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We investigate the tradeoff between finished-goods inventory and advance demand 
information for a model of a single-stage make-to-stock supplier who uses an order-base-
stock replenishment policy to meet customer orders that arrive a fixed demand lead-time in 
advance of their due-dates. We show that if the replenishment orders arrive in the order that 
they are placed, the tradeoff between the optimal order-base-stock level and the demand lead-
time is “exhaustive,” in the sense that the optimal order-base-stock level drops all the way to 
zero if the demand lead-time is sufficiently long. We then provide a sufficient condition under 
which this tradeoff is linear. We verify that this condition is satisfied for the case where the 
supply process is modeled as an M/M/1 queue. We also show that the tradeoff between the 
optimal order-base-stock level and the demand lead-time is linear for the case where the 
supply process is modeled as an M/D/1 queue. More specifically, for this case, we show that 
the optimal order-base-stock level decreases by one unit if the demand lead-time increases by 
an amount equal to the supplier’s constant processing time. Finally, we show that the tradeoff 
between the optimal order-base-stock level and the demand lead-time is exhaustive but not 
linear in the case where the supply process is modeled as an M/D/∞ queue. We illustrate these 
results with a numerical example. 
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1 Introduction 
There is a growing consensus among operations management researchers and practitioners 

that obtaining and distributing customer demand information to all the partners of a supply 

chain is essential for improving the coordination and ultimately the performance of the supply 

chain. The advantages of sharing customer demand information are further amplified when 

https://doi.org/10.1016/j.ejor.2007.06.011
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this information is obtained ahead of time. Such information is often referred to in the 

literature as advance demand (or order) information (ADI). 

From a supplier’s side, one of the main advantages of having access to ADI is that such 

information can be used as a tradeoff for finished-goods inventory and can thus lead to 

reduced inventory costs. The nature of this tradeoff, however, is in general difficult to assess, 

particularly when the supplier is a capacitated production/inventory system, because 

production capacity affects the tradeoff in a non-trivial way. 

In this paper, we investigate the tradeoff between finished-goods inventory and ADI for a 

model of a single-stage make-to-stock supplier who uses a continuous-review order-base-

stock replenishment policy to satisfy customer orders that arrive a fixed demand lead-time in 

advance of their due-dates. An order-base-stock policy works like a conventional base-stock 

or one-for-one replenishment policy except that replenishment orders are triggered by 

customer orders instead of actual demands. Its advantage is that it requires minimal 

information and is very simple to implement. Moreover, under some conditions it has been 

shown to be effective or even optimal, as is explained in Section 2. 

A critical assumption in our model is that the supplier’s replenishment orders arrive in the 

order that they are placed. We show that under this assumption, the tradeoff between the 

optimal order-base-stock level and the demand lead-time is “exhaustive,” in the sense that the 

optimal order-base-stock level drops all the way to zero if the demand lead-time is sufficiently 

long. We then provide a sufficient condition under which this tradeoff is linear. We show that 

this condition is satisfied for the case where the supply process is modeled as an M/M/1 

queue, thus verifying the results of Buzacott and Shanthikumar (1993, 1994), who first 

studied this case. 

We also show that the tradeoff between the optimal order-base-stock level and the demand 

lead-time is linear for the case where the supply process is modeled as an M/D/1 queue. More 

specifically, for this system, we prove that if the demand lead-time increases by an amount 

equal to the supplier’s constant processing time, then the optimal order-base-stock level 

decreases by one unit. 

Finally, we derive a non-closed-form expression for the tradeoff between the optimal 

order-base-stock level and the demand lead-time for the case where the supply process is 

modeled as an M/D/∞ queue, which was first analyzed in detail by Hariharan and Zipkin 

(1995). We then show by a numerical example that for this system, the tradeoff may 

sometimes be concave (i.e. the higher the demand lead-time, the sharper the decrease in the 



 3 

optimal order-base-stock level), depending on the ratio of the inventory holding cost rate over 

the backorder cost rate. 

The rest of this paper is organized as follows. In Section 2, we review some of the 

literature on ADI, particularly that which is most closely related to our work. In Section 3, we 

describe and analyze the general model of the supplier, and in Section 4, we apply and extend 

some of the results of this analysis to the special cases where the supplier is modeled as an 

M/D/1, M/M/1, and M/D/∞ queuing system, respectively. In Section 5, we illustrate these 

results with a numerical example, and in Section 6, we conclude. 

2 Literature Review 
The literature on ADI is in its early stages but is growing fast. One way of classifying it is 

based to whether the supply process is modeled as an uncapacitated inventory system or a 

capacitated production/inventory system. 

Most of the literature on ADI concerns uncapacitated inventory systems. One of the 

earliest and most influential works for systems with exogenous replenishment times is the 

work of Hariharan and Zipkin (1995). They study a model of a supplier who uses a 

continuous-review order-base-stock replenishment policy to meet customer orders that arrive 

according to a Poisson process. Each customer order is for a single item to be delivered a 

fixed demand lead-time following the order. They consider three cases for modeling the 

demand and replenishment (i.e. supply) lead-times. For each case, they construct an 

equivalent conventional model, i.e. one with no demand lead-times, in which the 

replenishment lead-times are offset by the demand lead-times. This shows that the effect of a 

demand lead-time on overall system performance is the same as a corresponding reduction in 

the replenishment lead-time. 

Gallego and Özer (2001) consider a single-stage periodic-review inventory system with 

exogenous replenishments and variable but finite demand lead-times. They show that for the 

zero set-up cost case, an order-base-stock policy is optimal if the replenishment time is 

greater than the maximum demand lead-time. Gallego and Özer (2003) and Özer (2003) 

extend this analysis to multi-echelon and distribution systems, respectively, and Wang and 

Toktay (2006) extend it to systems with flexible delivery. Finally, Özer and Wei (2004) prove 

the optimality of a state-dependent modified order-base-stock policy for an extension of the 

single-stage system in which the capacity is limited. 
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Other works that show the benefits of ADI on systems with exogenous replenishment 

times are Bourland et al. (1996), Güllü (1997), Decroix and Mookerjee (1997), Chen (2001), 

van Donselaar et al. (2001), Lu et al. (2003), Marklund (2006), and Tan et al. (2007). 

There has been also a stream of related literature on forecast updating that was inspired by 

the dynamic forecast models of Graves et al. (1986) and Heath and Jackson (1994). Examples 

of such work are Güllü (1996), Toktay and Wein (2001), and Hu et al. (2003).  

For queue-type capacitated production/inventory systems, Buzacott and Shanthikumar 

(1993, 1994) present a detailed model of a single-stage make-to-stock manufacturer who uses 

a continuous-review order-base-stock replenishment policy to meet customer demands that 

arrive a fixed demand lead-time in advance of their due-dates. They analyze in detail the case 

where demands arrive according to a Poisson process and the manufacturing system consists 

of a single server with exponentially distributed processing time and FCFS service protocol; 

hence, the flow through the manufacturing system is identical to that through an M/M/1 

queue. For this system, they show that the optimal demand lead-time and associated cost is a 

linearly decreasing function of the order-base-stock level. 

For the discrete-time version of the M/M/1 make-to-stock manufacturing system analyzed 

in Buzacott and Shanthikumar (1993, 1994), Karaesmen et al. (2002) evaluate analytically the 

performance of the optimal order-base-stock policy. They then compare it to the performance 

of the overall optimal replenishment policy, which they evaluate numerically using dynamic 

programming. Their numerical results show that the optimal order-base-stock policy is quite 

effective. 

Karaesmen et al. (2003) complement the work of Buzacott and Shanthikumar (1993, 

1994) with some results on the influence of production lead-time variability on the tradeoff 

between the order-base-stock level and the demand lead-time. Along the way, they propose an 

approximation scheme for a generalization of the model studied by Buzacott and 

Shanthikumar (1993, 1994) in which the flow through the manufacturing system is identical 

to that through an M/G/1 queue. 

Karaesmen at al. (2004) assess the value of ADI for the model considered by Buzacott and 

Shanthikumar (1993, 1994) by assuming that the manufacturer pays a fixed or a demand lead-

time-dependent price for obtaining ADI. They then evaluate the effects of processing capacity 

on the value of ADI. They repeat this assessment for a variation of the model in which 

customers accept deliveries earlier than their required due-dates. For this variation, they show 

that the effect of a demand lead-time on overall system performance is the same as a 
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reduction in the backorder cost in an equivalent conventional system, i.e. one with no demand 

lead-times. 

