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Abstract
The viscous and thermal velocity slip coefficients of various monatomic gases are computed via the linearized classical 
Boltzmann equation, with ab initio potential, subject to Maxwell and Cercignani–Lampis boundary conditions. Both clas-
sical and quantum interatomic interactions are considered. Comparisons with hard sphere and Lennard–Jones potentials, 
as well as the linearized Shakhov model are performed. The produced database is dense, covers the whole range of the 
accommodation coefficients and is of high accuracy. Using symbolic regression, very accurate closed form expressions of 
the slip coefficients, easily implemented in the future computational and experimental works, are deduced. The thermal slip 
coefficient depends, much more than the viscous one, on the intermolecular potential. For example, in the case of diffuse 
scattering, the relative differences in the viscous slip coefficient data between HS and AI potentials are less than 4%, whilst 
the corresponding ones in the thermal slip coefficient data are about 6% for He, reaching 15% for Xe. Quantum effects are 
considered for He, at temperatures 1–104 K to deduce that deviations from the classical behaviour are not important in the 
viscous slip coefficient, but they become important in the thermal slip coefficient, where the differences between the classi-
cal and quantum approaches reach 15% at 1 K. The computational effort of solving the linearized Boltzmann equation with 
ab initio and Lennard–Jones potentials is the same. Since ab initio potentials do not contain any adjustable parameters, it is 
recommended to use them at any temperature.

Keywords Kinetic theory · Boltzmann equation · Ab initio potential · Quantum scattering · Cercignani–Lampis boundary 
conditions · Velocity slip

1 Introduction

The computation of the viscous slip coefficient (VSC) and 
the thermal slip coefficient (TSC) of velocity, via kinetic 
theory, are problems of fundamental importance in rar-
efied gas dynamics (Sharipov 2016). These coefficients 
are employed in the velocity slip boundary conditions, 
which are widely used, under moderate gas rarefaction 

conditions, in order to extend the range of validity of the 
applied continuous-type fluid-dynamics model. This way, 
the correct macroscopic fluid behaviour is recovered, 
whilst the computational expensive solution of mesoscale 
kinetic-type models in the slip and early transition regimes 
is circumvented. Such approaches belong to the field of 
extended hydrodynamics and are implemented in numer-
ous engineering and technological fields including gaseous 
microfluidics (Kandlikar and Garimella 2006; Colin 2014; 
Veijola et al. 2010), vacuum gas technology and pumping 
(Pearce et al. 2013; Jousten and Jousten 2016; Vasilei-
adis et al. 2016), metrology (Naris et al. 2018; Verbovsek 
et  al. 2019), lubrication (Breuer 2002), porous media 
(Moghaddam and Jamiolahmady 2016; Johansson et al. 
2019; Zhang et al. 2022) and high-altitude gas dynamics 
(Le et al. 2012). Furthermore, the velocity slip boundary 
conditions are commonly employed in the estimation of 
the accommodation coefficients, characterising gas–sur-
face interaction, by accordingly matching computational 
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and experimental results (Silva et al. 2016; Yamaguchi 
et al. 2016; Wu and Struchtrup 2017). Therefore, in many 
aspects, the VSC and the TSC have the same importance 
with the transport coefficients and, as in the latter case, 
their theoretical computation is achieved only via kinetic 
theory. They may be computed in a direct manner by solv-
ing the corresponding classical half-space problems or 
alternatively, in an indirect manner by solving the associ-
ated slab geometry problem (Poiseuille or Couette flow 
for the VSC and thermal creep flow for the TSC) in the 
slip regime (Sharipov 2016; Ivchenko et al. 2007). In the 
latter case, the computed kinetic flow rate or shear stress 
is compared to the corresponding one obtained by the 
Stokes equation with slip boundary conditions to deduce 
the coefficient.

Due to their importance, VSC and TSC have been exten-
sively investigated. A recent and detailed review on the 
topic, with all available data of the slip coefficients, obtained 
with various kinetic equations and computational methods, 
is provided in Sharipov (2011). Therefore, our introductory 
discussion here is brief and closely related to the scope of the 
present work. The involved kinetic equations mainly include 
the linearized BGK and the Shakhov (S) kinetic models, as 
well as the linearized Boltzmann equation (LBE), which are 
numerically solved based on various versions of variational 
methods, moment methods and discrete ordinates or velocity 
methods. Most of the available data on the slip coefficients 
are via the kinetic model equations, subject to purely diffuse 
boundary conditions (DBC), Maxwell boundary conditions 
(MBC) and Cercignani–Lampis boundary conditions (CLB) 
(a long list of cited works is included in Sharipov (2011)). 
Some data are also available via the LBE with hard sphere 
(HS) potential for DBC (Sone et al. 1989; Cercignani and 
Lorenzani 2010), MBC (Loyalka and Hickey 1990; Siewert 
2003a; Gibelli 2012) and CLB (Siewert 2003b; Garcia and 
Siewert 2010; Nguyen et al. 2020). Corresponding data with 
other potentials are very limited. There are two studies with 
Lennard–Jones (LJ) intermolecular potential at temperatures 
around 300 K and purely diffuse reflection (Sharipov 2011; 
Loyalka 1990) and another, very recent one, focussed on the 
TSC with variable hard sphere potential and CLB (Wang 
et al. 2020). The major findings on the velocity slip coef-
ficients may be summarised as follows (Sharipov 2011):

• The VSC, denoted by �P , depends very weakly on the 
employed kinetic equation and the potential. In the case 
of the LJ potential the reported VSC is about the same 
for all monatomic gases. For purely diffuse scattering, 
the VSC varies as 0.968 ≤ �P ≤ 1.03 (recommended 
value for engineering purposes �P = 1 ). Furthermore, 
�P depends strongly on the accommodation coefficient 
0 ≤ �M ≤ 1 of the MBC, whilst in the case of CLB, it 
strongly depends on the tangential momentum accom-

modation coefficient 0 ≤ �t ≤ 2 , but it is almost inde-
pendent of the normal kinetic energy accommodation 
coefficient 0 ≤ �n ≤ 1.

• The TSC, denoted by �T , depends, much more than 
the VSC, on the employed kinetic equation and inter-
molecular potential. The reported data with diffuse 
reflection vary as 1.018 ≤ �T ≤ 1.18 (recommended 
value for engineering purposes �T = 1.1 ). Also, the 
TSC depends strongly on the gas–surface interaction 
kernel and the involved accommodation coefficients, 
i.e. on �M of the MBC and on both 

(
�t, �n

)
 of the CLB. 

Taking into consideration all above (strong dependency 
on the employed kinetic equation, potential and bound-
ary conditions), as well as the limited available data 
with the LBE and the observed discrepancies between 
computational and experimental results in thermal 
creep flows (Silva et al. 2016; Yamaguchi et al. 2016; 
Basdanis et al. 2022), it is necessary to obtain addi-
tional TSC data, via the LBE, with LJ or other realistic 
intermolecular potential, subject to physically justified 
boundary conditions (e.g. CLB).

