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Abstract—In centralized day-ahead electricity markets with
marginal pricing, unit commitment costs and capacity constraints
give rise to non-convexities which may result in losses to some
of the participating generating units. Therefore, a recovery
mechanism is required to compensate them. In this paper, we
present and analyze several recovery mechanisms that result in
recovery payments after the market is cleared. Each of these
mechanisms results in a different type and/or amount of payments
for each participating unit that exhibits losses. We also propose
a methodology for evaluating the bidding strategy behavior of
the participating units for each mechanism. This methodology is
based on the execution of a numerical procedure aimed at finding
joint optimal bidding strategies of the profit-maximizing units. In
a companion follow-up paper (Part II), we apply this methodology
to evaluate the performance and incentive compatibility of the
suggested recovery mechanisms on a simplified test case model of
the Greek electricity market.

Index Terms—Day-ahead market, electricity market modeling
and simulation, non-convexities, recovery mechanism, unit com-
mitment.

NOMENCLATURE

A. Sets—Indices

h Hour (time period) index: h € {0,1,...,H}; H:
time horizon; typically H = 24.

U Generation unit index: v € U; U: set of
generation units.

b Block bid index (for energy offers):
be {1,...,B}; B:number of blocks.

B. Parameters

System Energy/Reserve Requirements:

D¢ Demand for energy (load) for hour h.

D# Reserve requirement for hour /.
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Generation Unit Technical/Economic Data:

G
Q,
@

G

u,b

ar
MTUP
MTP own
Pf b,k

P fjh
cs,
cy
osv
CSb

NL
Cu

Technical minimum for unit w.

Technical maximum for unit .

Block maximum for unit u, block b.
Maximum reserve availability for unit u.
Minimum uptime for unit w.

Minimum downtime for unit .

Price of energy offer for unit u, block b, hour A.
Price of reserve offer for unit w, hour A.
Cost of energy generation for unit u, block b.
Cost of reserve for unit w.

Startup cost for unit .

Shutdown cost for unit w.

No-load cost for unit .

Initialization Parameters:
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Initial status of unit » (at hour 0).
Number of hours unit % has been “ON” at hour 0.

Number of hours unit « has been “OFF” at hour 0.

C. Decision Variables

Total generation (output) for unit w, block b, hour
h.

Reserve for unit u, hour A.

Status (condition) for unit u, hour h. Binary
variable. 1: ON(line), 0: OFF(line).

Startup signal for unit « in hour /. Dependent
binary variable. 1: Startup, 0: No startup.

Shutdown signal for unit # in hour 4. Dependent
binary variable. 1: Shutdown, 0: No shutdown.

Number of hours unit = has been ON at hour &
since last startup (dependent integer variable).

Number of hours unit » has been OFF at hour /4
since last shutdown (dependent integer variable).

0885-8950/$31.00 © 2012 IEEE


mailto:e-mail:andrianesis@uth.gr
mailto:e-mail:andrianesis@uth.gr
mailto:glib@mie.uth.gr
mailto:gkoz@mie.uth.gr
mailto:e-mail:alexp@eccointl.com
https://doi.org/10.1109/TPWRS.2012.2207920

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

I. INTRODUCTION

LECTRICITY market design has been a major chal-

lenge for both economists and engineers for the last
two decades. The transition from monopolistic structures to
deregulated markets has raised numerous questions on the
design and the resulting incentives which to date have not had
definite answers. Different designs have been proposed and
implemented, but many issues remain open.

A. Background and Motivation

This paper considers the design of a joint energy/reserve
day-ahead electricity market with non-convexities. The market
model is formulated as a mixed integer linear programming
(MILP) problem that is solved every day, simultaneously for
all 24 hours of the next day. The objective is to determine
the least-cost unit commitment and clearing of all market
commodities, namely energy and reserves, where the term
“reserves” refers to frequency-related ancillary services. The
non-convexities are due to the commitment costs and capacity
constraints of the generation units, which make the generators’
side in the market “lumpy”. Requesting from generators to
submit energy-only bids, which do not reflect this lumpiness,
can lead to market equilibria that are neither competitive nor
efficient [1], [2]. With this in mind, throughout this paper, we
consider multi-part bids, that allow the generation units to
explicitly express all their cost components (variable and com-
mitment costs) in the day-ahead market. We also assume that
the commodities are priced according to a uniform, marginal
pricing scheme [3].

Non-convexities make marginal costs less than average vari-
able costs. Marginal cost pricing can therefore fail to recover
commitment costs, resulting in losses for some of the partici-
pating units. To compensate them for these losses, a recovery
mechanism is needed. The standard practice for addressing this
issue is based on the “revenue sufficiency guarantee” [4], ac-
cording to which make-whole payments are assessed to the gen-
erators and the resulting costs are uplifted to the loads. In this
paper, we look at several alternative recovery mechanism de-
signs that result in recovery payments after the market is cleared
(ex post), and we propose a methodology for evaluating them.