Liberopoulos et al. (2003) propose an order-base-stock-type policy for a model of a make-

to-stock supplier with two classes of customers: those who provide unreliable ADI in the form 

of cancelable reservations, and those who provide no ADI at all. They optimize this policy via 

simulation. 

Gayon et al. (2006) and Benjaafar et al. (2006) use Markov decision process analysis to 

characterize the structure of the optimal policy of a single-stage capacitated supply system 

with imperfect ADI, where customers either make cancelable reservations, as in the system 

introduced by Liberopoulos et al. (2003), or provide changeable due-dates, respectively. 

Liberopoulos et al. (2005) investigate via simulation the tradeoff between the optimal 

order-base-stock levels and kanbans (WIP-control limits) and the demand lead-time, in order-

base-stock policies with/without WIP-limits, for a single- and a two-stage make-to-stock 

capacitated manufacturing system with ADI. 

Wijngaard (2004) considers a single-stage make-to-stock manufacturing system that either 

produces at a constant production rate R or not all. The goal is to meet customer orders with 

minimum average inventory and stockout costs; both cases of lost sales and order 

backlogging are considered. Customer orders arrive according to a Poisson process a fixed 

demand lead-time h in advance of their due-dates. The flow through the manufacturing 

system is therefore equivalent to that through an M/D/1 queue, except that production is 

continuous. The main result is that for high utilization rate ρ and small demand lead-times the 

finished-goods inventory reduction due to the foreknowledge of ADI is equal to (1 – ρ) h R. 

 Finally, Wijngaard and Karaesmen (2006) show that for the make-to-stock M/D/1-type 

queue considered in Wijngaard (2004), if the demand lead-time is smaller than a certain 

threshold value, then an order-base-stock policy is optimal. For unit production rate, this 

threshold value is equal to the optimal base-stock level for the case without ADI. 

3 Model Description and Analysis 
We consider a model of a make-to-stock supplier who sells a single type of items. Customer 

orders arrive for one item at a time according to a stationary stochastic process with mean 

arrival rate λ. Each customer order arrives a fixed demand lead-time, T, in advance of its 

requested due-date. Once a customer order arrives, it cannot be cancelled. If no items are 

available at the requested due-date, the customer’s request is backordered. Customers do not 
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accept early deliveries to avoid incurring inventory holding costs. There is no setup cost or 

setup time for placing a replenishment order and no limit on the number of orders that can be 

placed per unit time. 

The supplier uses an order-base-stock replenishment policy to meet the demand. 

According to this policy, he places a replenishment order every time a customer order arrives. 

This way, he keeps his inventory position (number of in-process replenishment orders plus 

finished-goods inventory minus backorders) minus the in-process customer orders, i.e. the 

customers orders whose due-dates have not yet expired, equal to a specified fixed order-base-

stock level, S. 

The model described above is similar to that considered in Karaesmen at al. (2003, 2004). 

It is simple but it captures the basic operation of a make-to-stock supplier with constant 

reliable ADI, except for lot sizing and multiple-product issues, which we purposely keep out 

of the picture for simplicity, so as to focus our attention on ADI-related issues. A schematic 

representation of the model is shown in Figure 1, where the circles represent delays. 

 

 

Items to customers 
W 
T 

Finished-goods inventory 

Customer backorders 

Customer order arrivals 

λ 

I(t) 

B(t) 

R(t) 

M(t) 

In-process replenishment orders 

In-process customer orders  
Figure 1: Model of a make-to-stock supplier operating under an order-base-stock policy to 

respond to customer orders with a fixed demand lead-time. 

 

In Figure 1 and in the rest of the paper, we use the following notation:  

I(t) = number of items in finished-goods inventory at time t, 

B(t) = number of customer backorders at time t, 

R(t) = number of in-process replenishment orders at time t, 

M(t) = number of in-process customer orders at time t, 

X(t) = I(t) – B(t) = finished-goods surplus/backlog at time t, 

Z(t) = R(t) – M(t) = in-process replenishment orders surplus/backlog at time t, 

By definition of the order-base-stock policy, it is easy to see that the above quantities 

satisfy the invariant 



 7 

 Z(t) + X(t) = R(t) – M(t) + I(t) – B(t) = S. (1) 

In what follows, we will use PY(⋅) and FY(⋅) to denote the stationary probability 

distribution function and cumulative distribution function of a random variable Y(t), and 

( )YF ⋅ to denote its complementary cumulative distribution function, i.e. ( ) 1 ( )Y YF y F y= − . 

Let h and b denote the unit costs per unit time of holding finished-goods inventory and 

customer backorders, respectively. We consider a standard optimization problem whose 

objective is to find the order-base-stock level S that minimizes the long-run expected average 

cost of holding finished-goods inventory and customer backorders, as a function of T. The 

long-run expected average cost function is identical to that of the newsvendor problem; 

therefore, for a given value of T, the optimal order-base-stock level, S*(T), can be found – as 

in the newsvendor problem – from the first order optimality condition. This condition implies 

that 

 { }*

: int
( ) arg min ( ) ( )ZS S

S T F S b h b= ≥ + . (2) 

Note that if an integer S satisfies the condition in (2) with equality, i.e. if FZ(S) = b/(h + b), 

then both S and S + 1 are optimal order-base-stock levels when the demand lead-time is T. 

If T = 0, there is no delay between the arrival of a customer order and the request for the 

delivery of an item from finished-goods inventory. In this case, M(t) = 0, and hence Z(t) = 

R(t). Then, from (2), the optimal order-base-stock level, S*(0), which in this case is simply 

equal to the optimal base-stock level in the standard newsvendor model, i.e. without ADI, is 

given in terms of FR(⋅) by the familiar expression 

 { }*

: int
(0) arg min ( ) ( )RS S

S F S b h b= ≥ + . (3) 

If T > 0, then M(t) ≠ 0 and hence Z(t) ≠ R(t). In this case, in order to compute S*(T) from 

(2) we need to know PZ(⋅). Proposition 1, which follows, gives an expression of PZ(⋅) in terms 

of PR(⋅). 

 

Proposition 1. The stationary probability distribution function of Z(t) is given by 

 

0
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where ( )k
TG

P i  is the stationary conditional probability of having i replenishment completions 

in a time interval of length T, given that at the beginning of this time interval there are k in-

process replenishment orders in the system. 

 

The proof of Proposition 1 is based on the same arguments that Buzacott and Shantikumar 

(1993) use for the special case where the supplier is modeled as an M/M/1 queue. 

Obtaining ( )k
TG

P ⋅  and consequently PZ(⋅) is not trivial; therefore, computing S*(T) from (2) 

is not an easy task. Intuition suggests that as T increases starting from zero, S*(T) should 

decrease. The question that we address in this paper is how exactly does it decrease?  

To try to answer this question, let us switch the space of our analysis from inventories to 

time. Consider the moment of a customer order arrival. As a convention, define this arrival as 

the initial or zeroth arrival and set its time equal to zero. Let H1 denote the time that elapses 

between this, i.e. the initial, and the next, i.e. the first, customer order arrival. Moreover, for n 

= 2, 3,…, let Hn denote the time that elapses between the (n – 1)th and the nth arrival 

thereafter. Suppose that the times Hn, n = 1, 2,…, are i.i.d. random variables with known 

cumulative distribution function, FH(⋅), and mean, E[H] = 1/λ, where λ is the mean arrival 

rate. 

For n = 0, 1,…, let An denote the time of the nth customer order arrival. From the above 

definitions, it is easy to see that 

 A0 = 0 and 1
1

n

n n n i
i

A A H H−
=

= + =∑ ,   n = 1, 2,…, (5) 

From (5) it is also easy to see that An > An–1, n = 1, 2,…  

As was mentioned above, the use of an order-base-stock policy by the supplier means that 

as soon as a customer order arrives, the supplier places a replenishment order. Let Wn denote 

the replenishment time of the nth order. Suppose that the times Wn, n = 0, 1,…, are identically 

distributed random variables with known cumulative distribution function FW(⋅) and mean 

E[W] = L. 