Intermolecular potentials are vital in kinetic theory and 
detailed information may be found in many kinetic theory 
and rarefied gas dynamics books [e.g. (Ivchenko et al. 2007; 
Ferziger and Kaper 1972; Shen 2005)]. Surely, the HS model 
is the simplest and most widely used potential. As it is well 
known however, this model neglects the attractive intermo-
lecular force and provides the viscosity and thermal con-
ductivity transport coefficients proportional to the square 
root of temperature and therefore, it may lead to erroneous 
prediction of transport phenomena. To remedy the ineffi-
ciencies of the HS model, other more advanced models, such 
as the inverse power law, the Sutherland, the Lennard–Jones 
and the Stockmayer potentials, which rely, at certain extent, 
on physical reasonings of intermolecular collisions, have 
been proposed. Certainly, the computational effort of solv-
ing the LBE with these complex potentials is significantly 
increased and therefore, only few studies, related to classical 
one-dimensional flows, have been reported (Loyalka 1990; 
Wang et al. 2020; Sharipov and Bertoldo 2009a, b; Wu 
et al. 2015). Alternatively, there are several potential mod-
els specifically elaborated mainly for the direct simulation 
Monte Carlo (DSMC) method (Bird 1994). These models 
include the widely used variable hard sphere model, as well 
as the variable soft sphere and the generalised hard and soft-
sphere models (Shen 2005). In all these collision models, 
the sampling of the distribution of the post-collision veloc-
ity direction is kept simple and the computational DSMC 
effort remains modest. Also, the methodology proposed in 
Sharipov and Strapasson (2012a), based on lookup tables of 
the differential cross section, allows the computationally effi-
cient implementation of any potential in the DSMC method.
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All aforementioned phenomenological potentials how-
ever, have the following common drawback: they all rely 
on one or more adjustable parameters, which are extracted 
from many kinds of experimental data and are valid only 
in narrow temperature ranges and therefore, may not accu-
rately recover the transport coefficients at extremely low and 
high temperatures. On the contrary, ab initio (AI) potentials, 
which are available in the literature for all noble gases and 
their mixtures (Cybulski and Toczyłowski 1999; Przybytek 
et al. 2010; Cencek et al. 2012; Hellmann et al. 2008, 2017; 
Patkowski and Szalewicz 2010; Jäger et al. 2009, 2016; 
Jäger and Bich 2017; Haley and Cybulski 2003), are based 
on first principals and do not contain any adjustable param-
eters. More importantly, following (Sharipov and Strapasson 
2012a), a computationally efficient methodology of applying 
AI potentials in the DSMC method has been elaborated and 
validated in a series of benchmark studies, focussing on the 
computation of the transport coefficients and the solution 
of the Couette and Fourier flows for single gases and gas 
mixtures (Sharipov and Strapasson 2012b, 2013; Strapas-
son and Sharipov 2014; Sharipov 2022). More recently, the 
same methodology has been used to introduce AI potential 
with quantum scattering in DSMC calculations in order to 
consider quantum effects in light gases at low temperatures 
(Sharipov 2018a, b; Sharipov and Dias 2019; Zhu et al. 
2019). By simulating the Couette and Fourier flows, it has 
been found that quantum effects are non-negligible at tem-
peratures less than 300 K in single gases and 500 K in gas 
mixtures, whilst they become significant at temperatures less 
than 50 K. Rarefied gas flows at low temperatures appear 
in several technological applications (e.g. vacuum sciences 
(Mozetič et al. 2014), cryogenic systems and processes 
in fusion reactors (Kalinin et al. 2006; Tantos et al. 2016; 
Pearce et al. 2012; Zhang and Miller 2016), cryogenic sepa-
ration/capture of gases (Hart and Gnanendran 2009; Oh and 
Hirscher 2016) and high temperature superconducting power 
devices (Graber et al. 2015; Cheetham et al. 2016)).

Based on all above, in the present work, VSC and TSC 
are computed based on the classical LBE with AI potential, 
subject to DBC, MBC and CLB for five monatomic gases, 
namely He, Ne, Ar, Kr and Xe. The spatial evolution of the 
distribution function is always classical, whilst quantum 
scattering is considered in the binary intermolecular inter-
action (Ferziger and Kaper 1972). In the case of He, both 
classical and quantum scattering are considered at tempera-
tures ranging from 1 K up to  104 K, in order to evaluate the 
quantum effects. The coefficients are computed via the half-
space problems, as well as the associated slab geometry ones 
for benchmarking purposes. The deduced data are dense in 
terms of the involved accommodation coefficients and may 
be considered of high fidelity since they are based on the 
LBE and AI potential. Furthermore, since this is the first 
time that the AI potential is used in the LBE, the additional 

computational effort, compared to the HS and LJ potentials, 
is examined.

2  Formulation

For both coefficients under investigation, a semi-infinite 
expanse of a monoatomic gas in the half-space x′ > 0 , 
bounded by a planar infinite plate at x� = 0 , is consid-
ered. The characteristic length is the equivalent free path 
l0 = ���0∕P0 , where �′ is the viscosity and �0 =

√
2kT0∕m 

is the most probable speed, with kB denoting the Boltz-
mann constant, m the molecular mass, T0 a reference tem-
perature and P0 is some reference pressure. Henceforth, 
x = x�∕l0 ∈ [0,∞) denotes the dimensionless distance from 
the wall and � = �

/
�0 =

(
cx, cy, cz

)
 is the dimensionless 

molecular velocity.
The governing equation is the LBE, which in dimension-

less form, is written as (Ivchenko et al. 2007; Sharipov and 
Bertoldo 2009a, 2009b)

Here, the subscript i = VS, TS corresponds to VSC and 
TSC problems respectively, hi

(
x, cx, cy, cz

)
 is the correspond-

ing unknown perturbed distribution function, L
(
hi
)
 is the 

linearized collision operator and � =
(
��d2

)
∕
(
m�0

)
 is the 

dimensionless viscosity, with d denoting a characteristic 
atomic size (the zero point of the AI potential, given in 
Table 13 of Appendix 1 and the molecular diameter for HS 
potential).

It is noted that Eq. (1) is the classical Boltzmann equa-
tion, which is valid for a dilute monoatomic gas, subject 
to binary collisions, with the well-known assumption that 
the molecules involved in a collision are uncorrelated. 
The spatial evolution of the perturbed distribution func-
tion is classical, whilst quantum effects are considered 
only in the binary intermolecular interaction via quantum 
scattering. This assumption is valid under the condition (
n�3

)
∕
(
2𝜋mkBT

)3∕2
<< 1 , see Eq.  (9.3–1) in Ferziger 

and Kaper (1972), which is fulfilled at all temperatures 
T  , considered here, provided that the number density n is 
adequately small ( ℏ is the Planck constant and kB is the 
Boltzmann constant). Equation (1) may be considered as 
a classical limit of the quantum Boltzmann equation of the 
form provided by Uehling–Uhlenbeck, see Eq. (10.1–5) in 
Hirschfelder et al. (1954).

Also, it may be useful to note that the range of applicability 
of the BE based on AI potential is the same as for any other 
potential and is determined by the assumptions used to derive 
the BE. For instance, the applicability of the BE based on 
AI for helium is analysed in Cencek et al. (2012), where the 

(1)cx

�hi
(
x, cx, cy, cz

)
�x

= 2�L
(
hi
)
+ si

(
cx, cy, cz

)
.



 Microfluidics and Nanofluidics           (2023) 27:75 

1 3

   75  Page 4 of 20

transport and the virial coefficients are calculated in the tem-
perature range from 1 to 10,000 K. At any given temperature, 
these results are valid for any pressure lower than the corre-
sponding pressure of saturated vapour.

Each coefficient is computed with the corresponding source 
term si

(
cx, cy, cz

)
 , driving the flow as follows:

• Viscous slip: sVS
(
cx, cy, cz

)
= −2cxcy.

• Thermal slip: sTS
(
cx, cy, cz

)
= −cy

(
c2 −

5

2

)
.

The number of the molecular velocity components may be 
reduced by introducing, in the molecular velocity space, the 
cylindrical coordinates � =

(
cx, cr, �

)
 , with cr =

√
c2
y
+ c2

z
 and 

� = tan−1
(
cz
/
cy
)
 . The unknown distributions are expressed 

as

and then, the dimensionless LBE is written as

where the main unknowns are the distribution functions 
Yi
(
x, cx, cr

)
 . The source terms are:

The linearized collision term L
(
Yi
)
 reads

where � =
(
cx, cr, �

)
 and �̂ =

(
ĉx, ĉr, �̂�

)
 are the molecular 

velocity vectors of interacting particles and the kernel is 
calculated as

The functions Ψi have been introduced to overcome the 
kernel singularity when � = �̂ and may be each of the func-
tions Ψi =

{
1, �, c2

}
 , because of mass, momentum and 

energy conservation (Sharipov and Bertoldo 2009a). Vari-
ous functions have been tested and the most computational 
efficient ones are ΨVS = ΨTS = cr . The collision kernel 
K(�, �̂) = K

(
cx, cr, ĉx, ĉr, 𝛽

)
 for the HS potential is given by 

the simple expression (Vasileiadis et al. 2021)

(2)hi
(
x, cx, cy, cz

)
= Yi

(
x, cx, cr

)
cos �, i = VS, TS,

(3)cx
�Yi

(
x, cx, cr

)
�x

= 2�L
(
Yi
)
+ si

(
cx, cr

)
, i = VS, TS,

(4)sVS
(
cx, cr

)
= −2cxcr, sTS

(
cx, cr

)
= −cr

(
c2 − 5∕2

)
.

(5)

L
(
Yi
)
=

1

𝜋3∕2

+∞

∫
−∞

+∞

∫
0

K̃
(
cx, cr, ĉx, ĉr

)

[
Yi
(
x, ĉx, ĉr

)
−

Ψi(�̂)

Ψi(�)
Yi
(
x, cx, cr

)]
exp

(
−ĉ2

)
ĉrdĉrdĉx,

(6)

K̃
(
cx, cr, ĉx, ĉr

)
= 2

𝜋

∫
0

K
(
cx, cr, ĉx, ĉr, 𝛽

)
cos 𝛽d𝛽, 𝛽 = 𝜃 − �̂�.

whilst for an arbitrary intermolecular potential, it is given 
by the double integral (Ferziger and Kaper 1972; Sharipov 
and Bertoldo 2009b)

In Eqs. (7) and (8), the relative velocity g = |� − �̂| and the 
external cross product � × �̂ are:

Also, in Eq. (8), � , � are the deflection and azimuthal angles 
respectively, �(g,�) is the dimensionless differential cross sec-
tion (DCS) and �tot is the dimensionless total cross section 
(TCS) computed as

ΤCS in the quantum theory of binary collisions is well 
defined, whilst in the classical one, it is determined using 
the deflection angle cutoff. In the present work, the DCS is 
computed via the AI potentials, reported in Cybulski and 
Toczyłowski (1999), Przybytek et al. (2010), Cencek et al. 
(2012), Hellmann et al. (2008), Patkowski and Szalewicz 
(2010), Jäger et al. (2009), Jäger et al. (2016), Jäger and 
Bich (2017), Haley and Cybulski (2003) and Hellmann et al. 
(2017), with quantum and classical scattering as described in 
Sharipov (2022). The employed dense databases of the DCS 
in terms of the relative speed g and deflection angle � for the 
working gases are available in the supplementary material. 
The associated description, along with a brief discussion on 
the methodology to obtain the AI potentials, is provided in 
Appendix 1.

