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Abstract Oscillatory, rarefied, linear and nonlinear fully developed flows of single 5

gases and binary gas mixtures, driven by external harmonic mechanisms with arbi- 6

trary frequency, have been recently considered by the authors in a series of works. 7

Here, these works are reviewed by focusing on the most notable findings. More 8

specifically, the effects of the oscillation frequency on the velocity overshooting 9

and gas separation phenomena in gas mixture flows and of the oscillation amplitude 10

on the flow pattern in nonlinear single gas flows are presented. Modeling is based 11

in the former case on the McCormack kinetic model and in the latter one on the 12

DSMC method. In general, as the flow becomes more rarefied higher frequencies are 13

needed to trigger the overshooting phenomenon, which becomes more pronounced 14

as the molecular mass of the gas species is increased. Notably, gas separation may 15

be present in the whole range of gas rarefaction, provided that the flow is subject 16

to adequate high oscillation frequency. Finally, the presence of strong external 17

harmonic forces does not significantly affect the oscillatory macroscopic quantities, 18

including the mass flow rate (no distortion of the amplitude-frequency curve), except 19

of the oscillatory axial heat flux, which exhibits a non-sinusoidal pattern. 20

1 Introduction 21

Rarefied boundary-driven oscillatory flows of single gases have been extensively 22

investigated over the last two decades [1–7]. These flows are present in various res- 23

onator structures [8, 9], while acoustic enhancement or attenuation (even cloaking) 24

may be achieved in viscous-thermal fluids [10]. Propagation of sound waves due 25

to mechanical and thermal excitation through binary gas mixtures has been also 26

considered [11–13]. 27
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The corresponding rarefied pressure-driven oscillatory gas flows have attracted 28

much less attention, although there are employed in vapor deposition [14], microflu- 29

idic oscillators and pumps [15] and cryogenic pulse tubes [16]. Of course, in the 30

hydrodynamic regime, pressure-driven oscillatory gas flows have been thoroughly 31

examined and are encountered in numerous technological fields ranging from 32

pneumatic lines and control systems [17], reciprocating pumps [18], combustion 33

engines, and bioengineering to enhancement of thermal diffusion in mass and heat 34

transfer processes, species contaminants dispersion and gas separation or mixing 35

[19, 20]. Experimentally, oscillatory-type pressure-driven gas flows may be realized 36

by reciprocating pistons [21] or membranes [22] or by oscillating the channel itself 37

[23]. 38

Although boundary and pressure gradient oscillatory flows have certain similari- 39

ties, such as the traveling wave disturbance causing the flow, they also have various 40

differences related to the involved physical phenomena and quantities of practical 41

interest. The general mechanisms occurring in oscillatory boundary-driven flows 42

include inertia and viscous forces, while in pressure gradient flows, in addition to the 43

above, pressure forces are also considered. In the latter case, the difference in time 44

scales of pressure and viscous forces may lead to unexpected results, such as the 45

annular effect (velocity overshooting) and enhanced gas separation, which are not 46

observed in former case. Also, in boundary-driven flows we are mainly interested 47

in velocity and shear stresses, while in oscillatory pressure gradient flows including 48

pulsatile flows, we are also interested in the computed flow rates. 49

Taking into consideration that oscillatory pressure- driven gas flows in the 50

hydrodynamic regime are very common, along with the progress in fabrication 51

techniques of micro devices, it is reasonable to expect that oscillatory pressure- 52

driven rarefied flows of single gases and gas mixtures will be also widely employed, 53

in the short future. Therefore, very recently, some theoretical studies in fully 54

developed oscillatory gas flows in capillaries [24–27] have been reported. Here, 55

the most notable results of the detailed analysis in [24–27] for linear and nonlinear 56

fully developed flows of single gases and binary gas mixtures are presented. 57

2 Linear Oscillatory Fully Developed Binary Gas Mixture 58

Flow 59

Consider the time-dependent, isothermal, rarefied flow of a binary gas mixture 60

between two infinite long parallel plates fixed at y ′ = ±H/2, connecting two 61

containers, as shown in Fig. 1. The pressure in the two containers harmonically 62

oscillates as P̃j
(
t ′
) = R

[
Pj exp

(−iωt ′)], j = 1, 2, resulting in the externally
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Fig. 1 Oscillatory flow configuration

imposed harmonically oscillating pressure gradient, along the parallel plates, of the 63

form 64

dP̃

dx ′
= R

[
dP

dx ′
exp

(−iωt ′)
]
. (1)