Let En denote the difference between the replenishment time triggered by the initial order, 

W0, and the arrival time of the nth customer order, An, i.e. 

 En = W0 – An,   n = 0, 1,… (6) 

From (5) and (6), it is easy to see that 

 E0 = W0 and 0
1

n

n i
i

E W H
=

= −∑ ,   n = 1, 2,…, (7) 
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 En = En–1 – Hn,   n = 1, 2,… (8) 

Expression (7) implies that the cumulative distribution function of En, ( )
nEF ⋅ , depends on 

FW(⋅) and, if n > 0, on FH(⋅) as well. From (8), it is easy to see that En is stochastically larger 

than En – 1, i.e. 

 
1

( ) ( )
n nE EF T F T

−
> ,   n = 1, 2,… and T ≥ 0. (9) 

Moreover, by definition of a cumulative distribution function, 

 ( ) ( )
n nE EF T T F T+ ∆ > ,   n = 0, 1,…, T ≥ 0, and ΔT > 0. (10) 

In what follows, we will suppose that the following assumption holds. 

 

Assumption 1. All replenishment orders enter the supply system one at the time, remain in 

the system until they are fulfilled (there is no blocking, balking or reneging), leave one at a 

time in the order of arrival (FIFO) and do not affect the flow time of previous replenishment 

orders (lack of anticipation). 

 

Assumption 1 implies that the replenishment order that is triggered by the nth customer 

order arrival at time An will satisfy the (n + S)th customer order. Assumption 1 leads to the 

following proposition. 

  

Proposition 2. Under Assumption 1, the optimal order-base-stock level for a given demand 

lead-time T, S*(T), is given by 

 { }1

*

: int
( ) arg min ( ) ( )

SES S
S T F T b h b

+
= ≥ + . (11) 

 

The proof of Proposition 2 is based on the same arguments that Karaesmen at al. (2004) 

use to prove their Proposition 1. That proposition, which is slightly more restrictive than 

Proposition 2, states that when the supplier operates in a make-to-order mode, i.e. with a zero 

order-base-stock level, then the optimal demand lead-time is given by 

 { }*

0
arg min ( ) ( ) .WS T

T F T b h b
=
= ≥ +  (12) 

The above expression is in fact identical to expression (14) of Corollary 2 which follows. 

Note that S*(T), which is generally given in terms of the stationary distribution of R(t) by 

(2), is alternatively also given in terms of the distribution of Es by (11) if Assumption 1 holds. 

Also, note that, as in the case of expression (2), if an integer S satisfies the condition in (11) 
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with equality, i.e. if 
1
( ) ( )

SEF T b h b
+

= + , then both S and S + 1 are optimal order-base-stock 

levels when the demand lead-time is T. 

Proposition 2 leads to the following theorem. 

 

Theorem 1. Under Assumption 1, the optimal order-base-stock level S*(T) is piecewise 

constant and decreasing in the demand lead-time T. More specifically, there exist break 

points T0, T1,…, TN+1, where T0 = 0, such that if Tn ≤ T < Tn+1, then S*(T) = N – n, n = 0,…, 

N, where N is the optimal order-base-stock level when T = T0 = 0, i.e., when there is no ADI. 

This means that for each break point nT , n = 1,…, N + 1, the following holds: 

( ) ( )
N n qE nF T b h b
− +

> + ,   2, , 1q n= + , 

1
( ) ( )

N nE nF T b h b
− +

≥ + , 

( ) ( )
N n rE nF T b h b
− −

< + ,   0, ,r N n= − . 

If ( )
N nEF
−
⋅  is continuous, then the second inequality above is replaced by the equality 

1
( ) ( )

N nE nF T b h b
− +

= + . 

In this case, N – n and N – n + 1 are both optimal order-base-stock levels at T = Tn. 

For the first point, T0, which is equal to zero, the following holds: 

1 0( ) ( )
NEF T b h b
+

≥ + , 

0( ) ( )
N rEF T b h b
−

< + ,   0, ,r N=  . 

Finally, for values of T such that Tn < T < Tn+1, n = 0,…, N, the following holds: 

( ) ( )
N n qEF T b h b
− +

> + ,   1, , 1q n= + , 

( ) ( )
N n rEF T b h b
− −

< + ,   0, ,r N n= − . 

 

The proof of Theorem 1 is in the Appendix. 

To better understand Theorem 1, we plotted the optimal order-base-stock level and the 

cumulative distribution function of En, n = 0,…, N + 1, versus the demand lead-time in Figure 

2. We assumed that the functions ( )
N nEF
−
⋅  are continuous; therefore, according to Theorem 1, 

1
( ) ( )

N nE nF T b h b
− +

= + , n = 1,…, N + 1 . 

Theorem 1 states that if we increase the demand lead-time from one break point to the 

next, say from Tn to Tn+1, the optimal order-base-stock level drops by one unit, namely it 

drops from N – n to N – n – 1. In other words, there is a tradeoff between the demand lead-
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time and the corresponding optimal order-base-stock level. This behavior is not surprising and 

has been noted in most of the related literature reviewed in Section 2. It stems from the fact 

that the larger the demand lead-time, the more additional time the supplier has to replenish his 

finished-goods inventory, and therefore the less finished-goods inventory he needs to hold. 
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Figure 2. Optimal order-base-stock level versus demand lead-time, and cumulative 

distribution function of En, n = 0,…, N + 1, versus demand lead-time. 

 

The new insight that Theorem 1 brings to light is that under Assumption 1, this tradeoff is 

exhaustive, in the sense that the optimal order-base-stock level drops all the way to zero when 

the demand lead-time is sufficiently long. This means that the supplier can operate in all 
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modes between pure make-to-stock and pure make-to-order, depending on the available 

amount of ADI. 

More specifically, if the demand lead-time is zero, the supplier should operate in a pure 

make-to-stock mode with order-base-stock level S*(0) = N. Ιf the lead-time is equal to TN, on 

the other hand, then the optimal order-base-stock level drops to zero, i.e. S*(TN) = 0, which 

means that the supplier should operate in a pure make-to-order mode, i.e. without keeping any 

finished-goods inventory. In all other intermediate cases, the supplier should operate in a 

mixed make-to-stock and make-to-order mode. Moreover, as the demand lead-time increases 

beyond TN, the optimal order-base-stock level remains constant at zero, which means that the 

supplier should keep operating in a make-to-order mode. 

It can be shown that as the demand lead-time T increases from 0 to TN+1, the optimal long-

run expected average cost of the supplier decreases as a result of the reduction in finished-

goods holding costs. The minimum optimal long-run expected average cost is attained when T 

= TN+1. For this reason, we refer to TN+1 as the optimal demand lead-time. Note that TN+1 is 

greater than TN, which is the smallest demand lead-time for which the optimal order-base-

stock level is zero. As T increases beyond TN+1, however, the optimal long-run expected 

average cost increases, because the supplier replenishes his inventory too early with respect to 

his customer’s due dates. To remedy this, the supplier could use a modified order-base-stock 

replenishment policy in which the placement of each replenishment order is offset by TN+1 

from the due-date of the customer order that triggered it, as is done in an MRP system with 

planned supply lead-time TN+1. It is easy to see that when T > TN+1, the dynamic evolution of 

the supplier’s finished-goods inventory/surplus under the modified order-base-stock 

replenishment policy is identical to that under the original order-base-stock policy when T = 

TN+1. Hence, the long-run expected average cost under the modified order-base-stock 

replenishment policy when T > TN+1, is equal to the minimum optimal long-run expected 

average cost under the standard order-base-stock policy, which is attained when T = TN+1. The 

modified order-base-stock replenishment policy is discussed in Karaesmen et al. (2002). 

The optimal order-base-stock level when the demand lead-time is zero, S*(0) = N, and the 

optimal demand lead-time TN+1, i.e., the two extreme points of the tradeoff curve between the 

demand lead-time and the optimal order-base-stock level shown in Figure 2, satisfy certain 

conditions which are given by the following two corollaries of Proposition 2, respectively. 