Turning next to the boundary conditions, at the wall x = 0 , 
both the MBC and the CLB have been applied following the 

(7)K(�, �̂) = 𝜋g

[
2

g2
exp

(
� × �̂

g

)2

− 1

]
,

(8)

K(𝐜, �̂�) = g

⎧
⎪⎨⎪⎩

2�

∫
0

�

∫
0

exp

�
−
�
g cot

�

2

�2

+ 2�𝐜 × �̂�� cot
��
2

�
cos �

�

�
�

�
g

sin
�

2

,�

�
+ �

�
g

sin
�

2

,� − �

��
sin�

sin4
�

2

d�d� − �tot

⎫
⎪⎬⎪⎭
.

(9)g =
[(
cx − ĉx

)2
+ c2

r
+ ĉ2

r
− 2crĉr cos 𝛽

]1∕2
,

(10)
|� × �̂| =

[(
crĉr sin 𝛽

)2
+
(
cxĉr

)2
+
(
ĉxcr

)2
− 2cxĉxcrĉr cos 𝛽

]1∕2
.

(11)�tot(g) = 2�

�

∫
0

�(g,�) sin�d� .
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description in Basdanis et al. (2022). The linearized outgoing 
distributions of both problems with MBC read as

where 
(
cx, cr

)
 and 

(
c′
x
, c′

r

)
 are the components of the molecu-

lar velocity vectors of the reflected and incident particles 
respectively. Also, 0 < aM ≤ 1 is the accommodation coef-
ficient, with �M = 1 referring to the DBC. The corresponding 
outgoing distributions for the CLB read as

The kernels A
(
c′
x
, cx

)
 , B

(
c′
r
, cr

)
 and C

(
c′
r
, cr

)
 are as 

follows:

The parameters �t ∈ [0, 2] and �n ∈ [0, 1] are the tangential 
momentum and normal kinetic energy accommodation coeffi-
cients respectively. For the specific cases of �n = 0 and �t = 2 , 
the CLB is treated as described in Basdanis et al. (2022).

Far from the wall, as x → ∞ , the perturbed distributions 
are independent of x , i.e.

The LBE (3) along with the complementary expres-
sions (4–8) and the boundary conditions (12–16) may be 
solved for various values of the accommodation coefficients 
to obtain the unknown distribution functions Yi

(
x, cx, cr

)
 , 

i = VS, TS . Then, the associated perturbed dimensionless 
macroscopic distributions may be computed by the moments 
of the distribution functions. The macroscopic velocity and 
the heat flux distributions in the y− direction, parallel to the 
plate are given by

(12)
Yi
(
0, cx, cr

)
=
(
1 − 𝛼M

)
Yi
(
0,−cx, cr

)
, cx > 0, i = VS, TS,

(13)

Yi
(
0, cx, cr

)
=∫

c�
r

∫
c�
x
<0

A
(
c�
x
, cx

)
B
(
c�
r
, cr

)

Yi
(
0, c�

x
, c�

r

)
dc�

x
dc�

r
, cx > 0, , i = VS, TS.

(14)

A
�
c�
x
, cx

�
=

2��c�x��
�n

exp

�
−
c
�2
x
+
�
1 − �n

�
c2
x

�n

�
× I0

�
2
√
1 − �ncxc

�
x

�n

�
,

(15)

B
(
c�
r
, cr

)
=

2c�
r

�t
(
2 − �t

) exp

(
−
c
�2
x
+
(
1 − �t

)2
c2
r

�t
(
2 − �t

)
)

× I1

(
2
(
1 − �t

)
crc

�
r

�t
(
2 − �t

)
)
.

(16)
�Yi

(
x, cx, cr

)
�x

= 0, i = VS, TS.

(17)

uy,i(x) =
1√
�

∞

∫
−∞

∞

∫
0

Yi
�
x, cx, cr

�
exp

�
−c2

x
− c2

r

�
c2
r
dcrdcx,

i = VS, TS,

whilst the number density, temperature and pressure are 
identically equal to zero.

Finally, VSC and TSC are calculated by the asymptotic 
solution of the corresponding perturbed macroscopic distri-
bution far from the wall as:

Furthermore, VSC and TSC problems are coupled via the 
reciprocity relation (Sharipov 2016, 2006)

where the heat flux of the VSC problem is computed as

and h(�)
(
cx, cr

)
 , h(�)

(
cx, cr

)
 are the perturbation functions 

resulting from the problems of viscosity and thermal con-
ductivity described in Sharipov (2016) and Sharipov and 
Bertoldo (2009a). The reciprocity relation (21) is applied 
for benchmarking purposes to validate the numerical scheme 
and in several cases to compute the TSC in order to reduce 
the computational effort.

It is noted that the computation of h(�)
(
cx, cr

)
 , h(�)

(
cx, cr

)
 

in the reciprocity relation and of the viscosity � and thermal 
conductivity � coefficients must be performed in a compat-
ible coordinate system with those of �P , �T . Therefore, the 
formulation must be accordingly modified by taking the 
linear dependence of the gas temperature parallel, rather 
than normal to the wall. Also, it is clarified that the com-
putation of the viscosity � is needed in the solution of the 
LBE, given by Eq. (3). The revised formulation of com-
puting h(�)

(
cx, cr

)
 , h(�)

(
cx, cr

)
 and the associated transport 

coefficients are shown in Appendix 2, whilst the employed 
dimensionless values of � (and of � although are not used) 
with HS and AI potentials are provided in tabulated form 
in Sect. 4.1.

As pointed out in the introduction, the slip coefficients 
may also be computed, in an indirect manner, via the cor-
responding slab problems in the slip regime for large values 

(18)
qy,i(x) =

1√
�

∞

∫
−∞

∞

∫
0

Yi
�
x, cx, cr

��
c2
x
+ c2

r
−

5

2

�

exp
�
−c2

x
− c2

r

�
c2
r
dcrdcx, i = VS, TS,

(19)VSC ∶ �P = lim
x→∞

uy,VS(x),

(20)TSC ∶ �T = 2 lim
x→∞

uy,TS(x).

(21)
�T =

2√
�

∞

∫
−∞

∞

∫
0

cxcrh
(�)
�
cx, cr

�
h(�)

�
cx, cr

�

e−(c
2
x
+c2

r )dcrdcx − 2QVS,

(22)QVS =

∞

∫
0

qVS(x)dx,
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of the gas rarefaction parameter � = H∕l0 , with H denoting 
the distance between the plates. VSC can be estimated by 
solving the planar Couette or Poiseuille flows to compute the 
dimensionless shear stress Π or flow rate GP respectively and 
then deduce �P from expression (104) in Sharipov (2011). 
Similarly, TSC can be estimated by solving the planar ther-
mal creep flow to compute the dimensionless flow rate 
GT and then deduce �T from expression (137) in Sharipov 
(2011). The formulation of the Couette, Poiseuille and ther-
mal creep problems with the LBE and DBC is provided, for 
completeness purposes, in Appendix 3. Comparisons of the 
VSC and TSC deduced by the two approaches are performed 
and, in all cases, an agreement within the numerical error 
is observed.

3  Numerical scheme

The LBE with HS and AI potential, subject to MBC and 
CLB is numerically solved by applying a 2nd-order central 
finite-difference scheme in the physical space and the dis-
crete velocity method in the molecular velocity space. Then, 
the discretised equations are solved in an iterative manner. 
The numerical scheme is similar to that applied in Basdanis 
et al. (2022); Vasileiadis et al. 2021).

The physical space x ∈ [0, 10] is divided into N equal seg-
ments Δx = 10∕N , with N + 1 nodes xl , l = 1, 2,… ,N + 1 . 
The computational domain of the ten equivalent mean free 
paths is adequate in order to provide grid independent results 
at the reported significant digits for the slip coefficients, in 
the physical space. This is confirmed using 15 equivalent 
free paths and deducing identical corresponding values for 
the slip coefficient. Next, the continuum molecular velocity 
space � =

(
cx, cr, �

)
 is discretised as follows.