The first design that we examine lets the losing units keep a
fixed percentage of their variable costs. A variant of this design
is used in the Greek market. The second design lets the losing
units keep a fixed percentage of their losses. The third design
fully recovers their bids. This is the uplift payment scheme cur-
rently deployed by system operators in the US. Finally, we also
look a variant of this design where the bids are recovered pro-
vided that they are within a certain set margin from their costs.

B. Literature Review

Non-convexities as a feature of electricity markets have been
addressed in [5]-[23]. O’ Neill et al. [S] model a market with in-
divisibilities as an MILP problem and use its optimal solution to
create a linear programming (LP) problem by expanding the set
of commodities to include any activities that are associated with
the integer variables. Hogan and Ring [6] consider the unit com-
mitment problem for a day-ahead electricity market and present
a “minimum-uplift” pricing approach that focuses on non-con-
vexities, taking into account the generation units’ startup costs
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and technical minimum and maximum constraints. Bjerndal and
Jornsten [7] address the same problem, and propose a method-
ology which is based on the generation of a separating valid in-
equality that supports optimal resource allocation. Ruiz ef al.
[8] propose a primal-dual approach for pricing non-convexi-
ties, in an attempt to avoid uplifts. The above papers [5]-[8]
refer to a numerical example in Scarf [9] that demonstrates the
lack of a market-clearing price in a market with non-convex-
ities. Sioshansi et al. [10] exploit the scheme in [5] to show
that make-whole payments can help reduce surplus volatility
and differences to some extent. Andrianesis et al. [11] describe
a bid recovery mechanism, also based on the analysis in [5],
which applies to the day-ahead market problem. In a prelim-
inary version of this work, Andrianesis et al. [12] investigate
the incentive compatibility of various recovery mechanisms on
a market structure that is based on the Greek electricity market.
Motto and Galiana [13] propose a price-based formulation that
involves “augmented pricing,” for an energy-only, single-period
unit commitment problem. The same authors [14] study the co-
ordination problem in energy-only markets with non-convexi-
ties. They establish a minimum input requirement, but do not
consider any additional monetary uplifts. An uplift approach,
in a different context than ours, is presented in [15] and [16].
Gribik ef al. [17] consider alternative ways of defining uniform
energy prices and calculate the associated impact on the en-
ergy uplift required to support the least-cost unit commitment
and dispatch. The idea of a “convex hull pricing model” in
[17] is further elaborated in [18] to reduce the uplift payments.
Muratore [19] addresses the issue of non-convexities in a dif-
ferent context, and proposes a peak-load pricing scheme that
can recover the fixed costs in a yearly period for an energy-only
market. Alternative pricing approaches have also been proposed
in [20]-[23].

Although the above literature proposes market designs that
address non-convexities, it does not evaluate the incentive com-
patibility associated with these designs. Such an evaluation in-
volves finding the optimal bidding strategy of each market par-
ticipant. Depending on the interactions with other participants,
this problem may fall into one of three categories [24]: 1) the
participant acts as a price-taker (see e.g., [25]); 2) the partici-
pant acts as a price-maker (see e.g., [26]), trying to maximize
his profit, assuming the other participants’ bids are known and
fixed; and 3) the participant tries to maximize his profit taking
into account the other participants’ strategies as well. The latter
category aims at identifying market equilibria. Ventosa et al.
[27] survey electricity market equilibrium models up to the early
2000s. Hobbs ef al. [28] use an iterative scheme (diagonaliza-
tion) to compute a market equilibrium, where in each iteration,
each market participant solves a profit maximization problem,
assuming that the other participants’ bids remain fixed at the
values of the previous iteration. De la Torre ef al. [29] consider
multi-period Nash equilibria and apply an iterative procedure
to identify behavior patterns of the generation units; the units
decide on the quantity to bid, while the price is determined by
price quota curves. The problem formulation assumes a simple
pricing rule according to which the market clearing price is the
price of the last accepted production bid, without considering
reserves or any recovery mechanism. A similar iterative proce-
dure is also employed by Haghighat et al. [30], in an attempt
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to find Nash equilibria in joint energy/reserve markets, under
a pay-as-bid pricing scheme, without considering the non-con-
vexities of the unit commitment problem. Barroso ef al. [31]
present an MILP solution approach for finding a Nash equilib-
rium in strategic bidding in short-term energy-only electricity
markets with equilibrium constraints. More recently, Hasan et
al. [32] and Hasan and Galiana [33] address the issue of Nash
equilibria for an energy-only electricity market, without taking
into account unit commitment and associated costs, technical
minimum, and inter-temporal constraints. Lastly, Sioshansi and
Nicholson [34] debate on centrally committed versus self com-
mitted markets and characterize Nash equilibria for a stylized
single-period symmetric duopoly. In the former design, the gen-
erators submit two part offers (energy and startup) and the re-
covery of their bids is guaranteed with make-whole payments.