 

Corollary 1. Under Assumption 1, the optimal order-base-stock level when the demand lead-

time is zero, N, is given by 
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 { }1

*
0 1: int

(0) arg min (0) { } ( ) .
SE SS S

N S F P W A b h b
+ += = = ≤ ≥ +  (13) 

Corollary 2. Under Assumption 1, the optimal demand lead-time, TN+1, is given by 

 { }01 0arg min ( ) { } ( ) ( ) .N E WT
T F T P W T F T b h b+ = = ≤ = ≥ +  (14) 

 

Note the resemblance between expressions (3) and (14). Expression (3) gives a condition 

for S*(0), i.e. N, expressed in terms of the stationary cumulative distribution of the number of 

in-process replenishment orders, R. Expression (14) gives the same condition for TN+1 

expressed in terms of the stationary cumulative distribution of the flow time of in-process 

replenishment orders, W. Also note that expression (14) is identical to (12). 

Corollaries 1 and 2 concern the end points of the tradeoff curve between the demand lead-

time and the optimal order-base-stock level, shown on the top graph of Figure 2. A question 

that naturally arises next is what is the shape of this curve? To put this in more specific terms, 

let ΔTn denote the difference between two successive break points Tn and Tn+1, i.e. 

 ΔTn = Tn+1 – Tn, n = 0,…, N. (15) 

The question then is what the behavior of ΔTn versus n? 

The managerial interest in this question stems from the fact that if, for example, ΔTn 

turned out to be increasing in n, this would mean that the greater the demand lead-time is, the 

more additional demand lead-time the supplier would need in order to lower his optimal 

order-base-stock level by one unit. In this case, the supplier would have diminishing 

inventory savings as the demand lead-time increases. 

The following corollary gives a necessary and sufficient condition that ΔTn must satisfy. 

 

Corollary 3. Under Assumption 1 and assuming that the functions ( )
N nEF
−
⋅ , n = 0,…, N, are 

continuous, the difference between successive break points, ΔTn, satisfies 

 
11( ) ( ) ( ) ( ) ,    1, ,

N n N n N nE n n E n E nF T T F T F T b h b n N
− − − +++ ∆ = = = + =  . (16) 

 

From Corollary 3, it appears that ΔTn generally depends on n. Proposition 3, which 

follows, gives a sufficient condition under which ΔTn is independent of n. 

 

Proposition 3. Under Assumption 1 and assuming that the functions ( )
N nEF
−
⋅ , n = 0,…, N, are 

continuous, if there exists a real number ΔT, ΔT > 0, which satisfies 

 { } { }P W T T P W T H≤ + ∆ = ≤ +  (17) 
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then ΔTn = ΔT, n = 1,…, N. 

The proof of Proposition 3 is in the Appendix. 

Proposition 3 states that if there exists a real positive number ΔT, such that the probability 

that the replenishment time W is less than or equal to T + ΔT is equal to the probability that W 

is less than or equal to T + H, then the difference ΔTn between any two successive break 

points Tn and Tn+1, n = 1,…, N, is equal to ΔT and is therefore independent of n. This means 

that the additional demand lead-time that the supplier needs to have from his customers in 

order to lower his optimal order-base-stock level by one unit is constant and therefore 

independent of n. This further implies that the tradeoff between the order order-base-stock 

level and the demand lead-time is linear, and hence the supplier can achieve constant finished-

goods inventory savings as the customer demand lead-time increases. Moreover, in this case, 

ΔT only depends on the distributions of the replenishment time W and the customer order 

interarrival time H, and not on the cost parameters h and b. 

Proposition 3 leads to the following corollary.  

 

Corollary 4. If there exists a real positive number ΔT that satisfies (17) for any nonnegative 

real number T, then it must also satisfy (17) for T = 0, i.e. it must satisfy 

 { } { }P W T P W H≤ ∆ = ≤ . (18) 

 

Corollary 4 states that if ΔT satisfies (17), which according to Proposition 3 implies that 

ΔTn = ΔT, n = 1,…, N, and hence that the tradeoff between the optimal order-base-stock level 

and the demand lead-time is linear, then ΔT is such that the probability that the replenishment 

time W is less than or equal to ΔT is equal to the probability that W is less than or equal to the 

customer order interarrival time H. 

To evaluate the usefulness of the results developed thus far, in the following section, we 

apply these results to three special cases for which we can obtain analytical results. 

4 Application of Analysis to Special Cases 
In this section, we focus our attention on the cases where the supply process is modeled as an 

M/D/1, M/M/1, and M/D/∞ queue, respectively. For the M/D/1 case, Karaesmen et al. (2003) 

presented some approximation- and simulation-based results. Our results in this section are 

exact. The M/M/1 and M/D/∞ cases were originally studied by Buzacott and Shanthikumar 

(1993, 1994) and Hariharan and Zipkin (1995), respectively, but we also look at them in this 
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section in light of our analysis in the previous section. Note that, although in all cases 

Assumption 1 holds, in the M/D/1 and M/M/1 cases, the supply process is capacitated and 

sequential, whereas in the M/D/∞ case, it is uncapacitated and independent. 

4.1 M/D/1 Supplier 
For the case where the supply process is modeled as an M/D/1 queue, i.e. a queue with 

Poisson arrivals with mean arrival rate λ and a single server with deterministic service time 

equal to l, it is known from Queueing Theory that 

 
11

1

1 1

(0) 1 ,
(1) (1 )( 1),

( ) ( )( ) (1 ) ( 1) ( 1) ,    2,
( )! ( 1)!

R

R

n k n kn n
k n k k n k

R
k k

P
P e

k kP n e e n
n k n k

ρ

ρ ρ

ρ
ρ

ρ ρρ
− − −−

− − −

= =

= −
= − −

 
= − − − − ≥ − − − 

∑ ∑

 (19) 

where ρ = λl (e.g., see Gross and Harris, 1998); therefore, S*(0) can be evaluated numerically 

from (3) as 

 *

: int 0
(0) arg min ( ) ( )

S

RS S n
S P n b h b

=

 = ≥ + 
 
∑ , (20) 

where PR(n) is given by (19). 

In addition, the stationary probability function of Z(t) is given by Proposition 4 that 

follows, where a = T/l and a denotes the smallest integer that is greater than or equal to a. 

 

Proposition 4. If the supply process is modeled as an M/D/1 queue, then the stationary 

probability function of Z(t) for nonnegative values of Z(t) is given by 

 ( ) ( )( ) ( 1) 1 ( ),    0Z R RP n a a P n a a a P n a n= − + − + + − + >               . (21) 

 

The proof of Proposition 4 is in the Appendix. 

Based on Proposition 4, the optimal order-base-stock level S*(T) and the break points Tn, n 

= 1,…, N, can be evaluated from the following proposition. 

   

Proposition 5. If the supply process is modeled as an M/D/1 queue, then the optimal order-

base-stock level S*(T) is given by 

 ( ){ }*

: int
( ) arg min ( ) 1 ( ) ( )R RS S

S T a a P S a F S a h h b= − + + − + ≤ +           . (22) 

In addition, break point Tn, n = 1,…, N + 1, satisfies 

 ( )/ / ( / ) 1 ( / ) ( )n n R n R nT l T l P N n T l F N n T l h h b− − + + − − + = +           . (23) 
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The proof of Proposition 5 is in the Appendix. 

Note that TN+1 can be obtained from (23) for n = N + 1, as follows 

 ( )1 1 1 1/ / ( / 1) 1 ( / 1) ( ).N N R N R NT l T l P T l F T l h h b+ + + +− − + − − = +             (24) 

Finally, Proposition 5 leads to the following proposition regarding the difference between 

any two successive break points. 

 

Proposition 6. If the supply process is modeled as an M/D/1 queue, then the difference ΔTn 

between any two successive break points Tn and Tn+1, n = 1,…, N, is independent of n and is 

equal to the deterministic service time l, i.e. 

 ,    1, , .nT T l n N∆ = ∆ = =   (25) 

 

The proof of Proposition 6 is in the Appendix. 

Proposition 6 is surprisingly simple and very intuitive once it is stated. It says that if all 

customers provide the supplier with an additional demand lead-time which is equal to the 

deterministic service time, then the supplier can lower his optimal order-base-stock level by 

one unit. Intuitively, the reason he can do this is that during this additional customer demand 

lead-time he can produce exactly one unit. This result is also shown in Karaesmen et al. 