• The spectrum of x-component of the molecular 
velocity cx ∈ (−∞,∞) is divided into two parts: 
cx ∈ (−∞, 0] , cx ∈ [0,∞) . Each part is replaced by a set 
of discrete molecular velocities as −cx,k and cx,k , with 
k = 1, 2,… ,Ncx∕2 and the values cx,k are taken to be the 
roots of the half-range Hermite polynomials of degree 
Ncx∕2 , with weights wk . The total number of discrete 
velocities in the x− direction is Ncx.

• Similarly, the spectrum of the r-component of the molec-
ular velocity cr ∈ [0,∞) is replaced by a set of discrete 
molecular velocities cr,m , with m = 1, 2,… ,Ncr . The 
values cr,m are taken to be the roots of the half-range 
Hermite polynomials of degree Ncr with weights wm.

• The spectrum of the angle � ∈ [0,�] ( 𝛽 = 𝜃 − �̂� ) is 
replaced by a set of angels �t , with t = 1, 2,… ,N� and the 
values �t are taken to be the roots of the Legendre polyno-
mials of degree N� accordingly transformed from [−1, 1] 
to [0,�] with weights wt.

Furthermore, once the discrete set 
{
cx,k, cr,m, �t

}
 is chosen, 

the collision kernel K̃
(
cx, cr, ĉx, ĉr

)
 in Eq. (6) is numerically 

integrated over � and stored. Its computation is based on the 
estimation of the associated kernels K

(
cx, cr, ĉx, ĉr, 𝛽

)
 , given 

in Eqs. (7) and (8) for the HS and AI potentials respectively. 
The computation for the HS potential is straightforward since 
K is explicitly defined in Eq. (7). On the contrary, for the AI 
potential with either quantum or classical scattering, each 
component of K is computed via a double numerical integra-
tion over the deflection angle � and the azimuthal angle � , as 
defined in Eq. (8). In this framework, a dense database of the 
DCS �(g,�) for each investigated gas is employed, in terms of 
the relative velocity g and the deflection angle � . The deflec-
tion angle � is divided into N� segments in the interval [0,�] 
and similarly the azimuthal angle � is divided into N� seg-
ments in the interval [0, 2�] . The integrations with respect to 
� and � are performed via the trapezoidal rule. Obviously, the 
computational effort of estimating kernel K , is significantly 
increased in the case of the AI potential, compared to the HS. 
It is noted however, that this computation is performed only 
once for each set 

{
cx, cr, ĉx, ĉr

}
 and then it is stored and used 

in each iteration of the scheme.
Based on the above, the unknown discretised distribution 

functions are defined as

whilst the discretised version of Eqs. (3), (5) and (6) is as 
follows:

The unknown distributions are computed in an iterative 
scheme, with the superscript (n) denoting the iteration index. 
The last term in the left- and right-hand sides of Eq. (24) have 
been included as conditioners to speed up the convergence of 
the iterative scheme (Sharipov and Bertoldo 2009b), with vb

0,k,m
 

(23)

Yi,l,k,m = Yi
(
xl, cx,k, cr,m

)
, i = VS, TS, l = 1, 2,… ,

N + 1, k = 1, 2,… ,Ncx, m = 1, 2,… ,Ncr,

(24)

cx,k

Y
(n)

i,l+1,k,m
− Y

(n)

i,l,k,m

Δx
+ a�vb

0,k,m

(
Y
(n)

i,l+1,k,m
+ Y

(n)

i,l,k,m

)

= �

Ncx∑
c=1

Ncr∑
d=1

Λk,m,c,d

[
Y
(n−1)

i,l+1,c,d
+ Y

(n−1)

i,l,c,d

−
Ψi,c,d

Ψi,k,m

(
Y
(n−1)

i,l+1,k,m
+ Y

(n−1)

i,l,k,m

)]
+ si

(
cx,k, cr,m

)

+ a�vb
0,k,m

(
Y
(n−1)

i,l+1,k,m
+ Y

(n−1)

i,l,k,m

)
,

(25)Λk,m,c,d =
1

�3∕2
Kk,m,c,dcr,de

−
(
c2
x,c
+c2

r,d

)
wcwd,

(26)Kk,m,c,d = 2

N�∑
t=1

Kk,m,c,d,twt.
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being the collision frequency for HS potential, whilst a and b 
are empirical tuning parameters.

The discretised macroscopic quantities are obtained via 
half-range Hermite quadrature as

The iterative scheme is initiated by setting Y (1)

i,l,k,m
= 0 

at the right-hand side of Eq. (24), and the iterations are 
repeated upon convergence. In each iteration, a march-
ing scheme is applied in the physical space to compute 
Y
(n)

i,l,k,m
 for each molecular velocity (no matrix inversion is 

needed). Starting from the wall and for all positive velocities 
cx,k > 0 , Y (n)

i,1,k,m
 is computed at x = 0 , based on the imple-

mented boundary conditions Eqs. (12–15). Then, marching 
away from the wall, Y (n)

i,l,k,m
 is computed at all physical nodes 

l = 2,… ,N + 1 and for positive velocities cx,k > 0 . Next, 
far from the wall, at x = 10 and for all negative velocities 
cx,k < 0 , Y (n)

i,N+1,k,m
 is computed by substituting boundary con-

dition (16) into Eq. (24) to yield

Finally, marching from x = 10 towards the wall, Y (n)

i,l,k,m
 is 

computed at all physical nodes l = N,N − 1,… , 1 and for 
negative velocities cx,k < 0 . At the end of each iteration, all 
the macroscopic quantities according to Eqs. (27–28) are 
computed.

The iterative scheme is concluded when the following 
convergence criteria is fulfilled:

Suitable values of the convergence speed-up parameters 
a and b have been chosen. For HS, a = b = 1 , whilst for AI, 
a = 0.8 , b = 3 for quantum scattering and a = 8 , b = 3 for 
classical scattering. Furthermore, the employed parameters 
ensure a numerical error of less than 0.5% in the reported 
data of the slip coefficients. The results provided here for 

(27)

u
(n)

y,i,l
=

1√
�

Ncx�
k=1

Ncr�
m=1

Y
(n)

i,l,k,m
exp

�
−c2

x,k
− c2

r,m

�
c2
r,m

wkwm, i = VS, TS,

(28)
q
(n)

y,i,l
=

1√
�

Ncx�
k=1

Ncr�
m=1

Y
(n)

i,l,k,m

�
c2
x,k

+ c2
r,m

−
5

2

�

exp

�
−c2

x,k
− c2

r,m

�
c2
r,m

wkwm, i = VS, TS.

(29)

Y
(n)

i,N+1,k,m

= Y
(n−1)

i,N+1,k,m
+

1

a�vb
0,k,m

{
�

Ncx∑
c=1

Ncr∑
d=1

Λk,m,c,d

[
Y
(n−1)

i,N+1,c,d

−
Ψi,c,d

Ψi,k,m

(
Y
(n−1)

i,N+1,k,m

)]
+ si

(
cx,k, cr,m

)}
.

(30)

1

2(N + 1)

√√√√N+1∑
l=1

(
u
(n)

i,l
− u

(n−1)

i,l

)2

+

N+1∑
l=1

(
q
(n)

i,l
− q

(n−1)

i,l

)2

< 10
−9
, i = VS, TS.

the VSC and TSC are with N = 300 , Ncx = 64 , Ncr = 32 , 
N� = 100 , N� = 100 and N� = [800 − 2000] depending on 
the gas.

Some insight in the involved computational effort is given 
in Table 1, where indicative data of the computational time 
and the number of iterations, needed for convergence of the 
iterative scheme, are provided for the VSC and TSC with 
HS, LJ and AI potentials. The computations with the LJ 
potential have been performed in order to have the com-
parison on the same basis. In both problems, the number of 
iterations and the computational time of the AI with quan-
tum scattering and the LJ potentials are about 20 times larger 
than of the HS potential, whilst the corresponding quantities 
of the AI potential with classical scattering are about two 
times larger than the AI quantum one (40 times larger com-
pared to HS). Comparing the AI with the LJ potentials, it is 
seen that the AI with quantum scattering is slightly faster. 
It is concluded that the implementation of the AI and LJ 
potentials in the LBE, compared to the HS one, even by pre-
calculating and storing the collision kernel K̃

(
cx, cr, ĉx, ĉr

)
 , 

significantly increases the required computational time and 
this is due to the increased number of iterations upon con-
vergence (Table 1). On the contrary, in the DSMC method, 
the corresponding increase of the computational time is the 
modest (Sharipov and Strapasson 2012a, b).