Here, P̃
(
x ′, t ′

) = P
(
x ′
)

exp
(−iωt ′) is the oscillatory pressure in the x ′− 65

direction parallel to the plates, dP/dx ′ and ω refer to the amplitude and frequency, 66

respectively, of the oscillatory pressure gradient dP̃ /dx ′ and t ′ is the time, while 67

R denotes the real part of a complex expression i = √−1). The well-established 68

assumption that the fluid oscillates in bulk or en mass, i.e., that all quantities oscillate 69

with the same frequency as the pressure gradient, is applied [28]. Thus, this is an 70

harmonically oscillating, fully developed flow (pressure and density remain constant 71

at each cross section, while all other macroscopic distributions depend only in the 72

y ′−direction normal to the plates). 73

The binary gas mixture consists of two monatomic species of molecular masses 74

mα, with the index “α = 1, 2,” always referring, without loss of generality, 75

to the light and heavy species of the mixture, respectively. The corresponding 76

local number densities of the mixture components, defined by ñα
(
t ′
)
, oscillate 77

harmonically as ñα
(
t ′
) = R

[
nα exp

(−iωt ′)] , where nα , α = 1, 2, is the local 78

amplitude of the oscillating number density of each species. The number density 79

of the mixture is ñ
(
t ′
) = ñ1

(
t ′
) + ñ2

(
t ′
)
, while the molar fraction of the mixture 80

is defined as the ratio of the number density of the light species over the mixture 81

number density, given by C̃
(
t ′
) = R

[
C exp

(−iωt ′)] , with C = n1/n = 82

n1/ (n1 + n2), being the local amplitude of the molar fraction. The molar fraction 83

amplitude of the heavy species is 1 − C. The mean molecular mass of the mixture 84

is given by m = Cm1 + (1− C)m2. The number densities of the species and 85

the mixture are related to the corresponding pressures with the equation of states 86

as P̃α = ñαkT and P̃ = ñkT , respectively, where P̃α are the partial pressures, 87

P̃ = P̃1+P̃2 is the total pressure, T is the reference temperature. The mass densities 88

of the species and the mixture are defined as ρα = mαnα and ρ = mn, respectively. 89

The deduced time-dependent flow quantities of practical interest include the bulk 90

velocity Ũα

(
t ′, y ′

)
, shear stress Π̃α

(
t ′, y ′

)
and heat flow Q̃α

(
t ′, y ′

)
of the two 91
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species α = 1, 2, which depend on y ′, the space independent variable vertical to 92

the plates and vary harmonically with time t ′ as 93

Z̃α

(
t ′, y ′

) = R

[
Zα

(
y ′
)

exp
(−iωt ′)] , (2)

where Z̃α

(
t ′, y ′

) =
[
Ũα

(
t ′, y ′

)
, Π̃α

(
t ′, y ′

)
, Q̃α

(
t ′, y ′

)]
, while Z̃α

(
y ′
) = 94[

Uα

(
y ′
)
,Πα

(
y ′
)
,Qα

(
y ′
)]

is a vector of the corresponding complex functions. 95

In addition, the oscillatory particle flow rates of the two species are given by 96

J̃α
(
t ′
) = R

[
Jα exp

(−iωt ′)] , where Jα = nα

H/2∫
−H/2

Uαdy
′, as well as the 97

corresponding mixture particle flow rate J̃ = J̃1 + J̃2, are complex functions. 98

Furthermore, the dimensionless independent space and time variables x = 99

x ′/H, y = y ′/H and t = t ′ω, are introduced. The dimensionless amplitude of the 100

local oscillatory pressure gradient is 101

X = H

P (x ′)
dP

(
x ′
)

dx ′
= 1

P (x)

dP (x)

dx
� 1. (3)

The bulk velocity, shear stress and heat flow in Eq. (2) are nondimensionalized by 102

(υX), (2PX) and (υPX), respectively, with υ =
√

2kT
/
m being the characteristic 103

speed of the mixture, to yield: 104

ϕ̃α (t, y) = R

[
ϕα (y) exp (−it)] = ϕ(A)α (y) cos

[
t − ϕ(P )a (y)

]
, (4)

where ϕ̃α (t, y) =
[
ũα (t, y) , *̃α (t, y) , q̃α (t, y)