(2003), but there it is based on an approximation of the M/G/1 queue, whereas here it is based 

on exact analysis. 

Moreover, Proposition 6 states that the difference between two successive break points 

only depends on – in fact, is equal to – the service time l and does not depend on the customer 

order arrival rate λ, and hence the load, ρ. The above observations suggest that Proposition 6 

might possibly also hold for the more general case where the supplier is modeled as a G/D/1 

queue. 

A candidate alternative way to show that ΔTn is constant and equal to l, for n = 1,…, N, 

might have been to invoke Proposition 3. However, if we look more carefully at the “fine 

print” of Proposition 3, we will note that this is not possible, because Proposition 3 only holds 

for cases where the functions ( )
N nEF
−
⋅ , n = 0,…, N, are continuous, whereas in the case of the 

M/D/1 queue, the distribution of E0, which is equal to W, has a probability mass of 1 – ρ at W 

= l and hence is not continuous. In fact, Proposition 7 that follows states that for the case 

where the supplier is modeled as an M/D/1 queue, equality (18) of Corollary 4 does not hold, 

implying that equality (17) of Proposition 3 does not hold either. 
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Proposition 7. If the supply process is modeled as an M/D/1 queue, then 

 { } { }P W T P W H≤ ∆ ≠ ≤ . (26) 

 

The proof of Proposition 7 is in the Appendix. 

4.2 M/M/1 Supplier 
For the case where the supply process is modeled as an M/M/1 queue, i.e. a queue with 

Poisson arrivals with mean arrival rate λ and a single exponential server with mean service 

rate μ, it is well-known from elementary Queueing Theory that PR(n) = (1 – ρ)ρn and hence 

FR(n) = 1 – ρn+1, n = 0, 1,…. It is also known that (1 )( ) 1 t
WF t e µ ρ− −= − , t ≥ 0, where ρ is the 

system load and is given by ρ = λ/μ (e.g., see Gross and Harris, 1998); therefore, S*(0) can be 

evaluated from (3) as 

 
{ } ( ){ }

( )( )

* 1

: int : int
(0) arg min ( ) arg min ( 1) ln ln ( )

ln ( ) ln 1 .

S

S S S S
S h h b S h h b

h h b

ρ ρ

ρ

+= ≤ + = + ≤ +

 = + − 
 (27) 

Alternatively, S*(0) can be evaluated from (13) as 

 

( )

( ) { }

( )( )

1

* (1 )

: int : int
0 0

1 1

: int : int
0

( )(0) arg min ( ) ( ) ( ) arg min 1 ( )
!

( )arg min 1 ( ) arg min 1 ( )
!

ln ( ) ln 1 ,

S

t S
t

W AS S S S

t S
S S

S S S S

e tS F t f t dt b h b e dt b h b
S

e t dt b h b b h b
S

h h b

λ
µ ρ

µ

λ λ

µ µλ µ ρ

ρ

+

∞ ∞ −
− −

∞ −
+ +

   
= ≥ + = − ≥ +   

   
 

= − ≥ + = − ≥ + 
 

 = + − 

∫ ∫

∫

 

where we used the fact that AS+1 is Erlang distributed with shape parameter S + 1 and scale 

parameter λ, and the last equality of the above expression follows directly from (27). 

From (4), Buzacott and Shanthikumar (1993, 1994) show that the stationary probability 

distribution function of Z(t) for positive values of Z(t) is given by 

 ( )(1 )( ) ( ) 1 ( ) ( ),    0T
Z R W RP n e P n F T P n nµ ρ− −= = − > . (28) 

The above expression implies that 

 (1 )( ) ( ),    0T
Z RF n e F n nµ ρ− −= > . (29) 

With this in mind, S*(T) can be evaluated from (2) as 
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( ){ } { }
( )( ) ( ){ }

( )( ) ( )

* (1 ) 1 (1 )

: int : int

: int

( ) arg min 1 ( ) ( ) arg min ( )

arg min ( 1) ln ( ) ln (1 ) ln

ln ( ) ln (1 ) ln 1 .

T S T
RS S S S

S S

S T e F S b h b h h b e

S h h b T

h h b T

µ ρ µ ρρ

ρ µ ρ ρ

ρ µ ρ ρ

− − + −= − ≥ + = ≤ +

= + ≥ + + −

 = + + − − 

 (30) 

In addition, TN+1 can be evaluated from (14) as 

 
{ } ( ){ }

( )

(1 )
1 arg min 1 ( ) arg min (1 ) ln ( )

ln ( ) (1 ).

T
N T T

T e b h b T h h b

h h b

µ ρ µ ρ

µ ρ

− −
+ = − ≥ + = − − ≤ +

= − + −
 (31) 

Finally, the difference between any two successive break points is given by the following 

proposition. 

 

Proposition 8. If the supply process is modeled as an M/M/1 queue, then the difference ΔTn 

between any two successive break points Tn and Tn+1, n = 1,…, N, is independent of n and is 

constant, i.e., ΔTn = ΔT, where 

 ( )ln / (1 ) .T ρ µ ρ∆ = − −  (32) 

 

A proof of Proposition 8, based on Proposition 3, can be found in the Appendix. 

Alternatively, Proposition 8 can be shown by observing from (30) that S*(T) is piece-wise 

constant with break point spaced ( )ln / (1 )ρ µ ρ− −  time units apart. 

Proposition 8 states that if the supply process is modeled as an M/M/1 queue, the 

difference between two successive break points, ΔTn, is independent of n and is in fact 

constant. This means that the supplier has constant inventory savings as the demand lead-time 

increases. This constant is equal to the mean replenishment time L, which is equal to 1/(μ(1 – 

ρ)), multiplied by – ln(ρ). In other words, the difference between two successive break points 

depends on both the mean service rate μ as well as the load ρ, but does not depend on the cost 

coefficients h and b. 

4.3 M/D/∞ Supplier 
For the case where the supply process is modeled as an M/D/∞ queue, i.e. a queue with 

Poisson arrivals with mean arrival rate λ, and independent, deterministic replenishment times 

equal to L, i.e. W = L, it is well known from elementary Queueing Theory that the stationary 

distribution or R(t) is Poisson with mean ρ = λL, i.e., PR(n) = e–ρρn/n!, n = 0, 1, … It is also 

easy to see that FW(t) = 0 or 1, if t < L or t ≥ L, respectively. 

With this in mind, S*(0) can be evaluated numerically from (3) as 
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 *

: int 0
(0) arg min ! ( )

S
n

S S n
S e n b h bρ ρ−

=

 = ≥ + 
 

∑ . (33) 

Moreover, it is easy to see that any system with independent, deterministic replenishment 

times L and customer demand lead-times T, such that T ≤ L, is equivalent to a system with 

independent, deterministic replenishment times L – T and zero customer demand lead-times, 

as was first noted in Hariharan and Zipkin (1995). In other words, increasing T by an amount 

has exactly the same effect as decreasing L by the same amount. This implies that 

 ( ) !n
ZP n e nρ ρ′− ′= , n = 0, 1, …,  

where ρ′ = λ(L – T). 

With this in mind, S*(T) can be evaluated numerically from (3) as 

 *

: int 0
( ) arg min ! ( )

S
n

S S n
S T e n b h bρ ρ′−

=

 ′= ≥ + 
 

∑ . (34) 

Alternatively, S*(T) can be evaluated from (11) as 

 { } { }1

*
1: int : int

( ) arg min { } ( ) arg min 1 ( ) ( ) ,
SS AS S S S

S T P W A T b h b F L T b h b
++= − ≤ ≥ + = − − ≥ +  

which would lead to exactly the same expression as (34), once we note that An is Erlang 

distributed with shape parameter n and scale parameter λ; hence, its cumulative distribution 

function is given by (e.g. see Buzacott and Shanthikumar 1993) 

 
1

0
( ) 1 ( ) !   0

n

n
t i

A
i

F t e t i tλ λ
−

−

=

= − >∑ . (35) 

In addition, TN+1 can be easily obtained from (14) as 

 1NT L+ = , (36) 

after noting that FW(T) = 1, if T ≥ L, and 0, if T < L. 