4  Results and discussion

Numerical results are provided for the viscous (VSC) and 
thermal (TSC) slip coefficients via the LBE with HS and 
AI potentials, subject to diffuse (DBC), Maxwell (MBC) 
and Cercignani–Lampis (CLB) boundary conditions. Based 
on the data with the HS potential, interpolating expressions 
are deduced in terms of the accommodation coefficients for 
the MBC and CLB, using symbolic regression based on 
genetic programming (Cranmer et al. 2020). The data with 
the AI potential, include quantum and classical scattering 
and of course depend on the gas and gas temperature. The 
employed gases are He, Ne, Ar, Kr and Xe at temperature 
300 K, whilst in the case of He, the VSC and the TSC are 

Table 1  Computational time and number of iterations for VSC and 
TSC based on HS, LJ and AI potentials in various numerical grids 
(LBE with DBC; employed gas: He)

Potential Grid 
(
Ncx, Ncr

)
Cores Iterations Computa-

tional time 
(h)

HS 64 × 32 64 4000 0.7
LJ 64 × 32 256 85,000 3.7
AI quantum 64 × 32 256 85,000 3.5
AI classical 64 × 32 256 150,000 5.4
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provided with quantum and classical scattering in a wide 
range of temperature in order to investigate the importance 
of the quantum effects. Comparisons with corresponding 
data obtained via the linearized Shakhov kinetic model are 
performed.

It is noted that the reliability of the employed AI poten-
tials has been verified by comparing the numerical values 
of viscosity based on the AI potential reported in Cencek 
et al. (2012), Sharipov and Benites (2021), Sharipov and 
Benites (2020) with those measured experimentally in Berg 
and Burton (2013). It is deduced that the largest disagree-
ment of 0.12% is observed for neon, whilst it is quite smaller 
for the other gases.

The employed transport coefficients are provided in 
Sect. 4.1, the VSC and the TSC data are given and discussed 
in Sects. 4.2 and 4.3 respectively and the quantum and clas-
sical approaches are compared in Sect. 4.4.

4.1  Viscosity and thermal conductivity with AI 
potential

Based on the formulation presented in Appendix 2 and the 
discretization parameters specified in Sect. 3, the dimension-
less viscosity and the thermal conductivity with HS and AI 
potential, with quantum scattering at 300 K, as well as the 
corresponding dimensional ones, are given in Table 2. The 
dimensional bulk quantities are obtained as:

Here, d denotes the zero point of the AI potential and 
is given in Table 13. Then, their relative difference with the 
corresponding ones, based also on the AI potential (Cencek 
et al. 2012; Jäger et al. 2016; Hellmann et al. 2017; Sharipov 
and Benites 2021; Bich et al. 2008; Vogel et al. 2010), as 
well as on the LJ potential (Sharipov and Bertoldo 2009a) 
is less than 1%. Also, the present HS results (last column) 
agree to at least 4 significant figures with the HS ones in 
Siewert (2002); Mohan et al. 2008).

Furthermore, in Table 3, the dimensionless viscosity and 
the thermal conductivity of He with AI potential for quan-
tum and classical scattering at various temperatures from 

(31)�� =
(
m�0�

)
∕d2,

(32)�� =
(
kB�0�

)
∕d2.

1 K up to 104 K are provided. At any temperature, the gas 
pressure should be lower than the corresponding saturated 
vapour pressure in order to meet the conditions of dilute gas.

The results via quantum scattering have a relative dif-
ference of less than 0.6% with the corresponding ones in 
Cencek et al. (2012). For temperatures equal and larger 
than 300 K, the values of � , with the quantum and classical 
approaches (as well as of � ), agree up to at least three sig-
nificant. On the contrary, at 100 K differences between the 
corresponding values of quantum and classical scattering 
start to appear, which are increased as the temperature is 
decreased. At temperatures 10 K and 1 K, the relative differ-
ences between the quantum and classical approaches reach 
about 30% and 40% respectively, both in � and � , implying 
that in the estimation of the transport coefficients at low 
temperature, quantum effects must be considered.

In the present work, the viscosity data provided in Tables 2 
and 3 are used in the solution of the LBE to deduce the VSC 
and the TSC, whilst the thermal conductivity data are pro-
vided mainly for completeness purposes and future reference. 
The comparison between quantum and classical scattering is 
limited only to He, where the effect of quantum phenomena is 
the strongest one amongst all gases considered here.

4.2  Viscous slip coefficient

The half-space velocity viscous slip problem, also known 
as the Kramers problem, defined in Sect.  2, has been 

Table 2  Viscosity and thermal 
conductivity via the LBE based 
on AI and quantum scattering at 
T0 = 300 K

Gas He Ne Ar Kr Xe HS

Dimensionless viscosity ( �) 0.1868 0.1457 0.1091 0.09600 0.08313 0.12667
Viscosity ( �′ ) [μPa s] 19.87 31.84 22.68 25.42 23.20
Dimensionless thermal conductivity ( �) 0.7066 0.5529 0.4134 0.3637 0.3150 0.47931
Thermal conductivity ( �′ ) [mW/(m K)] 156.2 49.79 17.89 9.554 5.568

Table 3  Dimensionless viscosity and thermal conductivity of He 
based on AI potential at various temperatures; comparison between 
classical and quantum scattering

Temperature (K) Viscosity ( �) Thermal conductiv-
ity ( �)

Classical Quantum Classical Quantum

1 0.03227 0.05350 0.1214 0.2065
10 0.07577 0.1082 0.2852 0.4080
102 0.1536 0.1552 0.5802 0.5880
3 × 102 0.1869 0.1868 0.7042 0.7066
103 0.2385 0.2385 0.8993 0.9012
104 0.4509 0.4510 1.704 1.705
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numerically solved via the LBE with HS and AI potentials, 
subject to DBC, MBC and CLB. Then, the VSC is computed 
by Eq. (19).

In Table 4, the VSC is provided for the five monoatomic 
gases with HS, LJ (Sharipov 2011) and AI potentials at 
300 K and DBC ( �M = 1 ). A relative difference of less than 

1% is observed between the VSC data with LJ and AI poten-
tials. The VSC slightly increases with the molecular mass. 
As can be seen, all data, including the HS ones, agree within 
± 2 % with the recommended value of �P = 1 for DBC, inde-
pendently of the gas.

In Table 5, the VSC data are extended in the case of MBC 
with �M ∈ [0.2, 1] . The relative difference in the VSC data 
between HS and AI potentials is less than 4%. The data 
based on the HS potential can be approximated by the inter-
polation expression

which may be applied in the range 0.2 < 𝛼M < 1 with 
an error of less than 0.2%. Expression (33) is similar to 

(33)�P =
1.773

�M
− 0.114�M − 0.673,

Table 4  Viscous slip coefficient based on HS, LJ and AI potentials at 
T0 = 300 K and diffuse boundary conditions

Potential �P

He Ne Ar Kr Xe

HS 0.987 0.987 0.987 0.987 0.987
LJ (Sharipov 2011) 1.00 1.00 1.02 1.02 1.03
AI quantum 0.999 1.00 1.01 1.02 1.02

Table 5  Viscous slip coefficient 
based on HS and AI potentials 
at T0 = 300 K and Maxwell 
boundary conditions

�M σP

HS AI quantum

He Ne Ar Kr Xe

0.2 8.17 8.19 8.20 8.22 8.24 8.27
0.4 3.72 3.74 3.74 3.76 3.78 3.79
0.6 2.21 2.23 2.24 2.25 2.26 2.27
0.8 1.45 1.47 1.47 1.48 1.49 1.50
1 0.987 0.999 1.00 1.01 1.02 1.02

Table 6  Viscous slip coefficient 
based on HS and AI (gas: He) 
potentials at T0 = 300 K and 
Cercignani–Lampis boundary 
conditions

Potentials �t �P

�n = 0 0.2 0.4 0.6 0.8 1

HS 0.2 8.17 8.15 8.13 8.11 8.09 8.08
0.4 3.71 3.70 3.68 3.67 3.66 3.65
0.6 2.21 2.20 2.19 2.18 2.18 2.17
0.8 1.45 1.45 1.44 1.44 1.43 1.43
1 0.987 0.987 0.987 0.987 0.987 0.987
1.2 0.671 0.676 0.681 0.685 0.688 0.692
1.4 0.440 0.450 0.458 0.466 0.474 0.481
1.6 0.262 0.276 0.288 0.300 0.311 0.322
1.8 0.119 0.137 0.153 0.169 0.184 0.198
2 0 0.0221 0.0425 0.0617 0.0801 0.0978

AI quantum (He) 0.2 8.19 8.16 8.13 8.11 8.09 8.08
0.4 3.73 3.71 3.70 3.68 3.67 3.65
0.6 2.23 2.22 2.21 2.20 2.19 2.18
0.8 1.47 1.46 1.46 1.45 1.45 1.44
1 0.999 0.999 0.999 0.999 0.999 0.999
1.2 0.680 0.686 0.691 0.696 0.700 0.704
1.4 0.446 0.457 0.467 0.476 0.485 0.494
1.6 0.265 0.281 0.295 0.309 0.323 0.336
1.8 0.120 0.140 0.159 0.178 0.195 0.212
2 0 0.0243 0.0476 0.0700 0.0919 0.113
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Eq. (105) of Sharipov (2011), based on the HS potential. The 
present VSC data for the HS potential and MBC, agree in 
all shown significant digits with those reported in Sharipov 
(2011).