To obtain equilibrium solutions, the above models either limit
the players’ bidding options or suppress important market struc-
ture features, such as discontinuities in the cost structure and
inter-temporal effects. However, as the market design becomes
more complicated, finding a Nash equilibrium becomes practi-
cally infeasible. Nevertheless, attempting to numerically find a
Nash equilibrium by some iterative scheme can reveal insightful
patterns of bidding behavior under the specific market rules,
even if this scheme does not converge to a solution.

C. Aim and Contribution

Our aim in this paper, which builds on our preliminary work
[11]and [12], is to: 1) present several recovery mechanisms that
address the issue of non-convexities in joint energy/reserve, unit
commitment-based day-ahead electricity markets, and 2) pro-
pose a methodology for evaluating the bidding strategy behavior
of the participating units under each mechanism. The evaluation
will provide insights on the incentive compatibility properties of
these mechanisms.

Rather than modifying the objective function of the
day-ahead scheduling (DAS) problem or the clearing prices,
we do not directly interfere with the day-ahead market design
and solution, so we let the commodity prices be equal to the
shadow prices of the respective market clearing constraints.
Instead, we introduce simple rules for recovery payments that
will allow the generation units to have positive profits. These
payments are settled after the day-ahead market is cleared;
hence, they depend on the market outcome.

The advantage of this approach is that the dispatching and
pricing of the commodities is still subject to the existing and
well-established day-ahead market rules for co-optimizing en-
ergy and ancillary services. This approach can be particularly at-
tractive to regulators, because proposals that change the pricing
rules (e.g., the payment cost minimization based clearing format
that some claim reduces the amount of payments, etc.) are often
misguided, misunderstood or mistrusted by the market partici-
pants and prove to be a source of friction. Hence, keeping the
widely-accepted marginal pricing scheme for the procured com-
modities is particularly important for the market.

D. Paper Organization

The remainder of this paper is organized as follows. In
Section II we present the model of a joint energy/reserve
day-ahead market problem that we use as a basis of our study.

In Section IIT we address the need for a recovery mechanism,
and we present several alternative recovery mechanisms. In
Section IV we develop a numerical methodology for assessing
the incentive compatibility of each mechanism. Finally, in
Section V we draw our conclusions.

In a companion follow-up paper (Part II) [35], we apply the
proposed numerical methodology that we develop in this paper
on a simplified test case model of the Greek electricity market.
We discuss the results and derive insights on the incentive com-
patibility of the recovery mechanisms under consideration.

II. JOINT ENERGY/RESERVE DAY-AHEAD MARKET PROBLEM

We consider a typical design of the joint zonal energy/reserve
day-ahead electricity market. An example of such a design is
contained in [36]. To keep our analysis focused, we make sev-
eral simplifying assumptions without loss of the most important
features of a practical market design.

Specifically, we focus on thermal plants only; we do not con-
sider hydro plants, renewable energy sources, and imports/ex-
ports. Also, we consider only one type of reserve, namely, ter-
tiary spinning reserve; an extension to include other types of re-
serves (such as primary, secondary) is straightforward. The pro-
ducers submit energy offers for each hour of the following day,
as a stepwise function of price-quantity pairs, and reserve bids,
as single price-quantity pairs. Current practices of system op-
erators put substantially more restrictions on the submitted unit
commitment costs than on the energy bids. The reason is that
market power mitigation procedures are currently used only to
mitigate the energy bids, but not the unit commitment bids. With
this in mind, we assume that producers submit their true startup,
shutdown, and no-load costs. Misstating the commitment costs
could be examined in the context of market power mitigation
methodologies. This could be an issue for further research.

We note that in practice, market and system operators know
the true costs of the generators, since the market participants
are obligated to submit cost information to them. These data
include the heat rate curves that are used to calculate the incre-
mental costs of the generators as well as the unit commitment
costs. System operators have specific procedures and work with
market participants to update these cost data on a periodic basis.
They use these data to ensure that market participants do not ex-
ercise market power.