The managerial implication of expression (36) is simple. If all customers provide the 

supplier with a demand lead-time T which is equal to the deterministic replenishment time L, 

then the supplier does not need to keep any finished-goods inventory at all, because he can 

produce all the items requested during the demand lead-time. This means that he never has 

any backorders either; therefore his long-run expected average cost is zero. This is the ideal 

situation for the supplier. 

Moreover, TN can be determined from equation (34) as follows 

 
{ } { } ( ){ }
( )

* ( )arg min ( ) 0 arg ( ) arg ( ) ln ( )

ln ( )
.

L T
N T T T

T S T e b h b L T b h b

b h b
L

λ λ

λ

− −= = = = + = − − = +

− +
= −

 (37) 
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Expression (37) states that the optimal order-base-stock level of the supplier is zero even 

if T falls short of L by ln(b/(h + b))/λ time units. 

Although increasing T by an amount has exactly the same effect as decreasing L by the 

same amount, which makes ρ′ a linear function of T, the tradeoff between the demand lead-

time and the order-base-stock level is not linear, as was the case with the M/D/1 and M/M/1 

systems. This is because the difference between any two successive break points is not 

constant, as the following proposition states. 

 

Proposition 9. If the supply process is modeled as an M/D/∞ queue, then the difference ΔTn 

between any two successive break points Tn and Tn+1, n = 1,…, N, is given by 

 
1

1 1( ( )) ( ( ))
N n N nn A AT F h h b F h h b
− + −

− −∆ = + − + , (38) 

where 
0

1( ) 0AF − ⋅ = , and 1( )
nAF u− , n = 1,…, N, is defined to equal that value of t for which 

( )
nAF t u= , where ( )

nAF t  is given by (35). 

 

The proof of Proposition 9 is in the Appendix. 

Proposition 9 implies that if the supply process is modeled as an M/D/∞ queue, ΔTn 

depends on n, λ, h, and b, but does not depend on the deterministic replenishment time L. 

Since expression (38) is not in closed form, however, it is difficult to characterize the shape of 

this dependence. We will elaborate more on this issue in Section 5, where we will solve a 

numerical example. 

5 Numerical Example 
In this section, we illustrate the results derived for the three cases in the previous section with 

a numerical example. 

First, consider the case where the supplier is modeled as an M/M/1 queue with mean 

arrival rate λ = 0.8 and mean service rate μ = 1.0; hence the system load is ρ = 0.8/1.0 = 0.8 

and the mean replenishment time is equal to L = 1/(1.0(1 – 0.8)) = 5.0. Suppose that the unit 

costs per unit time of holding finished-goods inventory and customer backorders are h = 1 and 

b = 9, respectively. Then, the optimal order-base-stock level when the demand lead-time is 

zero can be computed from (27) as S*(0) = ln(1/(1 + 9))/ln 0.8 – 1 = 9.3188 = 10. 

Moreover, the optimal demand lead-time can be computed from (31) as TN+1 = – ln(1/(1 + 
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9))/(1.0(1 – 0.8)) = 11.5129. Finally, the difference between any two successive break points 

can be computed from (32) as ΔT = – ln 0.8/(1.0(1 – 0.8)) = 1.1157. 

Next, consider the case where the supplier is modeled as an M/D/1 queue with mean 

arrival rate λ = 0.8 and deterministic service times l. Suppose that l is such that the mean 

replenishment time of the M/D/1 system is equal to that of the M/M/1 system, i.e. L = 5.0, in 

order for the comparison between the two systems to be fair. It is well-known from the 

Pollaczek-Khintchine formula in Queueing Theory that the mean waiting (replenishment) 

time in the M/D/1 queue is given by L = l + ρ2/(2(1 – ρ)λ), where ρ = λl (e.g., see Gross and 

Harris, 1998). Solving this equation for l, with L = 5, yields l = 1.0961, and therefore ρ = 

(0.8)(1.0961) = 0.8769. As is expected, the utilization in the M/D/1 case is much higher than 

in the M/M/1 case. Suppose that h = 1 and b = 9, as in the M/M/1 system. Then, the optimal 

order-base-stock level when the demand lead-time is zero can be computed numerically from 

(20). The result is S*(0) = 9. Moreover, the optimal demand lead-time can be computed 

numerically from (24). The result is ΤΝ+1 = 10.5757. Finally, the difference between any two 

successive break points can be computed from (25) as ΔT = 1.0961. 

Interestingly, the results for the M/M/1 and the M/D/1 cases are not too different. More 

specifically, S*(0) is bigger by just one unit in the M/M/1 case, whereas ΔT differs by less 

than two percent between the two cases. If we change the mean arrival rate from λ = 0.8 to λ = 

0.9, so that the system load in the M/M/1 system is ρ = 0.9/1.0 = 0.9, and the mean 

replenishment time is L = 1/(1.0(1 – 0.9)) = 10.0, and repeat all the calculations, we will find 

that S*(0) = 21, TN+1 = 23.0258, and ΔT = 1.0536, for the M/M/1 case. The corresponding 

results for the M/D/1 case are S*(0) = 21, TN+1 = 21.0608, and ΔT = 1.0496, where l = 1.0496 

and therefore ρ = (0.95)(1.0496) = 0.9446 so that L = 10.0. Again, the results between the two 

cases are quite close. 

Finally, suppose that the supplier is modeled as an M/D/∞ queue with the same mean 

arrival rate as in the M/M/1 system, i.e. λ = 0.8, and deterministic replenishment times that are 

equal to the mean replenishment time in the M/M/1 system, i.e. L = 5.0; therefore ρ = 

(0.8)(5.0) = 4.0. Suppose that h = 1 and b = 9, as in the M/M/1 and M/D/1 systems. Then, the 

optimal order-base-stock level when the demand lead-time is zero can be computed 

numerically from (33). The result is S*(0) = 7. Moreover, the optimal demand lead-time can 

be computed from (36) as TN+1 = L = 5. Finally, the difference between any two successive 

break points can be computed numerically from (38). Once this is done, the break points 

themselves can be easily computed. The results are shown in Table 1. 
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Table 1: Break points and their differences for the M/D/∞ queue example for the case where h 

= 1 and b = 9 

n  [Tn , Tn+1] ΔTn = Tn+1 – Tn S*(T), T ∈ [Tn , Tn+1] 
0 [0.0, 0.1315] 0.1315 7 
1 [0.1315, 1.0601] 0.9286 6 
2 [1.0601, 1.9593] 0.8991 5 
3 [1.9593, 2.8190] 0.8598 4 
4 [2.8190, 3.6224] 0.8034 3 
5 [3.6224, 4.3352] 0.7128 2 
6 [4.3352, 4.8683] 0.5331 1 
7 [4.8683, 5.0] 0.1317 0 

 

From Table 1, we can observe that the difference between successive break points ΔTn, n 

= 1, …, N, is decreasing in n; in other words, the tradeoff between the optimal order-base-

stock level and the demand lead-time is concave. This means that the greater the demand 

lead-time is, the less the additional order lead that is needed in order for the supplier to lower 

his optimal order-base-stock level by one unit. 

This observed behavior was not obvious from the beginning. It implies that the supplier 

has increasing inventory savings as the demand lead-time increases. For example, when the 

demand lead-time is small, say T1 = 0.1315, and the optimal order-base-stock level is 6, if the 

supplier wants to reduce his optimal order-base-stock level, from 6 to 5, he needs to have his 

customers increase their demand lead-time by 0.9286 to T2 = 1.0601. On the other hand, when 

the demand lead-time is large, say T6 = 4.3352, and the optimal order-base-stock level is 1, if 

the supplier wants to reduce his optimal order-base-stock level, from 1 to 0, he needs to have 

his customers increase their demand lead-time by only 0.5331 to T7 = 4.8683. This should be 

good news for the supplier, especially because the cost associated with obtaining ADI is 

certainly increasing – probably with an augmenting rate – in the customer demand lead-time. 

The above observed behavior, however, only holds for low values of h/(h + b). Table 2 

shows the differences between successive break points for several different values of h/(h + 

b). These differences were computed numerically from (38). 

