cercignani, 1975). 

m Bk wT

 
The commonly used Maxwell diffuse-specular kernel is 
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where δ  is the Dirac delta function and n  is the outward normal vector on the wall surface. Here, 
we focus on the Cercignani-Lampis scattering kernel 
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where ( ) ( )
2

0 0

1 exp cos
2
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π

dϕ ϕ
π

= ∫  is the modified Bessel function of the first kind and zeroth 

order. It can be seen that by setting in (6) 1t nα α= =  or 0t nα α= = , the diffuse and specular 
scattering kernels are reduced, respectively.  
 
3   Problem formulation with the CL boundary conditions 
 
Here, the flow of a rarefied gas through a long duct of rectangular microchannel of height H  and 
width W  is formulated, based on a kinetic model equation associated with the Cercignani-Lampis 
boundary conditions. The flow is isothermal at reference temperature , it is due to a pressure 
gradient along the longitudinal direction, while the rectangular cross section lies in the 

wT
z ( ),x y  

plane, with  and ( ) (/ 2 / 2W H x W H− ≤ ≤ ) 1/ 2 1/ 2y− ≤ ≤ . 
 
3.1 Kinetic equations 
 
It has been shown that the fully developed flow through channels of rectangular cross section can be 
accurately simulated by the linearized BGK equation, written as (Sharipov, 1999) 

[ ]2x y z
h hc c c u h
x y

δ∂ ∂+ = − −
∂ ∂ zc , (7) 

  



Proceedings of the 1st GASMEMS Workshop- Eindhoven, September 9-11, 2009 

where ( , ,h h x y c≡ )  is the unknown linearized distribution function, ( ), ,x y zc c c c=  is the molecular 

and  is the macroscopic velocity along the duct. All quantities in (7) are in 
dimensionless form. The rarefaction parameter 

( ,zu u x y≡ )
δ  is defined as 

0

PHδ
μυ

= , (8) 

with  being the pressure along the channel, ( )P P z= μ  the dynamic viscosity at reference 

temperature  and 0T ( )0 2 /Bk m Tυ = 0  the most probable molecular velocity. It is noted that the 
rarefaction parameter is inversely proportional to the Knudsen number.  
 
Furthermore, to reduce the computational effort, the projected distribution function 

( ) ( ) ( )21, , , , , , , expx y x y z z z zx y c c h x y c c c c c dcφ
π

∞

−∞

= ∫ −  (9) 

is introduced. By acting properly on equation (7) we obtain the final expression 
1
2x yc c u

x y
φ φ δφ δ∂ ∂
+ + = −

∂ ∂
 (10) 

and the macroscopic velocity is calculated through 

( ) ( )2 21, exp x z xu x y c c dc dcφ
π

∞ ∞

−∞ −∞

= − −∫ ∫ y . (11) 

Once the kinetic problem, described by (10) and (11) and the appropriate boundary conditions, is 
solved, the dimensionless flow rate is estimated as 

( )
( )

( )/ 2 1/2

/ 2 1/2

2 ,
W H

W H

HG u x y dydz
W − −

= ∫ ∫ . (12) 

The formulation of the problem is completed and the integrodifferential system (10) and (11) may 
be solved provided that boundary conditions along the perimeter of the rectangular cross section are 
properly imposed. This issue is discussed in the next subsection. 
 
3.2 Boundary conditions 
 
In the case of linear kinetic models, the starting point for boundary conditions is (Cercignani, 1975) 

0 0h Ah h Ah+ −= + − ,  (13) 
with the superscripts  denoting the distribution of particles leaving and approaching the 
boundary surface, respectively. The operator 

,+ −
A  is defined by (Cercignani et al., 2004) 

[ ]( ) ( ) ( )
0

' ' ' ' ' ' '
1 2 1 2 1 2, , , ,n t t n t t n t tAh c c c R c c h c c c dc dc dc

∞ ∞

−∞ −∞ −∞

= − → −∫ ∫ ∫ . (14) 

The velocity component vertical to the wall is , while the two tangential components parallel to 
the wall are  and .  

nc

1tc 2tc
 
For the present flow configuration the Maxwellian perturbation term  vanishes because the walls 
are isothermal and their temperature is equal to the reference value. To simplify, for clarity 
purposes, the mathematical manipulation of the CL boundary conditions, the methodology will be 
presented for one of the four boundaries of the problem, namely the lower one, i.e. for 