With these assumptions in mind, the DAS problem can be
formulated as a mixed integer programming (MIP) problem as
follows:

G E
Pubh' ubh+ P uh
u,b.h u,h

SU SD _ ~SD
min + Z Xu B O+ Z Xon O
QTI: B Qf,h, u,h u,h
beh + Z Xu kR C}?L
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Z Qu h Vh ()\hR) (2b)
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ZQfM > X5 - Q¢ Yu, b (3a)
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Qup < X34 -Q4 Vu, h (3d)
(Vor = MTP) (X5, - X2%) 20 Vu,h (4a)
(Yuh p = MT2) (X35 — X355 1) >0 Vu,h (4b)
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Yu h= (Yu no+1) Xu h Yu, h (5¢)
Yor = (Yo, +1) (1-Xx5) Yu, h(5d)
X5 =x00 Yu (6a)
Yor=yome Yu  (6b)
IAEED Sl Vu  (6¢)
with Qu b Q“ h > 0, Xu h,X" 5, X h binary, and "O,?.

YO integer, Vu/ b, h.

The objective function (1) minimizes the cost of providing
energy and reserve as well as other commitment costs, namely,
startup, shutdown, and no-load costs. Constraints (2) represent
the market clearing constraints, i.e., the energy balance and the
reserve requirements. The generation units’ technical minimum/
maximum, and the reserve availability constraints are given by
(3); the minimum up/down-time constraints are stated by (4).
To keep the formulation compact, we have not included any
ramp constraints; such constraints can be easily included along
with other additional constraints that may apply in any specific
market design. Equalities (5) define the binary and integer vari-
ables, namely the startup/shutdown signals, and time counters
of hours that a unit has been online/offline. Equalities (6) state
the initial conditions of the units.

Nonlinear constraints (4) and (5) can be replaced by linear
inequalities, which can be found in [36], to turn the above MIP
problem into an MILP problem. If we solve that problem and
fix the integer variables at their optimal values (marked with an
asterisk), we obtain an LP problem in which constraints (4) and
(5) have been replaced with the following equalities:

X3 = X5 v,k (7a)
x5 = X590 wu,h (7b)
Xu L= X§D<*) Vu, h. (7C)

We can then use that LP to calculate the clearing prices of the
energy and reserves, as the shadow prices of the market clearing
constraints (2a) and (2b), AS and A%, respectively.

The DAS model presented above, for simplicity, assumes a
single zone. It can be expanded to include multiple zones. Fur-
ther, in some markets, like the Greek electricity market, the
energy pricing scheme is zonal, whereas the reserve pricing
scheme currently in use is a “maximum bid accepted” scheme.
Alternatively, the zonal marginal pricing for both energy and
reserves can be applied, as in [37], consistent with marginal
pricing theory.
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III. PROPOSED RECOVERY MECHANISMS

As was mentioned in the introduction, the revenues from par-
ticipating in the market described in the previous section are not
always sufficient to cover the costs of the participating gener-
ating units.

To elaborate, let VC,, be the variable costs for generating en-
ergy and providing reserves, CC,, the commitment costs, BID,,
the bids, and REV ,, the revenues of generation unit « resulting
from its participation in the day-ahead market. The above costs,
revenues and bids are given by

VG, = Z Cf,b : beh + Z e 5,;7, (8a)
Zth CSL +2Xu h OSD
+ Z x5, - (8b)
BID Z w,b.h Qu h + Z u, h (80)
b,h
REV, =Z{ ZQM} + DM (8d)
h h

For the remainder of this section and for Section IV, we will
focus our attention on an arbitrary generation unit; hence, for
notational simplicity, we will omit subscript «. In what fol-
lows, we justify the need for recovery payments (Subsection A),
and we introduce several designs for the recovery payments
(Subsection B).

A. Need for Recovery Payments

Let GPROF be the gross profits of an arbitrary generation

unit, given by
GPROF = REV — (VC + CC). 9)

From (9), it is obvious that the generation unit may incur
losses, because its revenues from the commodities (energy and
reserve) may not be sufficient to recover the commitment costs.
Even if the commitment costs are explicitly compensated, how-
ever, the unit may still incur losses as follows. It may happen
that in some hour(s) the unit is extra-marginal with respect to
energy, i.e., its energy offer is above the marginal price, and yet
the DAS solution schedules it at its technical minimum. Con-
sequently, the unit’s revenues will be lower than its bids. If, in
addition, the unit’s offers were truthful, i.e., equal to the true
variable costs, then its revenues will be lower than its variable
costs, and the unit will incur losses for that hour. If the total
losses over all 24 hours are substantial, GPROF may end up
being negative, which means that the unit will incur losses over
the entire DAS horizon.

Based on this analysis, a recovery mechanism that provides
adequate recovery payments is needed to compensate for the
potential losses. The recovery payments should be calculated
over the whole 24-hour period (as opposed to hourly recovery
payments) so that any volatile behavior in the commodity prices
(for small changes in the demand; see [6] for a discussion) due to
the non-convex nature of the optimization problem is smoothed
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out. In the following subsection, we discuss several alternative
recovery payment designs.