From Table 2, we can see that when h/(h + b) is equal to 0.1, 0.3 or 0.5, the difference 

between successive break points ΔTn, n = 1, …, N, is decreasing in n. When h/(h + b) is equal 

to 0.7 or 0.9, on the other hand, this is no longer true. The reason for this diversity in the 

behavior of ΔTn vs. n is hidden in the shape of ( )
nAF t , given by (35), which is sigmoidal with 

exactly one inflection point at t = (n – 1)/λ. We say “hidden,” because it is very difficult to 
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provide exact analytical conditions under which ΔTn is either decreasing or increasing in n, as 

ΔTn is given by expression (38) which involves the inverse of ( )
N nAF t
−

 and 
1
( )

N nAF t
− +

. 

 

Table 2: Difference between break points for the M/D/∞ queue example for different values 

of h/(h + b) 

 h/(h + b) 
 0.1 0.3 0.5 0.7 0.9 

ΔT0 0.1315 0.4580 0.4099 0.4805 0.1379 
ΔT1 0.9286 1.0874 1.2475 1.4704 1.9839 
ΔT2 0.8991 1.0624 1.2447 1.5441 2.8782 
ΔT3 0.8598 1.0205 1.2315 1.5050  
ΔT4 0.8034 0.9258 0.8664   
ΔT5 0.7128 0.4458    
ΔT6 0.5331     
ΔT7 0.1317     

 

6 Conclusions 
The first important finding in this paper is that if Assumption 1 holds, i.e. if the supplier’s 

replenishment orders arrive in the order that they are placed, then the tradeoff between the 

optimal order-base-stock level and the demand lead-time is exhaustive, in the sense that the 

optimal order-base-stock level drops all the way to zero if the demand lead-time is sufficiently 

long. In most manufacturing systems, replenishment (production) times are more or less 

sequential, so Assumption 1 holds naturally. Assumption 1 should also hold for many pure 

inventory systems, for which replenishment times are not really independent, especially if the 

supplier’s replenishment orders come for a single vendor. An open question that arises 

naturally is what happens if Assumption 1 does not hold? An example where Assumption 1 

does not hold is the case where our supplier is modeled as an M/G/∞ queueing system. Such a 

model might be valid in practice if, for example, the supplier’s replenishment orders came for 

multiple vendors. 

Numerical evidence in Liberopoulos et al. (2003) suggests that if Assumption 1 does not 

hold, i.e. if the supplier’s replenishment orders do not arrive in the order that they are placed, 

then the tradeoff between the optimal order-base-stock level and the demand lead-time is not 

exhaustive. Instead, in that case, as the demand lead-time increases, the optimal order-base-

stock level decreases, as in the case in which Assumption 1 does hold, but only until it 

reaches a certain minimum positive level at a critical demand lead-time value. As the demand 
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lead-time increases beyond this critical value, the optimal order-base-stock level remains 

fixed at the minimum level, while the replenishment orders should be delayed by the demand 

lead-time offset by the critical value. The numerical evidence in Liberopoulos et al. (2003) 

further suggests that this critical value is equal to or close to the average replenishment lead-

time, but there is no proof of this to date. 

Another important finding in this paper is that for the case where the supplier is modeled 

as an M/D/1 queueing system, the tradeoff between the optimal order-base-stock level and the 

demand lead-time is linear, just as in the case where the supplier is modeled as an M/M/1 

queueing system. More specifically, it was shown that for the M/D/1 case, the optimal order-

base-stock level decreases by one unit, if the demand lead-time increases by an amount equal 

to the supplier’s constant processing time. As was mentioned earlier, intuitively, the reason he 

can do this is that during this additional customer demand lead-time he can produce exactly 

one unit. Given that the tradeoff is linear for the M/D/1 and M/M/1 cases, an open question 

that arises naturally is whether this tradeoff remains linear for the general case where the 

supplier is modeled as an M/G/1 queueing system. The approximate analysis of the M/G/1 

case and the numerical experiments in Karaesmen et al. (2003) suggest that it does, but there 

is no proof of this to date. If a proof that the tradeoff is linear for the M/G/1 could be 

constructed, a further question to ask is whether it is also linear for the G/G/1 case or more 

generally for any case where the supply process is strictly sequential. 

Another open question which is related to the linearity of the tradeoff is whether the 

condition of Proposition 3 is not only sufficient but is also necessary. 

The last finding in this paper is that for the case where the supplier is modeled as an 

M/D/∞ queueing system, the tradeoff between the optimal order-base-stock level and the 

demand lead-time is sometimes concave and sometimes not, depending on the cost ratio h/b 

and other problem parameters. An open question that arises naturally is what are the 

conditions under which this tradeoff is concave or non-concave? As was mentioned earlier, 

however, answering this question may prove to be a formidable task, because ΔTn is given 

implicitly by expression (38) which involves the inverse of ( )
nAF ⋅ . 

Appendix 
Proof of Theorem 1.  

Proposition 2 implies that the optimal order-base-stock level for a given demand lead-time T, 

S*(T), satisfies 
* ( ) 1

( ) ( )
S T

EF T b h b
+

≥ +  and 
* ( )

( ) ( )
S T r

EF T b h b
−

< + , r = 0,…, S*(T). Suppose that 
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we increase the demand lead-time from T to T + ΔT, where ΔT > 0. According to (9) and (10), 

the functions 
* ( )

( )
S T r

EF T T
−

+ ∆ , r = 0,…, S*(T), are increasing in ΔT, with 
* ( )

( )
S T r

EF T T
−

+ ∆  > 

* ( ) 1
( )

S T r
EF T T

− −
+ ∆ , r = 0,…, S*(T) – 1. This implies that there a exists a finite value of ΔT, say 

ΔT´, such that 
* ( )

( ) ( )
S T

EF T T b h b′+ ∆ ≥ +  and 
* ( )

( ) ( )
S T r

EF T T b h b
−

′+ ∆ < + , r = 1,…, S*(T). 

From Proposition 2, this means that if the demand lead-time reaches T + ΔT´, the optimal 

order-base-stock level drops from S*(T) to S*(T) – 1, i.e., S*(T + ΔT´) = S*(T) – 1. 

Suppose that we further increase the demand lead-time beyond T + ΔT´. Then, following 

the same argument, there exists another value of ΔT, say ΔT˝, where ΔT˝ > ΔT´, such that 

* ( ) 1
( ) ( )

S T
EF T T b h b

−

′′+ ∆ ≥ +  and 
* ( )

( ) ( )
S T r

EF T T b h b
−

′′+ ∆ < + , r = 2,…, S*(T). Again, from 

Proposition 2, this means if the demand lead-time reaches T + ΔT˝, the optimal order-base-

stock level further drops from S*(T) – 1 to S*(T) – 2, i.e., S*(T + ΔT˝) = S*(T) – 2. 

Applying the above argument repeatedly leads to Theorem 1.  □ 

 

Proof of Proposition 3.  

The cumulative distribution of EN–n at z + ΔT, z ≥ 0, ΔT > 0, is given by 

 0
0

( ) { } ( ) ( ) .
N n N nE N n W AF z T P W A z T F z T x f x dx
− −

∞

−+ ∆ = − ≤ + ∆ = + ∆ +∫  (39) 

Similarly, the cumulative distribution of EN–n+1 at z, z ≥ 0, is given by 

 
1 1

0 0 0

0 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) .

N n N n N n

N n

y

E W A W H A

W H A

F z F z y f y dy F z y f y x f x dx dy

F z x t f t dt f x dx

− + − + −

−

∞ ∞

∞ ∞

 
= + = + −  

 
 

= + + 
 

∫ ∫ ∫

∫ ∫
 (40) 

Now, suppose that the following equality holds: 

 
0

( ) ( ) ( ) ,    0,    0W W HF z x T F z x t f t dt x z
∞

+ + ∆ = + + ≥ ≥∫ . (41) 

If we perform a change of variables from x to T, where T = z + x, equality (41) can be 

rewritten as 

 
0

( ) ( ) ( ) ,    ,    0W W HF T T F T t f t dt T z z
∞

+ ∆ = + ≥ ≥∫ . (42) 
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Equality (41) and therefore also equality (42) implies that the right-hand sides of 

equalities (39) and (40) are equal to each other, which further implies that that left-hand sides 

are also equal to each other, i.e. 