0h

1/ 2y = − . 
Also, at the lower boundary , n yc c≡ 1tc cx≡  and 2tc cz≡ . Applying the projection procedure as it is 
defined by (9) into (13) it is reduced that 
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1 1, , , , , , ,x
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Using Equation (9), the above expression can be rewritten as 
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In the case of diffuse-specular boundary conditions, substituting kernel (5) into (16) yields 

( )1 1x, , , 1 , , ,
2 2x y x yc c x c cφ α φ⎛ ⎞ ⎛− = − − −⎜ ⎟ ⎜

⎝ ⎠ ⎝
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⎟
⎠
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where [ ]0,1α ∈  is the so-called accommodation coefficient. The two limiting values 0α =  and 
1α =  correspond to purely diffuse or specular scattering respectively. 

 
In the case of the Cercignani-Lampis boundary conditions substituting (14) into (16) yields 
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for . Equation (18) will be simplified by estimating the integral 0yc >
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The CL kernel, given by (6), can be decomposed as 1 2t tR R R R= × × , where the two tangential 
parts are  
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and the normal part is 

( ) ( )2 '2
'

0
1 2 12 exp n n n n nn

n n n
n n n

c c ccR c c I
α α

α α α

'
nc⎡ ⎤+ − −⎡ ⎤

→ = − ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

. (21) 

Following (Cercignani et al., 2004), we have substituted 1 tγ α= −  and (21 2t )tγ α α− = −  in order 
to reduce the size of the tangential components. Therefore, the integral 
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must be estimated. Substituting (20) into (22) for '
tc c= −  and '

tc cz= −  it is found that 

( )' expz
' 2
zJ c cα= −  (23) 

Using this result, equation (18) is rewritten in the more compact form 
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Finally, substituting the scattering kernel components (20) and (21) into (24) and changing back 
from γ  to tα  results to the final expression for the projected distribution function  at : 1 / 2y = −
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It is noted that since the normal component of the impinging velocity takes only negative values at 
the specific boundary we have used in the manipulation '

n yc c= .  
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The procedure for the other three boundaries is similar. At the upper boundary, i.e.,  the 
impinging particles are moving in the positive direction and this has an effect on the sign of the 
corresponding equation. The boundary condition at 

1/ 2y =

1/ 2y =  is: 
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The corresponding boundary conditions for the left and right wall are obtained by (25) and (26), 
respectively, by exchanging ',x xc c  with  on the right hand side. ',y yc c
 
The governing equations (10) and (11), subject to diffuse-specular or CL boundary conditions, are 
solved numerically using a central difference scheme in the physical space and the discrete velocity 
algorithm in the molecular velocity space. The resulting discretized equations are solved in an 
iterative manner. This typical computational scheme has been repeatedly used in the past with great 
success and it is described in detail in several previous works (e.g. Naris & Valougeorgis, 2005).  
 

4   Results 
 
The presented results are obtained using 100I J= =  nodes in the x  and y  directions and 

 molecular velocities with 32 100M N× = × M  denoting and  the polar angles. The 
dimensionless flow rates, shown in Table 1, are calculated for three rectangular cross sections in the 
whole range of the rarefaction parameter.  

N

 
In the case of complete accommodation, that is 1tα =  and 1nα = , the results have been compared 
with the corresponding ones in the literature (Sharipov, 1999) obtained with Maxwell diffuse 
boundary conditions and good agreement has been found. In fact, these particular results are 
obtained for any value of nα , since the boundary conditions (25) and (26) for the distribution 
function are independent of this parameter for 1tα = . 
 

Table 1: Dimensionless flow rates G  
H/W = 1 H/W = 0.5 H/W = 0.25 

δ  tα  
nα = 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1 

0.5 1.7381 1.7205 1.7078 2.3628 2.3350 2.3158 2.9825 2.9355 2.9051 
1 0.8387 0.8387 0.8387 1.1523 1.1523 1.1523 1.5003 1.5003 1.5003 0 

1.5 0.4969 0.5076 0.5174 0.6934 0.7104 0.7253 0.9403 0.9681 0.9914 
0.5 1.6856 1.6718 1.6616 2.2714 2.2506 2.2356 2.8165 2.7812 2.7573 
1 0.7934 0.7934 0.7934 1.0734 1.0734 1.0734 1.3544 1.3544 1.3544 0.1 