]
. In Eq. (4) the superscripts (A) 105

and (P ) refer to the amplitude and the phase angle, respectively, of each complex 106

quantity. 107

Furthermore, the flow rates J̃α
(
t ′
)

are nondimensionalized by (PXH/mυ) to 108

obtain the dimensionless oscillatory particle flow rates of each species 109

G̃α (t) = R

[
Gα exp (−it)] = R

[
G(A)
α exp

[
i
(
G(P )
α − t

)]]
= G(A)

α cos
[
t −G(P )

α

]
,

(5)

where 110

Gα = G(A)
α exp

(
iG(P )

α

)
= 2

∫ 1/2

−1/2
uαdy. (6)

Also, the dimensionless oscillatory particle flow rate of the mixture is given by 111
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G̃ (t) = R

[
G exp (−it)] = R

[
G(A) exp

[
i
(
G(P) − t

)]]
= G(A) cos

[
t −G(P)

]
,

(7)

where G = CG1+ (1− C)G2, with the superscripts (A) and (P ), always referring 112

to amplitudes and phase angles, respectively. 113

The oscillatory binary gas mixture flow between parallel plates is also character- 114

ized by the gas rarefaction and oscillation parameters, given by 115

δ = PH

μυ
and θ = P

μω
, (8)

respectively, where μ is the gas viscosity at some reference temperature T , υ is the 116

characteristic speed of the mixture, the ratio (P/μ) is the intermolecular collision 117

frequency. The composition of the binary gas mixture, i.e., the molecular masses m1 118

and m2, as well as the amplitude of the molar fraction C, must be also specified. 119

Next, the kinetic formulation, based on the McCormack model [29], is shortly 120

presented. Due to the condition X � 1 the unknown time-dependent distribution 121

function of each species can be linearized in a standard manner and the linearized 122

distributions are accordingly projected to yield the following set of kinetic equa- 123

tions: 124

−i δ
θ

√
mα

m
Φα + cαy

∂Φα

∂y
+ ωaγ αΦa =

125

−1

2

√
m

ma

+ ωα

{
γ αua − v

(1)
αβ

(
ua − uβ

)− 1

2
v
(2)
αβ

(
qa − ma

mβ

qβ

)
+

126

+2

√
m

ma

[(
γ α − v(3)αα + v(4)αα − v

(3)
αβ

)
*a + v(4)αα*β

]
cay+

127

+2

5

[(
γ α − v(5)αα + v(6)αα − v

(5)
αβ

)
qa + v

(6)
αβ

√
mβ

ma

qβ − 5

4
v
(2)
αβ

(
ua − uβ

)] (
c2
ay −

1

2

)}
,

(9)
128

−i
√
mα

m

δ

θ
Ψα + cαy

∂Ψα

∂y
+ ωαγ αΨa =

129

= 4

5
ωα

[(
γ α − v(5)αα + v(6)αα − v

(5)
αβ

)
qa + v

(6)
αβ

√
mβ

ma

qβ − 5

4
v
(2)
αβ

(
ua − uβ

)]
. (10)

Here, Φa and Ψa are complex perturbed distribution functions for each species, 130

ωα = δ
(
C
/
γ1 + (1− C)

/
γ2
)√

ma

/
m and γa (a = 1, 2) are the collision 131

frequencies of each species [30]. Also, α, β = 1, 2, with α �= β, while the 132
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expressions for the quantities ν
(k)
αβ are given in terms of the Chapman-Cowling 133

integrals as in [30]. The macroscopic quantities uα, *α and qα at the right hand 134

side of Eqs. (9) and (10) are defined in Eq. (4), respectively, and after applying the 135

linearization and projection procedures, they are obtained as moments of Φα and 136

Ψα as follows: 137

uα (y) = 1√
π

∫ ∞

−∞
Φa exp

(
−c2

ay

)
dcay, (11)

138

*α (y) = 1√
π

√
ma

m

∫ ∞

−∞
Φacay exp

(
−c2

ay

)
dcay, (12)

139

qα (y) = 1√
π

∫ ∞

−∞

[
Ψa +

(
c2
ay −

1

2

)
Φa

]
exp

(
−c2

ay

)
dcay. (13)

In the present work purely diffuse reflection at the walls is assumed. 140

The above set of equations is computationally solved based on the discrete 141

velocity method in the cy space and on the second-order diamond finite difference 142

scheme in the y space. The discretized equations are solved in an iterative manner 143

between the kinetic equations (9) and (10) and the moment equations (11)–(13). 144