B. Recovery Payments Designs

We first consider two cases regarding the calculation of
market revenue losses: cost-based and bid-based. These cases
lead to two types of recovery payments:

1) cost-based recovery payments, and
2) bid-based recovery payments.

To simplify the notation, we let 7(a) and w(b) denote the
cost-based and bid-based profits of the unit, respectively. These
quantities are defined as follows:

7{a) = REV — (VC 4+ CC) = GPROF (10a)
7(b) = REV — (BID + CC)
= GPROF — (BID — VC). (10b)
From (10a) and (10b), note that
7(a) = w(b) + (BID — VC) (10c)

where the quantity (BID — VC) is the difference between the
as-bid based costs and the true variable costs.

A necessary condition that must be met in order for the unit
to receive recovery payments is that the above quantities are
negative, i.e., that they correspond to market revenue losses.
To further elaborate, let RP be the recovery payments of the
generation unit and NPROF be its net profits after the recovery
payments, if any. Then
if w(e) >

if (i) < 0 for ¢ =a,b.

(11)

NPROF = { ;8+ RP,

Next, we derive expressions for the recovery payments for
each of the two cases (cost-based and bid-based), assuming that
the condition () < 0 in (11) holds.

1) Cost-Based Recovery Payments: To be attractive, a re-
covery mechanism with cost-based RP should allow for positive
net profits. To design such a mechanism, we must first define
the basis of these profits in the case where w(a) < 0, and then
derive an expression for RP that will achieve such profits. We
consider two designs: one where the net profits are proportional
to the unit’s variable costs (design A.1) and another where the
net profits are proportional to the unit’s (cost-based) market rev-
enue losses (design A.2).

Design A.1: VC-Related Profits: In this design, the final
net profits, in case the unit receives recovery payments, are set
to a fixed percentage, say «, of its variable costs, namely

NPROF(A.1) = o, VC. (12a)

From (10a), (11), and (12a), the recovery payments, paid

ex-post, that achieve these profits are

RP(A1) =y VC — w(a)

= (1+a)VO4+CC—REV.  (12b)

Apart from the fact that relating the final net profits with the
variable cost seems to be a rather natural approach,! this mech-
anism creates an incentive for maximizing the variable costs of
a unit (in case of losses). A potential drawback of this mecha-
nism is that the direct association of the final net profits with the
variable costs, implied by (12a), could favor expensive, thus in-
efficient units. However, as the variable cost is also a function of
the scheduled quantity, there is also an incentive for maximizing
production; hence it may also lead to cost-reflective bids, so that
the scheduled quantity is the maximum possible. Therefore, the
outcome is not obvious and needs to be investigated.

Another key feature is that the final net profits are indepen-
dent of the magnitude of the losses. This creates a “disconti-
nuity” of the net profits at the point of zero gross profits. To
elaborate, think of two units with gross profits equal to 1 euro
and —1 euro, respectively. The first unit will receive no RP and
will end up with net profits of 1 euro, whereas the second unit
will receive RP and will end up with net profits of &1 VC euro.
A minimum profit condition could be applied in order to solve
this discontinuity, but it could raise other discussions on the fair-
ness of guaranteed profits, and as such it is not further examined
in this work.

Design A.2: Market Revenue Loss-Related Profits: To
overcome some of the drawbacks of design A.1, we propose
an alternative mechanism where the final net profits that a unit
is allowed to keep are set to a fixed percentage, say as, of its
market revenue losses instead of its variable costs, namely

NPROF(A.2) = as[-7(a)] = a2(VC + CC — REV)
(13a)

From (10a), (11), and (13a), the recovery payments that
achieve these profits are

RP(A.2) = (1 + a2)[—7(a)]
= (14 a2)(VC+ CC - REV). (13b)

Such a design may prove to be a more reasonable approach,
because relating net profits to losses eliminates the problem of
“discontinuity” associated with design A.1, and may also result
in lower recovery payments. Specifically, if a3 = a2 = o, it is
easy to see, from (12a) and (13a), that the net profits under de-
sign A.2 are lower than those under design A.1, only if REV >
CC.

In addition, under this design, units that are likely to be price-
makers but may possibly incur losses [perhaps because they are
extra-marginal in some hour(s) or because they cannot recover
their commitment costs] have an incentive to submit cost-reflec-
tive bids, as they will profit from lower energy prices (the lower
their revenues, the higher their losses and hence their profits).
There may still be some unfairness in the margin, in the sense
that a unit with negative GPROF could incur higher NPROF
than a unit with positive GPROF; however, in the long run, the
probability of this event should generally be low, otherwise the
unit would not be profitable in the market.