1.5 0.4558 0.4644 0.4725 0.6224 0.6359 0.6480 0.8092 0.8317 0.8513 
0.5 1.6400 1.6339 1.6288 2.2056 2.1970 2.1902 2.6963 2.6810 2.6692 
1 0.7621 0.7621 0.7621 1.0277 1.0277 1.0277 1.2609 1.2609 1.2609 0.5 

1.5 0.4338 0.4381 0.4424 0.5920 0.5987 0.6051 0.7403 0.7522 0.7633 
0.5 1.6392 1.6368 1.6346 2.2153 2.2119 2.2090 2.6954 2.6889 2.6834 
1 0.7677 0.7677 0.7677 1.0426 1.0426 1.0426 1.2645 1.2645 1.2645 1 

1.5 0.4449 0.4469 0.4489 0.6145 0.6176 0.6207 0.7550 0.7606 0.7662 
0.5 1.8700 1.8690 1.8684 2.6235 2.6217 2.6203 3.1707 3.1688 3.1673 
1 0.9871 0.9871 0.9871 1.4156 1.4156 1.4156 1.6983 1.6983 1.6983 5 

1.5 0.6680 0.6688 0.6694 0.9865 0.9879 0.9891 1.1894 1.1911 1.1923 
0.5 2.2214 2.2185 2.2160 3.2015 3.1968 3.1926 3.8630 3.8572 3.8521 
1 1.3174 1.3174 1.3174 1.9587 1.9587 1.9587 2.3601 2.3601 2.3601 10 

1.5 0.9930 0.9957 0.9981 1.5199 1.5243 1.5283 1.8406 1.8461 1.8511 
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It can be seen that the flow rate highly depends on the value of the tangential momentum 
accommodation coefficient. In particular, as tα  increases, the flow rate is reduced. Three values of 
this coefficient have been studied and one of them is higher than unity, indicating a partial 
bouncing-back behaviour which results in reduced flow rates. Also, it is observed that nα  does not 
cause large variations in the flow rate. The influence of nα  on G  is related to the values of tα : for 

1tα <  an increase in nα  causes a decrease in the flow rate, while for 1tα >  the opposite tendency is 
demonstrated. The flow rate is also highly dependent on the aspect ratio of the orthogonal cross 
section and increases as the ratio decreases. Finally, it is noted that in every case, the Knudsen 
minimum occurs for values of δ around unity. 
 
A comparison of the required CPU time has been performed between the diffuse-specular and the 
CL boundary conditions. In the first case the accommodation coefficient is , while in the 
latter the CL coefficients are 

0.5a =
0.5, 1t nα α= = . Since both types of boundary conditions are used to fit 

numerical with experimental data, it is interesting to have an estimation of the total time required 
for each model. The CPU time (in hours) needed to solve the flow of a rarefied gas through a square 
channel with Maxwell and CL BCs is shown in Table 2. It is seen that the computational cost of the 
CL kernel is about one order of magnitude larger than the one required by the diffuse-specular 
kernel. This is mainly due to the additional computational effort needed in every iteration, in order 
to estimate the complicated integrals at the right hand side of the boundary conditions. 
 

Table 2: CPU time (in hours) for H/W=1 with i) Diffuse-specular BCs ( )  and ii) 
Cercignani-Lampis BCs (

0.5a =
0.5tα = , 1nα = ). 

δ  0 0.05 0.1 0.2 0.5 1 2 5 10 20 
Maxwell 0.0461 0.0472 0.0506 0.0556 0.0686 0.0914 0.1347 0.2881 0.6253 1.6050

CL 0.7006 0.7258 0.7778 0.8553 1.0628 1.4253 2.1506 4.5853 9.8939 25.3817
 
Closing this work, it is noted that the CL scattering kernel has been successfully applied to solve the 
rarefied gas flow through a channel of rectangular cross-section. The results corresponding to 
Maxwell diffuse boundary conditions are in good agreement with previous work (Pitakarnnop et al., 
2009; Sharipov, 1999), despite the relatively sparse numerical grid. Also, the qualitative behaviour 
of the CL results is similar to the one observed in other geometrical configurations such as flow 
though a cylindrical tube. The present work will be used to estimate the TPD exponent in 
rectangular channels and specify the CL coefficients for certain gas-surface interaction by 
comparison with experimental work. 
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