More information about the numerical scheme may be found in [27]. 145

Computational results are presented for the mixture flow rate amplitude and 146

phase angle (Fig. 2), the velocity and shear stress distributions (Fig. 3) and the 147

ratio of the flow rate amplitudes of the species (Fig. 4) in a wide range of the 148

gas rarefaction and oscillation parameters δ and θ , as well as of the molar fraction 149

C ∈ [0, 1] for the He–Xe mixture with m2/m1 = 32.8. 150

In Fig. 2, the He–Xe flow rate amplitudeG(A) and phase angleG(P) are presented 151

in terms of δ, with θ = [1, 100] and C = [0, 0.5, 0.9]. The results with C = 152

Fig. 2 Mixture flow rate amplitude G(A) and phase angle G(P) of He-Xe vs δ
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Fig. 3 Velocity u(A)α (y) and shear stress *(A)
α (y) amplitudes of each species of He-Xe for δ = 10

and θ = 0.1. Reprinted with permission from [27]. Copyright (2022) by the American Physical
Society

Fig. 4 Ratio of flow rate amplitudes G
(A)
1 /G

(A)
2 of the species of He-Xe vs δ ∈ [

10−4, 102
]
.

Reprinted with permission from [27]. Copyright (2022) by the American Physical Society

0 correspond to the oscillatory single gas flow reported in [25]. The flow rate 153

amplitudes and phase angles of the mixture (C �= 0) depend on the flow parameters 154

similarly to the corresponding single gas ones (C = 0). Always, the mixture flow 155
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rate amplitude is larger and the phase angle is smaller than the corresponding ones of 156

the single gas. At large θ the dependency of G(A) on δ, is not monotonic, indicating 157

that there is a critical δ to obtain the maximum flow rate, while at small θ , G(A) is 158

decreased monotonically. This is due to the fact that at low oscillation frequencies 159

and as long as δ � θ , the variation of G(A) with δ has some resemblance with the 160

steady one, including the presence of the Knudsen minimum. Then, as δ is further 161

increased the effect of the inertia forces becomes significant and G(A) is decreased. 162

In addition, as θ is decreased (the oscillation frequency is increased),G(A) is always 163

decreased, while G(P) (the phase angle lag with respect to the pressure gradient) is 164

always increased reaching the limiting value of π/2 . 165

In Fig. 3, the distributions of the velocity and shear stress amplitudes u(A)α (y) and 166

*
(A)
α (y) of each species of the He–Xe gas mixture, with C = [0.1, 0.4, 0.7, 0.9], 167

are provided for δ = 10 and θ = 0.1. The specific values of δ and θ are suitable 168

for investigating the velocity overshooting phenomenon in the light and heavy 169

species of the mixture. Velocity overshooting is due to the fact that close to the 170

wall, viscous and pressure gradient forces actually add to each other due to the 171

large phase angle lag between them. As a result, the combined effect accelerates the 172

fluid to higher velocities than those produced in the core by the pressure gradient 173

forces acting alone. For Xe, compared to He, the velocity overshooting becomes 174

sharper, appearing, along with its maximum value, closer to the wall inside a 175

much thinner layer. In the core of the flow, the velocity amplitudes of both He 176

and Xe become flat and they are close to the corresponding analytical amplitudes 177

u
(A)
α = (θ/2δ) (m/mα) (see Section 3 in [27]). In parallel, *(A)

α (y) for both He 178

and Xe take their highest values at the wall and they are monotonically decreased 179

towards the channel center. The attenuation of the shear stress amplitude of He is 180

smooth, diffused in the whole distance from the wall to the center, while the one of 181

Xe is rapid in a narrow zone close to the wall and far from the wall the shear stress of 182

Xe becomes zero. Since the viscous forces in the case of He act in the whole distance 183

between the plates, while in the case of Xe only in thin zones close to the walls, 184

the above observations on the velocity overshooting of He and Xe are physically 185

justified. This description of the velocity and shear stress amplitudes remains valid 186

for all molar fractions tested [27]. In brief, it is seen that as the molecular mass 187

of the gas species increases, the species shear stress, which is created at the wall 188

and is diffused into the flow, attenuates more rapidly, i.e., the Stokes layer becomes 189

thinner and the Richardson effect more pronounced. Velocity overshooting may be 190

also present in even lower rarefaction parameters provided that higher oscillation 191

frequencies are applied [24]. 192

The gas separation phenomenon for various values of δ and θ is discussed next. 193