Next, in Table 6, the VSC data based on HS and AI poten-
tials, subject to CLB are tabulated. The database in terms 
of �t ∈ [0.2, 2] and �n ∈ [0, 1] is dense to facilitate future 
work in the characterisation of the gas–surface interaction 
via comparisons with experiments. In Table 6, the VSC data 
with AI potential are only for He, whilst the data of the other 
gases are available in the supplementary material. For �t = 1 , 
�P is independent of �n , whilst for 𝛼t < 1 and 𝛼t > 1 , as �n 
increases, �P slightly decreases and increases respectively. 
The dependency of the VSC on �n is very weak, except in 
the case of strong back-scattering ( 𝛼t > 1.5 ). Also, the VSC 
data in Table 6 for �t ≤ 1 and �n = 0 are in excellent agree-
ment with the corresponding ones in Table 5 for �M ≤ 1 . 
Furthermore, the corresponding VSC data with HS and AI 
potentials, agree within 4% for �t ≤ 1.6 , whilst in the cases 
of strong back-scattering, �t = [1.8, 2] , the disagreement 
reaches about 13%. Thus, the effect of the intermolecular 
potential on �P may be considered as negligible, unless 
strong back-scattering is present. The VSC based on HS 
potential with CLB can be approximated by the interpola-
tion expression

which can be applied for 0.2 < 𝛼t < 1.6 and 0 < 𝛼n < 1 with 
an error of less than 0.2% and unlike the available expres-
sions in the literature, it captures, not only the strong effect 
of �t , but also the weak effect of �n.

(34)

�P =
1.773

�t
− 0.786 − 0.00668

(
1 − 0.978�n

)(
10 − �t

)
(
−0.357�n + �t + 0.695

)
log

(
�t
)
,

In Fig. 1, the present VSC data based on the LBE, denoted 
by �(HS)

P
 and �(AI)

P
 for the HS and AI potentials, are compared 

with those �(S)

P
 obtained via the linearized Shakhov model 

for the CLB. The values of �(S)

P
 have been reproduced here, 

for the values of �t , �n in Table 6. It is seen that the relative 
errors 

(
�
(HS)

P
− �

(S)

P

)
∕�

(HS)

P
 in Fig. 1a and 

(
�
(AI)

P
− �

(S)

P

)
∕�

(AI)

P
 

in Fig. 1b, remain small for �t ≤ 1.6 , whilst they signifi-
cantly increase for 𝛼t > 1.6 (particularly in the light species). 
Thus, the VSC is independent of the implemented kinetic 
equation, unless strong back-scattering is present in the flow 
setup.

A more detailed view of the whole Knudsen layer, is 
shown in Fig. 2, where the dimensionless velocity and 
the heat flux distributions in the VSC problem via the 
LBE with HS and AI potentials and the linearized Shak-
hov kinetic model are plotted. The results based on the AI 
potential correspond to He and Xe with DBC. The thick-
ness of the Knudsen layer is about 4 equivalent free paths. 
Although the associated velocity slips at the wall of each 
approach are different, the velocity distributions inside the 
Knudsen layer and their asymptotic behaviour are far from 
the wall, which determines the VSC, present relative dif-
ferences of less than 4%. The heat flux distributions show 
a similar behaviour. Also, they all tend to zero far from 
the wall.

In several cases, mainly for benchmarking purposes, 
the VSC has been also deduced, following the indirect 
formulation of Appendix 3. For example, in the case of 
HS potential and DBC the value of the VSC, extracted 
by solving the half-space problem is �P = 0.987 (Table 4). 
Exactly the same result is deduced by solving the Couette 
flow for � ≥ 10 or the Poiseuille flow for � ≥ 80.
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Fig. 1  Relative difference of the VSC data of the linearized Shakhov model with respect to the LBE based on HS potential (left) and AI potential 
for He and Xe (right)
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4.3  Thermal slip coefficient

The half-space velocity thermal slip problem, defined in 
Sect. 2, is numerically solved via the LBE with HS and AI 
potentials, subject to DBC, MBC and CLB, and then, the 
TSC is computed by Eq. (20). Alternatively, the TSC may 
be deduced from the reciprocity relation (21). The double 
integral at the right-hand side of Eq. (21) is calculated only 
once (independent of the boundary conditions) and then, 
�T is readily deduced through the heat flux QVS of the VSC 
problem. Here, the reciprocity relation (21) has been used 

mainly for benchmarking purposes and it always accurately 
fulfilled.

In Table 7, the TSC is provided for the five monoatomic 
gases with HS, LJ and AI potentials at 300 K and diffuse 
boundary conditions ( �M = 1 ). The TSC for the HS poten-
tial is �T = 1.02 and agrees in all significant figures shown, 
with the reported one (Sharipov 2011; Sone et al. 1989), 
whilst the values of the TSC with AI potential for the five 
monatomic gases are almost identical to the ones with the 
LJ potential (Sharipov 2011). The differences between the 
TSC with HS and AI (or LJ) potentials are more significant 
than in the VSC and more specifically, they are about 6% 
for He and they increase with the molecular mass of the 
gas, reaching up to about 15% for Xe. The recommended 
value of �T = 1.1 is reasonable, since it is in the middle of 
the TSC data range for the five monatomic gases with AI 
(or LJ) potential.

In Table 8, the TSC data with HS and AI potentials at 
300 K are given for MBC, with �M ∈ [0.2, 1] . The devia-
tions between the TSC based on the HS and AI potentials 
for all five gases with 𝛼M < 1 are quantitatively similar as 
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Fig. 2  Dimensionless velocity (left) and heat flux (right) profiles in the VSC problem with DBC via the LBE based on HS and AI (gases: He, 
Xe) potentials and the linearized Shakhov kinetic model

Table 7  Thermal slip coefficient based on HS, LJ and AI potentials at 
T0 = 300 K and diffuse boundary conditions

Potential �T

He Ne Ar Kr Xe

HS 1.02 1.02 1.02 1.02 1.02
LJ (Sharipov 2011) 1.08 1.07 1.13 1.16 1.18
AI quantum 1.07 1.07 1.12 1.15 1.17

Table 8  Thermal slip coefficient 
based on HS and AI potentials 
at T0 = 300 K and Maxwell 
boundary conditions

�M σT

HS AI quantum

He Ne Ar Kr Xe

0.2 0.831 0.838 0.837 0.839 0.844 0.845
0.4 0.881 0.903 0.902 0.918 0.929 0.934
0.6 0.929 0.965 0.963 0.992 1.01 1.02
0.8 0.975 1.02 1.02 1.06 1.08 1.10
1 1.02 1.08 1.07 1.12 1.15 1.17
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for �M = 1 . It is useful to note that, unlike the VSC, the TSC 
decreases as the gas reflection at the wall reflection becomes 
more specular, which is reasonable considering the driving 
force mechanism in the thermal creep flow. The TSC with 
the HS potential and MBC can be approximated by the inter-
polation expression

which can be applied in the range 0.2 ≤ �M ≤ 1 with an error 
of less than 0.1%. Expression (35) is more complex than 
Eq. (138) in Sharipov (2011) but fits the data better. The 
reported TSC data with HS potential and MBC are in excel-
lent agreement with the ones cited in Sharipov (2011).