 
1

( ) ( ),    0.
N n N nE EF z T F z z
− − +

+ ∆ = ≥  (43) 

To prove Proposition 3, we need to show that equality (17) implies that 

 
1

( ) ( )
N n N nE n E nF T T F T
− − +

+ ∆ = , (44) 

which, from (16), implies that ΔTn = ΔT. Indeed, equality (17) can be written as equality (42), 

which as was mentioned above implies equality (43). However, equality (43) also implies 

equality (44) when z = Tn, and the proof is complete. □ 

 

Proof of Proposition 4. 

For the M/D/1 queue, in order to find ( )k
TG

P i , i < k, k ≥ 1, which is needed to compute PZ(n), n 

> 0, from expression of (4), we note the following. Given that at the beginning of a time 

interval of length T there are k in-process replenishment orders, the number of replenishment 

completions, i, in this time interval, where i < k and k ≥ 1, is a – 1, if the percentage of the 

remaining time to completion of the in-process replenishment order in service at the 

beginning of the time interval is strictly greater than a – a, and a, if it is smaller than or 

equal to a – a. 

Given that the service time is deterministic and equal to l and that the arrival process is 

Poisson, the remaining time in service of the in-process replenishment order in service at the 

beginning of the time interval is a random variable which is uniformly distributed over the 

interval [0, l]; therefore, the probability that the percentage of the remaining time to 

completion is greater than a – a is equal to a – a. Similarly, the probability that it is 

smaller than or equal to a – a is equal to 1 – (a – a) = a + 1 – a . This means that 

 
, 1,

( ) 1 , ,
0, otherwise.

k
TG

a a i a
P i a a i a

 − = −      
= + − =       



 

If we substitute ( )k
TG

P k n−  from the above expression into (4) for n > 0 we obtain an 

expression that only has two non-zero terms. This expression is (21). □ 

 

Proof of Proposition 5. 
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Based on Proposition 4, the optimal order-base-stock level S*(T) for the M/D/1 queue can be 

derived from expression (2) as follows: 

 ( ) ( )

( ){ }

*

: int 1

: int 1

: int

( ) arg min ( ) ( )

arg min ( 1) 1 ( ) ( )

arg min ( ) 1 ( ) ( ) .

ZS S n S

R RS S n S

R RS S

S T P n h h b

a a P n a a a P n a h h b

a a P S a F S a h h b

∞

= +

∞

= +

 = ≤ + 
 
 = − + − + + − + ≤ +               
 

= − + + − + ≤ +          

∑

∑   

Setting S*(T) = N – n in the above expression implies that 

 ( )/ / ( / ) 1 ( / ) ( )R RT l T l P N n T l F N n T l h h b− − + + − − + ≤ +           , (45) 

where we have replaced a by T/l. From Theorem 1, break point Tn is the smallest demand 

lead-time T for which S*(T) = N – n, i.e., which satisfies inequality (45). It is easy to see that 

as T decreases, the left-hand-side of inequality (45) increases continually. The smallest value 

of T for which inequality (45) holds, i.e. Tn, is that value of T which makes the left-hand-side 

of inequality (45) equal to its right-hand-side; therefore, Tn satisfies (23), and this completes 

the proof. □ 

 

Proof of Proposition 6. 

For the M/D/1 queue, Proposition 5 implies that break point Tn+1 must satisfy 

 ( )1 1 1 1/ / ( 1 / ) 1 ( 1 / ) ( ).n n R n R nT l T l P N n T l F N n T l h h b+ + + +− − − + + − − − + = +             (46) 

To prove Proposition 6, we must show that if Tn satisfies (23) and ΔTn = l, then the 

resulting value of Tn+1, which by definition is given by Tn+1 = Tn + ΔTn = Tn + l, satisfies (46). 

If we replace Tn+1 by Tn + l in the left-hand-side of (46), we obtain 

 ( )( ) / ( ) / ( 1 ( ) / ) 1 ( 1 ( ) / )n n R n R nT l l T l l P N n T l l F N n T l l+ − + − − + + + − − − + +           . 

After some simplifications, the above expression can be shown to be identical to the left-

hand-side of equation (23) which, as we have assumed, is equal to h/(h + b). Therefore, if Tn+1 

is equal to Tn + l, equality (46) is satisfied, and the proof is complete.  □ 

 

Proof of Proposition 7. 

For the M/D/1 queue, the left-hand side of equality (18) can be written as 

 { } { } { } 1P W T P W l P W l ρ≤ ∆ = ≤ = = = − . (47) 

Let Q denote the waiting time in queue of a replenishment order, and let R denote the 

residual service time of a replenishment order, i.e. the remaining service time of the 
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replenishment order being served at the instant a new replenishment order arrives. A standard 

result in Queueing Theory is that for an M/G/1 queue, the distribution of Q is given by the 

following expression (e.g. see Gross and Harris, 1998): 

 ( )

0
( ) (1 ) ( )n n

Q R
n

F t F tρ ρ
∞

=

= − ∑ , 

where ( ) ( )n
RF t  is the nth convolution of ( )RF t . With this in mind and noting that Q = W – l, 

the right-hand side of equality (18) can be written as 

 

( )

00 0

( ) ( )

0 00

{ } { } ( ) ( ) (1 ) ( )

(1 ) ( ) (1 ) { },

n n t
Q H R

n

n n t n n
R

n n

P W H P Q l H F t f t l dt e F t e dt

e F t e dt e P R H

ρ λ

ρ λ ρ

ρ ρ λ

ρ ρ λ ρ ρ

∞ ∞ ∞
− −

=

∞∞ ∞
− − −

= =

 ≤ = + ≤ = + = −   

= − = − ≤

∑∫ ∫

∑ ∑∫
 (48) 

where R(n) denote the sum of n i.i.d. random variables, each being distributed as R, where in 

the case of the M/D/1 queue, R is uniformly distributed between 0 and l. 

Clearly, in order for the right-hand sides of equations (47) and (48) to be equal to each 

other, which would imply (18), the summation in the last equality of expression (48) should 

be equal to eρ. In order for this to happen, the term P{R(n) ≤ H} inside the summation should 

be equal to 1/n!, which is hardly the case. Therefore, the right-hand sides of equations (47) 

and (48) are not equal to each other, which implies (26). □ 

 

Proof of Proposition 8. 

For the M/M/1 queue, the following two expressions hold: 

 (1 )( ) (1 ) (1 ){ } 1 1T T T TP W T T e e eµ ρ µ ρ µ ρ− − +∆ − − ∆ − −≤ + ∆ = − = −  (49) 

 
( )(1 )( )

0 0

(1 ) (1 )

0

[ { }] ( ) ( ) 1

1 1 .

T t t
W HH

T t T

E P W T H F T t f t dt e e dt

e e dt e

µ ρ λ

µ ρ µ µ ρ

λ

ρ µ ρ

∞ ∞
− − + −

∞
− − − − −

≤ + = + = −

= − = −

∫ ∫

∫
 (50) 

If ΔT is given by expression (32), then the right-hand sides of equations (49) and (50) above 

are equal to each other, and hence the left-hand sides are also equal to each other. By 

Proposition 3, this means that ΔTn = ΔT, n = 1,…, N, and this completes the proof. □ 

 

Proof of Proposition 9. 

For the M/D/∞ queue, the following holds: 
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1 1 1 1 1

1 1

( ) { } { } { }

{ } 1 ( ),    0, , 1.

N n

N n

E n N n n N n n N n N n

N N

N n i A i
i n i n

F T P W A T P A L T P A T T

P A T F T n N

−

−

+ − + − + − + +

−
= + = +

= − ≤ = ≥ − = ≥ −

= ≥ ∆ = − ∆ = −∑ ∑ 

 (51) 

The above expression and equation (16) imply that 

 1

1
( ( ))

N n

N

i A
i n

T F h h b
−

−

= +

∆ = +∑ . 

This means that ΔTn, n = 1,…, N – 1, can be computed recursively as follows: 

 

1

2 2 1

3 3 2

1

1

1

1 1 1
1 1

1 1 1
2 2 1

1 1

1 1
1
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

))

 

where ( )
nAF ⋅  is the cumulative distribution function of An and is given by (35). □ 
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