IReference [12] presents a variant of design A.1 which allows explicit com-
pensation of the commitment costs.
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Note also that if &y = «s = 0, the two mechanisms are
equivalent, as the unit will receive RP to end up with zero net
profits. In this case, RP represents “make-whole” payments.
However, the zero-net profit condition is not attractive. In prac-
tice, and as far as the units’ bidding behavior is concerned, this
case would produce no different incentives than as if there were
no recovery payments.

To summarize, in both designs A.1 and A.2, the units may
show a tendency to bid low in case they estimate market
revenue losses (gross) through their market participation, to
achieve higher net profits (including the recovery payments)
by either maximizing their scheduled quantities (therefore their
VC)indesign A.1, or maximizing the magnitude of their market
revenue losses in design A.2. One of the potential drawbacks of
both designs A.1 and A.2 is that they may not discourage high
bids, because the recovery is not directly associated with the
bids; therefore, these mechanisms may result in high prices and
profits. An alternative design, which associates the recovery
payments with the bids is considered next.

2) Bid-Based Recovery Payments: Under a bid-based re-
covery mechanism, the units are compensated with RP in order
to recover their costs as they are reflected by their bids. The
idea of such a design is that a unit should be able to recover
its as-bid costs, without resorting to a pay-as-bid scheme. In a
sense, such a recovery mechanism is a “hybrid” uniform and
pay-as-bid pricing scheme. We consider two alternative designs:
one where the as-bid costs are always recovered, provided that
the unit incurs market revenue losses (design B.1) and another
where the as-bid costs are recovered, provided that the unit in-
curs losses and its price offers for the commodities are within
a given “reasonable” margin from the respective true costs (de-
sign B.2).

Design B.1: Unregulated Bid Recovery: According to the
unregulated bid-recovery mechanism, the recovery payments
are

RP(B.1) = —x(b) = BID + CC — REV. (14a)
From (10b), (11), and (14a), the net profits are
NPROF(B.1) = BID — VC. (14b)

From the expression above and (10c) note that the net profits
are equal to the difference 7(a) — m(b).

This mechanism allows units that have positive bid-based
profits to keep them and compensates those that exhibit market
revenue losses by fully recovering their cost-reflective bids.
This design is sketched in [11] and [12], based on the results of
[5].

A drawback of this mechanism, as is shown in [11] and [12],
is that, in an oligopolistic market, the units may take advantage
of the bid-recovery opportunity and place very high bids, re-
sulting in particularly high and volatile prices. Current market
designs offer bid mitigation measures to protect against such
a market outcome. However, these measures require constant
monitoring and adjustments, as necessary.

Design B.2: Regulated Bid Recovery: To overcome the
drawback of design B.1, we propose the imposition of a regu-
lated price cap that a unit has to respect in order to be eligible for
RP given by (14a). Specifically, if a unit has bid-based profits,
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Fig. 1. Net profits for alternative mechanism designs.

then it will receive no RP. If the unit exhibits market revenue
losses (again on a bid basis), then it will receive RP to reach
NPROF, given by (14b), only if its energy (respectively, reserve)
price offers lie between its true energy (respectively, reserve)
cost and an upper bound, called “regulated cap”, which is equal
to a fixed amount, say 3 (respectively, 3%), over its true en-
ergy (respectively, reserve) cost. The regulated cap should be
chosen wisely to ensure proper pricing under scarcity condi-
tions. In other words, in order for RP > 0, apart from the con-
dition w(h) < 0 in (11), the following condition must also hold:

PGy, € [CC,. CFy + 59]
and
Pl e [ClCl+ 8. (15)
This mechanism motivates the bidder to behave less specu-
latively. Parameters 3 and 3% can serve as design parameters
set by the regulator. A large value for either of these param-
eters will provide a strong incentive for the unit to bid within
the recovery-eligibility margin, but may also result in large total
payments; a low value, on the other hand, may not provide an
adequate incentive and units may tend to bid above the upper
bound.
Fig. 1 summarizes the four designs and visualizes (11) to
show NPROF and RP with respect to 7(3), for i = a, b.

IV. RECOVERY MECHANISM EVALUATION METHODOLOGY

In this section, we propose a methodology for evaluating
the performance of the recovery mechanisms presented in
Section III to gain further insights into their incentive com-
patibility properties. This methodology employs an iterative
numerical procedure that solves simultaneously for the optimal
bidding strategies of the profit-maximizing units.

Normally, some units, such as base-load units, are price
takers, bid low or self-schedule. Others, such as peak-load
OCGT units, may bid high to maximize their profits. In some
cases, these units are only willing to sell ancillary services and
produce energy only if the price is quite high. Therefore, the
set of profit-maximizing units is a subset of U.