In Table 9, the TSC data with HS and AI potential, sub-
ject to CLB are tabulated. In this case, the available data in 
the literature are mainly limited to the HS potential. There 
is only one recent work via the LBE with the variable hard 
sphere model and CLB, where TSC data for monatomic 
gases are reported by solving the slab thermal creep flow 
for a limited number of CLB accommodation coefficients 
(Wang et al. 2020). Here, as in the VSC, the data are based 
on the solution of the half-space problem for many values 
of �t ∈ [0.2, 2] and �n ∈ [0, 1] . In Table 9, the TSC data with 
AI potential are only for He, whilst for the other gases, the 
data are available in the supplementary material. In order to 
have a graphical view of the dependency of �T on ( �t, �n ), the 
TSC data for He in Table 9, along with the ones in Table 8 

(35)�T = 0.7789 + 0.2667�M − 0.02667�2
M
,

for the MBC, are plotted in Fig. 3. Clearly, �T depends on 
both �t and �n . There is a resemblance between the MBC 
( 𝛼M < 1 ) and CLB data for �t ≤ 1 and �n = 0 , and of course 
the data coincide when �M = �t = 1 , independently of �n . 
Furthermore, the dependency of the TSC on �t is strong 
at small values of �n and is rather weak as �n approaches 

Table 9  Thermal slip coefficient 
based on HS and AI (gas: He) 
potentials at T0 = 300 K and 
Cercignani–Lampis boundary 
conditions

Potentials at �T

an = 0 0 0.2 0.4 0.6 0.8 1

HS 0.2 0.807 0.861 0.914 0.965 1.01 1.06
0.4 0.850 0.889 0.927 0.964 1.00 1.04
0.6 0.902 0.927 0.952 0.976 1.00 1.02
0.8 0.959 0.971 0.983 0.995 1.01 1.02
1 1.02 1.02 1.02 1.02 1.02 1.02
1.2 1.07 1.06 1.05 1.04 1.03 1.02
1.4 1.13 1.10 1.08 1.06 1.04 1.01
1.6 1.17 1.14 1.10 1.07 1.04 1.00
1.8 1.20 1.16 1.11 1.07 1.02 0.979
2 1.21 1.16 1.11 1.06 1.00 0.944

AI quantum (He) 0.2 0.822 0.883 0.941 0.997 1.05 1.10
0.4 0.883 0.926 0.968 1.01 1.05 1.09
0.6 0.947 0.974 1.00 1.03 1.05 1.08
0.8 1.01 1.03 1.04 1.05 1.06 1.08
1 1.08 1.08 1.08 1.08 1.08 1.08
1.2 1.14 1.13 1.11 1.10 1.09 1.08
1.4 1.20 1.17 1.15 1.12 1.10 1.07
1.6 1.25 1.21 1.18 1.14 1.10 1.07
1.8 1.29 1.24 1.20 1.15 1.10 1.05
2 1.31 1.26 1.21 1.15 1.09 1.03
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Fig. 3  TSC data for He based on AI potential at T0 = 300 K vs the 
accommodation coefficients of the CLB and MBC
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one. More specifically, as �t increases, the TSC for �n ≤ 0.4 
monotonically increases, for �n = [0.6, 0.8] changes non-
monotonically and for �n = 1 monotonically decreases. The 
dependency of the TSC on �n is strong for small and large 
values of �t and gradually diminishes as �t → 1 . The relative 
deviations of the TSC between the HS and AI for each gas 
results remain about the same as in the case of DBC.

The TSC with the HS potential and CLB may be approxi-
mated by the interpolation expression

which can be used in the ranges 0.4 ≤ �t ≤ 1.8 and 
0 ≤ �n ≤ 1 with an error of less than 0.4%.

The relative differences between TSC data for the HS and 
AI potentials, �(HS)

T
 and �(AI)

T
 respectively and the 

(36)

�T = 1.018 + 0.0124
(
1 − �t

)
[(
1 − �n

)(
2.19�t − 25.7

)
+ 6.84

(
0.958�t − 1

)2]
,

corresponding ones �(S)

T
 by the linearized Shakhov model, 

reproduced here for the purposes of the present work, are 

potted in Fig. 4. The relative errors 
(
�
(HS)

T
− �

(S)

T

)
∕�

(HS)

T
 in 

Fig. 4a and 
(
�
(AI)

T
− �

(S)

T

)
∕�

(AI)

T
 in Fig. 4b are significant, 

except in the case of Xe, where, coincidentally, the errors are 
small. Thus, it is confirmed that the TSC depends on the 
implemented kinetic equation and intermolecular 
potential.

The dimensionless velocity and the heat flux distributions 
in the TSC problem via the LBE with HS and AI (gases: He 
and Xe) potentials and the linearized Shakhov kinetic model 
are plotted in Fig. 5. The plots are for DBC. The thickness 
of the Knudsen layer is about 5 equivalent mean free paths. 
The differences are significant in the velocity slips at the 
wall, as well as in the velocity distributions, whilst they 
are almost negligible in the heat flux distributions. In the 
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Fig. 4  Relative difference of the TSC data of the linearized Shakhov model with respect to the LBE based on HS potential (left) and AI potential 
for He and Xe (right)
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velocity distributions, the one of the linearized Shakhov 
model almost coincides with the one of Xe, but it is far away 
from the one of He.

The TSC may also be deduced, following the indirect for-
mulation of Appendix 3. Indicatively, the value of �T = 1.02 
obtained with HS potential and DBC (Table 7), may be 
reproduced by solving the plane thermal creep (or transpi-
ration) flow for � ≥ 80.

4.4  Quantum vs classical AI at various temperatures

Recently, by employing the AI potential with quantum and 
classical scattering in the Couette and Fourier flows, differ-
ences have been observed in the computed shear stresses and 
heat fluxes respectively of light gases, at temperatures less 
than 300 K (Sharipov 2018b). Here, a similar study is per-
formed for the slip coefficients. The importance of the quan-
tum effects in the estimation of the VSC and TSC is investi-
gated, by considering quantum and classical approaches in 
the case of He with AI potential. Although the deviations 
from the classical behaviour are expected at low tempera-
tures, the investigation includes a wide range of temperatures 
from 1 K up to 104 K. For temperatures below the boiling 

point of He ( 4.2 K at 1 atm), the pressure must be accord-
ingly decreased to keep He in the gaseous phase.

The computed data of �P and �T are provided in Table 10 
and in Fig. 6, based on DBC. VSC and TSC values of He 
with the quantum approach at 300 K are the ones in Tables 4 
and 7 respectively. The VSC data remain almost constant in 
the whole range of temperatures and the differences between 
the classical and quantum approaches is negligible. On the 
contrary, TSC data depend on temperature. Also, differ-
ences between the classical and quantum approaches start 
to appear at 100 K and they increase as the temperature 
decreases, reaching about 15% at 1 K. It is concluded that 

Table 10  VSC and TSC data of He based on AI potential considering 
classical and quantum scattering at various temperatures

Temperature (K) �P �T

Classical Quantum Classical Quantum

1 1.01 0.980 1.12 0.945
10 1.02 1.00 1.18 1.08
102 1.00 0.997 1.08 1.06
3 × 102 1.00 0.999 1.07 1.07
103 1.00 1.00 1.08 1.09
104 1.01 1.01 1.12 1.12
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Fig. 6  VSC and TSC data for He based on AI potential considering classical and quantum scattering vs temperature
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quantum effects are not important in the computation of �P , 
but they play an important role in the computation of �T 
and should be considered at low temperatures. In Fig. 7, the 
TSC of He with AI potential at 1 , 10 and 100 K for various 
values of the accommodation coefficients of the CLB is plot-
ted. As the temperature decreases the qualitative behaviour 
remains the same, but the TSC data change significantly. As 
observed in Figs. 6 and 7, the dependence of VSC and TSC 
on temperature is non-monotonic. It is noted that the total 
cross sections of all noble gases are non-monotonic func-
tions of the relative velocity of interaction (Sharipov 2022, 
2018a). As a result, since the relative velocity is proportional 
to temperature, many macroscopic characteristics, including 
the viscous and thermal slip coefficients, are non-monotonic 
functions of temperature.

5  Concluding remarks

The viscous and thermal velocity slip coefficients are com-
puted by solving the corresponding half-space problems via 
the linearized Boltzmann equation, with ab initio potential, 
subject to Maxwell and Cercignani–Lampis boundary con-
ditions. Complimentary results with hard sphere and Len-
nard–Jones potentials are provided for comparison purposes. 
Comparisons with data obtained via the linearized Shak-
hov model are also performed. The investigation includes 
five monatomic gases, namely He, Ne, Ar, Kr and Xe. The 
importance of quantum effects is considered by employing 
quantum and classical scattering theory to He, at tempera-
tures from 1 K up to 104 K.

Extensive data of the computed viscous and thermal slip 
coefficients are tabulated. The reported results are consid-
ered of high accuracy and free from modelling approxima-
tions because they are based on the linearized Boltzmann 
equation, with ab initio potential. Furthermore, they have 
been benchmarked in various manners, such as fulfilment 
of reciprocity relation and comparisons with the associated 
slab geometry flows. The produced database is dense and 
covers the whole range of the accommodation coefficients. 
The results based on the ab  initio potential and Cercig-
nani–Lampis boundary conditions are provided for the first 
time in the literature. Furthermore, interpolation expressions 
of the viscous and thermal slip coefficients, based on HS 
potential, reproducing the tabulated data with deviations less 
than 0.4% are deduced. These expressions are easily imple-
mented in the future computational and experimental works.