Gas separation in rarefied steady-state pressure-driven binary gas flows though 194

capillaries may be analyzed by computing the ratio of the particle flow rates J1/J2, 195

which is monotonically increased as δ is decreased up to its maximum value, equal 196

to
√
m2/m1 (1− C) /C, in the free molecular limit (δ→ 0) [31]. 197

In Fig. 4, the ratio of the flow rate amplitudesG(A)
1 /G

(A)
2 is provided in terms of δ 198

for the He–Xe gas mixture, with C = [0, 05, 0.35, 0.65, 0.95] and θ = [0.1, 1, 10]. 199
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At θ = 10 the ratio G
(A)
1 /G

(A)
2 varies qualitatively similarly as in the steady- 200

state binary gas flow setup. It is about constant or slightly reduced in the free 201

molecular regime (at δ = 0 it is equal to the corresponding steady one) and then 202

it is monotonically decreased asymptotically going in the slip and hydrodynamic 203

regimes to one. In the free molecular regime, with regard to the gas rarefaction 204

parameter, as δ → 0, with θ > 0, Eqs. (9) and (10) tend to the corresponding 205

ones for steady-state binary gas flow in the free molecular limit [30]. However, at 206

θ = 1 and θ = 0.1 the behavior of G(A)
1 /G

(A)
2 is completely different. It remains 207

about constant in free molecular regime, but then, it is increased in the transition 208

regime and finally, as δ further increases, it keeps asymptotically increasing to some 209

constant value, which is the molecular mass ratio of the heavy over the light species 210

m2/m1 (G(A)
He /G

(A)
Xe = 32.8). This is in accordance to the closed-from expression 211

that as θ → 0, G1/G2 = m2/m1 [27]. This behavior, with the minimum and 212

maximum values of G(A)
1 /G

(A)
2 appearing at the free molecular and hydrodynamic 213

limits, respectively, and the increase in the transition regime (completely reversed 214

compared to the steady-state behavior) becomes more pronounced as θ is decreased. 215

It is evident that the oscillation parameter θ has a dominant effect on the 216

amplitude ratio of He over Xe, which is significantly increased as θ is decreased 217

(at θ = 0.1 the flow rate amplitude of He is about thirty times larger than of 218

Xe). This behavior is due to the corresponding behavior of the velocity amplitudes 219

and it is contributed to inertia forces, which are increased with the oscillation 220

frequency and they influence the bulk velocity amplitude of the heavy species much 221

more than of the light one. Therefore, as θ is decreased, the flow rate amplitude 222

of the heavy species decreases much more significantly than the light one and 223

although both amplitudes are decreased the velocity amplitude ratio of the light 224

over the heavy species is increased. This effect is magnified as the flow becomes 225

less rarefied overcoming diffusion effects due to increased intermolecular collisions 226

and therefore, as δ increases the amplitude ratio keeps increasing. There is no 227

contradiction to general theory, since oscillatory flows approach the hydrodynamic 228

regime, only when both δ and θ are adequately large. 229

3 Nonlinear Oscillatory Fully Developed Single Gas Flow 230

Consider the oscillatory nonlinear fully developed flow of a monatomic rarefied 231

gas, confined between two parallel infinite plates at temperature T0 located at 232

y ′ = ±H/2, due to an external harmonic force acting on the gas per unit mass 233

in the x−direction parallel to the plates [26]. The external force is defined as 234

F̃ ′
(
ω, t ′

) = F ′ cos
(
ω t ′

)
, where F ′ is the force amplitude. The convenient 235

complex factor exp
(−iωt ′) previously used, cannot be employed since the force 236

amplitude F ′ may be arbitrarily large and in nonlinear oscillatory flows the real and 237

imaginary parts are not separable. 238
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The oscillatory macroscopic distributions of practical interest, characterizing 239

the flow, include the x−component Ux ′
(
y ′, t ′

)
of the velocity vector, the number 240

density N
(
y ′, t ′

)
, the temperature T

(
y ′, t ′

)
, and the axial and normal heat flow 241

components Qx ′
(
y ′, t ′

)
and Qy ′

(
y ′, t ′

)
, respectively, with −H/2 ≤ y ′ ≤ H/2 and 242

0 ≤ t ′ ≤ 2π/ω. The most important overall quantities are the mass flow rate and 243