Let I/, € U be the subset of units with a profit-maximizing
strategy; the remaining units bid either at cost or at the price cap.
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Let P, be the vector of energy and reserve price offers, UGb n
and PF s Vh, of profit-maximizing unit u. Let P, be the set of
Vectors P,,vv € U,\{u}.P, represents the set of offers of unit
u,and P, represents the set of offers of all other units except .
Finally, let NPROF, (P, P _, ) be the net profits after recovery
of generating unit u, when its offers are P,, and its competitors’
offers are P_,,. Each unit v will independently try to maximize
its net profits, given the competitors’ offers, P _,, by setting its
offers at

s Lo

PHP ) =arg max NPROF, (P, P, ), u € Uy

(16)

where S is the feasible space of P,, and is typically given by the
interval [CT,, P “A] for energy; similarly for reserve.

If all units do the same, then, theoretically, at equilibrium, the
profit-maximizing units will submit offers Pq(l*), which are the
solution of the following |U,| x |U,| system of equations:

P =Py (P

—u

), VueU, (17)
Equation (16) represents a particularly challenging bilevel
optimization problem [38], which we briefly sketch below for
clarity.
At the upper level, the generation unit « aims at maximizing
its net profits, as follows:

I%axNPROF1,,(Pu,,BﬂL), subject to: P, € S. (18)

At the lower level, the system operator solves the optimiza-
tion problem (1)—(6), in order to minimize the total system en-
ergy cost.

The problem determined by (18) and (1)—(6) is a mixed in-
teger nonlinear bilevel program. Note that to compute the ob-
jective function of the upper level problem, NPROF [see (11)
and (10)], which depends on the recovery mechanism in effect,
one needs to compute the market revenues (REV) first, which
include [see (8d)] products of lower level dual (AY and AP
and primal variables (QY, , and QF, | respectively). In addi-
tion, numerical experience has shown that NPROF,(P..P_,)
is not unimodal; therefore, maximizing it analytically is practi-
cally intractable.

If solving the optimization problem (16) is practically in-
tractable, analytically unraveling the self-reference of (17) be-
comes impossible. In fact, the existence of a pure strategy Nash
equilibrium solution is highly improbable, due to the complexity
of the problem and the non-convexities.

Nonetheless, trying to numerically solve (17) by a classical
scheme of successively approximating the optimal offer vec-
tors Pg*) using a fixed-point iterative procedure, similar to the
ones described in [28]-[30], is a task worth pursuing, because it
can reveal patterns of bidding behavior of the individual players
and the ranges and cumulative averages of values of different
quantities of interest, such as the offers, recovery payments, net
profits, clearing prices and total payments, among others. The
outline of such a procedure follows below.

Let P&” ) be the value of the vector of offer-values of gen-
erating unit « at the nth iteration, and let N be the maximum
number of iterations we are willing to have.

Set P4 to some initial value, Vu € U,.
Forn =1,2,...,N:

Find P = P (P, V) wue U, (19)

where P (B@;l)) is obtained by numerically solving (16).

A reasonable starting point would be to assume that each unit
u initially submits truthful bids, i.e., P = {Pféo,z, R(O)}

u h
such that P\) = CC, and P\ = CE b, h.
Normally, the above procedure is terminated if the maximum
number of iterations, IV, is reached. It may be terminated ear-
lier at iteration n < N, however, if P = ng),Vu, € U,
for some k = 0,1,...,n — 1. In fact, if k¥ = n — 1, then a
solution of (17) has been found. If & < n — 1, then the pro-
cedure has reached a “cycle” of period n — k, meaning that
the values of the next iterations will be equal to the values of
previous iterations, as follows: Pt = p{D) pl+2)
pity . pPn " PV If the space of allowable offers
of the participating units is discretized, then the number of com-
binations of offers of the different units is finite, and therefore a
cycle will always exist, as long a period as it may have. Such cy-
cles have been observed in numerical tests and reported in [12].

The presented iterative scheme for solving what is essen-
tially a one-shot (single-day) game can be viewed alternatively
as a simulation procedure for solving a hypothetical, non-coop-
erative repetitive game with complete information, over many
rounds, where in each round n, the decision variable for each
player is the vector of energy and reserve offers, P,,"). In the
first round, each player places some arbitrary initial offers. In
the next round, each player determines his next offers by max-
imizing his net profits, assuming that the other players’ offers
will remain unchanged. This scheme generates a new set of of-
fers. The game continues until either a predetermined number of
rounds is reached, or the resulting set of offers has been reached
in an earlier round. The implementation of this procedure re-
veals the bidding patterns of the players and the resulting market
outcomes for each recovery mechanism.