It is confirmed that the thermal slip coefficient depends, 
much more than the viscous slip coefficient, on the intermo-
lecular potential and model kinetic equation. From the non-
equilibrium thermodynamic point of view, this behaviour 
may be justified, at certain extend, considering that viscous 
slip coefficient is a direct phenomenon (Couette flow with 

an “infinite” distance between the stationary and moving 
plates), with pure momentum transfer, whilst the thermal 
slip coefficient is a cross phenomenon (thermal creep flow), 
with coupled momentum and energy transfer. Therefore, the 
latter one is more sensitive to imposed differences (potential, 
model equation, etc.). The variation of the viscous slip coef-
ficient for various potentials is less than 3%, whilst of the 
thermal slip coefficient between the hard sphere and ab ini-
tio potentials is about 6% for He and increases, as the gas 
become heavier, reaching 15% for Xe. Also, the deviations 
of the data via the linearized Shakhov model with respect to 
the linearized Boltzmann equation are larger in the thermal, 
rather than in the viscous slip coefficient. Overall, the behav-
iour of the thermal and viscous slip coefficients in terms of 
the accommodation coefficients is qualitatively similar to the 
one of the Poiseuille and thermal creep flow rates respec-
tively in the slip regime (Basdanis et al. 2022).

Concerning the deviations from the classical behav-
iour for light gases at low temperatures, it has been found 
that quantum effects are not important in the viscous slip 
coefficient, but they become important in the thermal slip 
coefficient. In the thermal slip coefficient of He, the differ-
ences between the classical and quantum approaches start to 
appear at T0 = 100 K and reach 15% at T0 = 1 K.

Since this is the first time that ab initio potentials are 
introduced into the linearized Boltzmann equation, it is 
worth to note that the involved computational effort is about 
the same as for the Lennard–Jones and significantly larger 
than for the hard sphere. However, ab initio potentials are 
based on first principles and do not contain any adjustable 
parameters, and therefore, in flow setups, where the hard 
sphere potential may produce erroneous results (e.g. mix-
tures), ab initio potential, instead of Lennard–Jones, should 
be employed.

Appendix 1: DCS based on ab initio potential 
with quantum and classical scattering

The AI potentials, employed in the present work, are cited in 
Cybulski and Toczyłowski (1999), Przybytek et al. (2010), 
Cencek et al. (2012), Hellmann et al. (2008), Patkowski and 
Szalewicz (2010), Jäger et al. (2009), Jäger et al. (2016), 
Jäger and Bich (2017), Haley and Cybulski (2003) and Hell-
mann et al. (2017) and have been obtained in the typical 
manner. They are calculated applying only the Coulomb 
interaction law between nuclei and all electrons of two atoms 
separated by some distance. It is assumed that electrons obey 
the Fermi–Dirac statistics with the Pauli’s exclusion princi-
ple. Once the energy of two interaction atoms is calculated 
for several values of the separation, an interpolating formula 
for the potential is elaborated.
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In the present work, the AI potential interpolation formu-
las are obtained from the literature and in Table 11, the exact 
reference with the associated equation for each gas, are cited. 
Particularly in the case of He, the retardation correction, 
given by Eq. (46) in Cencek et al. (2012), has been added to 
the potential (the supplementary material of Cencek et al. 
(2012) contains a code calculating the potential). Following 
the specification of the AI potential, the DCS is computed 
based on the quantum or classical theory following the meth-
odologies described in Sharipov (2022), Sharipov (2018a) 
and Sharipov and Bertoldo (2009a) respectively.

Based on these methodologies, dense databases of the 
dimensional DCS �′

(
g′,�

)
 in terms of the dimensional rela-

tive speed g′ and deflection angle � have been created and 
are provided in the supplementary material for all involved 
gases in tabular form. Each value of DCS corresponds to a 
specific pair 

(
g′,�

)
 . The characteristics of each of the six 

databases (five for quantum theory and one for classical the-
ory) in the supplementary material are shown in Table 12, 
where the number of discrete values of g′ and � , along with 
their range, is specified. The DCS �′

(
g′,�

)
 and the rela-

tive speed g′ may be converted to dimensionless form as 
�(g,�) = ��

(
g�,�

)/
d2 and g = g�

/
�0 where the character-

istic atomic size d of each gas is given in Table 13 (Sharipov 
and Benites 2021, 2020). In the quantum databases, the DCS 
has been calculated based on the spin n of the most repre-
sentative isotope of each species, namely n = 0 for He, Ne, 
Ar, and Kr, whilst n = 1∕2 for Xe. The data are available in 
the interval (0,�∕2

]
 because they are symmetric with respect 

to � = �∕2 . In the classical database, the DCS is provided 
in the whole interval (0,�).

In Figs. 8 and 9, some indicative comparisons between 
the DCS and TCS respectively of He for quantum and clas-
sical scattering theory, based on AI potential, are shown. 
Significant differences in the cross sections between quan-
tum and classical theory are observed.

Appendix 2: Formulation of integral 
equations for viscosity and thermal 
conductivity

Following (Ivchenko et  al. 2007; Ferziger and Kaper 
1972), dimensionless viscosity � and thermal conductiv-
ity � are given by

(37)� =
1√
�

∞

∫
−∞

∞

∫
0

X(�)
�
cx, cr

�
cxc

3
r
exp

�
−c2

x
− c2

r

�
dcrdcx.

respectively, where the functions X(j)
(
cx, cr

)
 , with j = �,� , 

satisfy the integral equations

The integral equation (40) is not adequate for the com-
putation of X(�) and it is solved along with the additional 
constrain

The linearized collision operators L̃
[
X(j)

]
 , j = �,� , are 

written as

(38)

� =
1√
�

∞
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∞

∫
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Fig. 8  Differential cross section �′
(
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)
 of He for quantum (blue 

lines) and classical (red lines) scattering based on AI potential vs the 
deflection angle � at g� = 1 m/s (empty circle), g� = 10 m/s (empty 
square), g� = 102 m/s (empty diamond), g� = 103 m/s (empty inverted 
triangle) and g� = 104 m/s (empty rightward triangle)
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where the kernel K̃ is given by Eq. (6) and the associated 
kernels (7) and (8) for the HS and AI potentials. Once the 
functions X(j)

(
cx, cr

)
 are computed, the coefficients � and � 

are readily deduced from Eqs. (37) and (38) respectively, 
whilst the perturbed distribution functions h(�)

(
cx, cr

)
 and 

h(�)
(
cx, cr

)
 , employed in the reciprocity relation (21) are 

given by

Based on this analysis, tabulated data of � and � are pro-
vided in Sect. 4.1

Appendix 3: Formulation of the plane 
Couette, Poiseuille and thermal creep flows

For all three slab geometry problems, the dimensionless LBE 
is written as

where −1∕2 < x < 1∕2 and i = C,P, T  for the planar Cou-
ette, Poiseuille and thermal flows respectively. The line-
arized collision operators L

(
Yi
)
 is given by Eqs. (5) and (6), 

with ΨC = ΨP = ΨT = cr and ZC = ZP = ZT = cos � . The 
source terms are:

The diffuse boundary conditions at x = ∓1∕2 read as 
follows:

(43)h(j)
(
cx, cr

)
=

1

2�
crX

(j)
(
cx, cr

)
, j = �,�.

(44)cx
�Yi

(
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)
�x

= 2��L
(
Yi
)
+ si

(
cx, cr

)
,

(45)
sC
(
cx, cr

)
= 0, sP

(
cx, cr

)
= −cr, sT

(
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= −cr

(
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)
,
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Fig. 9  Total cross section �′
tot

 of He for quantum and classical scattering theory based on AI potential vs relative velocity g′

Table 11  AI potential interpolation formulas applied for each gas

Gas He Ne Ar Kr Xe

Reference Equation (60) in 
(Cencek et al. 2012)

Equation (4) in  
(Hellmann et al. 2008)

Equation (2) in  
(Patkowski and  
Szalewicz 2010)

Equation (8) in  
(Jäger et al. 2016)

Equation (6) in  
(Hellmann et al. 2017)

Table 12  Databases of DCS provided in supplementary material for 
the five gases

�′
(
g′,�

)
Number of 
discrete g′

Range of discrete g′ Number of 
discrete �

He (quantum) 11,000 0.178 − 4.96 × 105 400
He (classical) 3181 0.178 − 0.5416 × 105 999
Ne (quantum) 10,750 0.1 − 105 1000
Ar (quantum) 15,000 0.3534 × 10−3 − 0.1505 × 107 1000
Kr (quantum) 15,000 0.01 − 0.1068686 × 107 1000
Xe (quantum) 13,800 0.0101 − 0.62 × 106 1900

Table 13  Distance d[angstrom: Å] at which the AI potential is zero 
(Sharipov and Benites 2021, 2020)

He Ne Ar Kr Xe

2.641 2.761 3.358 3.581 3.902



 Microfluidics and Nanofluidics           (2023) 27:75 

1 3

   75  Page 18 of 20

The dimensionless shear stress distribution ΠC(x) in the 
Couette flow is obtained by

and as it is well known it remains constant between the 
plates. The dimensionless flow rates GP and GT in the Poi-
seuille and thermal creep flows respectively, are obtained by

where the bulk velocity distributions uy,P(x) and uy,T (x) are 
computed according to Eq. (17).

For the slab geometry problems, the same numerical 
scheme as in the half-space problems is employed.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10404- 023- 02681-0.
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