The numerical procedure given by iteration (19) can be com-
putationally extremely demanding. Even under the assumption
that each unit places a single price-quantity energy offer and
a single price-quantity reserve offer for each period (hour), the
number of decision variables for each of the |U,,| unitsis 2- H =
2 .24 = 48. In this case, solving (16) means optimizing a
non-convex function of 48 variables.

To overcome this computational barrier, in Part II of this
paper [35], where we implement the proposed methodology, we
assume that each unit places a single price-quantity energy offer
(the same for all periods), and a zero-priced reserve offer that is
not subject to optimization. The first assumption is not severe,
as it may be the case that the units do not find it advantageous
to submit multiple price-quantity offers; for example, such a be-
havior is sometimes observed in the Greek energy market. The
second assumption helps us focus our attention on the energy
bids, which determine the main volume of transactions in the
day-ahead market. Note that even under zero-priced reserve of-
fers, the reserve price can still be positive, because of marginal
pricing. Both assumptions help significantly reduce the size of
the problem and make it computationally tractable.

ey
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Even under the above assumptions, however, solving (16) is
still not trivial. The way we practically solve it in Part II [35],
is by discretization and “brute force” evaluation of all feasible
solutions. Namely, we assume that the decision variable P, can
take a finite number of discrete values, evenly distributed a cer-
tain step size apart, over the interval from the cost of energy gen-
eration to a price cap specified by the regulator. We then eval-
uate the net profits for each value and select as optimal the value
which maximizes these profits. The selection of the step size is
important as it affects the computational time and accuracy of
results. Also, in some cases, the evaluation of the net profits for
certain values is redundant, which helps reduce the number of
computations. Finally, the optimal offer of each generation unit
can be found independently of the other units, allowing the op-
tion for massive parallel computations.

The main advantage of the proposed methodology is that it
can be applied in a straightforward manner by regulators and
system operators to help them predict the bidding behavior of
market participants under various recovery mechanisms (ex
ante evaluation). The implementation is easy, and commercial
optimization platforms can be readily used. Since this is an
offline procedure, the computational time is not a critical
parameter.

V. CONCLUDING REMARKS

Many approaches in the literature propose pricing in day-
ahead electricity markets above marginal cost as a means of re-
covering average variable costs, in the presence of non-convex-
ities. In these approaches, the system operator typically sets up
an optimization problem that aims at minimizing the procure-
ment cost.

In this paper, we follow a different approach. We keep
classical marginal (bid-cost) pricing by solving the day-ahead
scheduling problem, whose objective is to minimize system
bid-cost, and set up an additional mechanism that recovers the
commitment costs and may also provide recovery payments to
eliminate any market revenue losses. This approach does not
directly interfere with the market design, as it provides recovery
payments after the market is cleared. It interferes with it only
indirectly, in that the units’ bidding decisions should take into
account both the revenues from the market commodities and
the recovery mechanism.

We consider various recovery mechanisms and discuss their
advantages and disadvantages. We also propose a comprehen-
sive methodology for evaluating these mechanisms in terms of
their performance, market power and incentive compatibility
properties, as the non-convexities, inter-temporal effects, and
other structural elements of the market affect the players’ bid-
ding strategies in ways which are far from obvious. In the Part IT
companion of this paper [35] we present the implementation of
the proposed recovery mechanism evaluation methodology, as-
sociated practical details, and evaluate the recovery mechanisms
in a realistic market model of the Greek energy zonal market.

This paper does not deal with recovery mechanisms required
to limit or eliminate the expansion of recovery payments, inten-
tionally sought by market participants, above and beyond the
appropriate outcome of a competitive market, by manipulating
the interplay between the day-ahead and real-time markets. Nei-
ther does it deal with recovery payments for lost opportunity
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costs, as in the case of a low-cost generator that may be sched-
uled to be offline even if the energy clearing price is low [6],
[17], as this is a somewhat controversial issue which is outside
the scope of this paper. These issues could be directions for fur-
ther research.

The proposed methodology for evaluating the recovery
mechanisms could be classified as a simulation approach that
seeks to find equilibria without resorting to simplifying as-
sumptions regarding the players’ bidding options (e.g., Cournot
bidding models), the competitors’ response function (e.g.,
supply function competition models), or the dependence of the
market price on the players’ bids, (e.g., simulation models that
are based on price-quota functions). It still refers to a static
model, however, which neglects the fact that market partic-
ipants base their decision on their accumulated experience
through their interaction with the market environment (e.g.,
demand variations, competitors’ decisions, etc.). A direction for
further research would be to use adaptive agent-based simula-
tion methodologies to reveal features of electricity markets that
a static model ignores. Recent reviews of such methodologies
can be found in [39]-[41].
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