axial heat flow 244

M ′ (t ′) = m

∫ H /2

−H /2
N
(
y ′, t ′

)
Ux ′

(
y ′, t ′

)
dy ′ and Q̄x ′

(
t ′
) = 1

H

∫ H /2

−H /2
Qx ′dy

′,

(14)

respectively, where m is the molecular mass. 245

The parameters defining the above dimensional flow setup include the rarefaction 246

parameter and oscillation parameter defined in Eq. (8). Also, the external force 247

parameter, defined as F = F ′H/υ2
0 , is needed. It is the inverse of the square of the 248

Froude number (F r). The effect of the external force on the flow is increased with 249

F and nonlinear effects are becoming dominant. On the contrary, as F is decreased 250

the corresponding linear oscillatory flow, which is linearly proportional to the force 251

magnitude, is gradually recovered. 252

The following dimensionless variables are introduced: 253

x = x ′

H
, dx = dx ′

H
, y = y ′

H
, dy = dy ′

H
, t = t ′

(H/υ0)
(15)

254

n = N

N0
, ux = Ux ′

υ0
, τ = T

T0
, pxy = Πx ′y ′

2P0
, p = P

2P0
, qx = Qx ′

υ0P0
, qy = Qy ′

υ0P0
.

(16)

The equation of state becomes p = nτ/2. 255

Then, the dimensionless external force acting on the gas per unit mass becomes 256

F̃ (δ, θ, t) = F cos

(
δ

θ
t

)
, (17)

while the dimensionless flow rate and axial heat flow are given by 257

M (t) = M ′

2P0
(
H
/
υ0
) =

∫ 1/2

−1/2
n (t, y) u (t, y) dy, q̄x (t) =

∫ 1/2

−1/2
qx (y, t) dy.

(18)

Next, the typical DSMC approach, with the No Time Counter (NTC) scheme 258

proposed by Bird [32], is implemented. The time evolution of the particle system 259

within a small time interval�t ′ is split into two consecutive steps: free motion of all 260
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particles and binary collisions of particles. The time step �t ′ is nondimensionalized 261

as �t = �t ′/ (H/υ0). Purely diffuse boundary conditions are considered at the 262

walls, while periodic boundary conditions are applied in the x− and z− directions. 263

Hard sphere (HS) molecules are assumed. The external force is introduced by 264

accordingly altering the particle velocities at each time step, during the free motion. 265

Numerical results of the dimensionless flow rate and axial heat flow are provided 266

in terms of the force amplitude F = [0.05, 0.1, 0.5], corresponding to small, 267

moderate, and large force amplitudes, in a wide range of δ and θ . Since the results 268

of the nonlinear gas flow are similar with the linear ones in terms of δ and θ , only 269

the effect of the force amplitude is here discussed. 270

In Fig. 5, the flow rate amplitudes GA are divided by the external force F 271

in order to directly compare with the corresponding linear results (the linear 272

solution is proportional to F ) and they are presented for δ = [0.1, 1, 10], θ = 273[
0.1, 1, 10, 20, 102

]
and F = [0.05, 0.1, 0.5]. The linear flow rate amplitudes 274

obtained in [26] are also provided. It is seen that for F = 0.05 and F = 0.1 the 275

deviation between the corresponding DSMC and linear solutions is small for δ ≥ 1 276

and for all values of θ , while for δ = 0.1 and θ = [10, 20, 102] the deviation 277

is increased. It is evident that nonlinear effects are becoming more pronounced in 278

highly rarefied atmospheres (small δ) and low frequencies (large θ ). For F = 0.5 all 279

deviations between DSMC and linear results are further increased due to nonlinear 280

effects. Again, the largest deviations are occurring at δ = 0.1 and θ = [10, 20, 102] 281

(δ << θ ), while the deviations remain small for δ ≥ 1, even at high frequencies. 282

Overall, it may be stated that the presence of strong external harmonic forces does 283

not significantly affect the mass flow rate of the oscillatory flow, i.e., there is no 284

distortion of the amplitude-frequency response curve. 285

The space-average axial flow q̄x (t) is plotted over one cycle in Fig. 6 for 286

δ = [0.1, 1, 10] and θ = [
0.1, 1, 10, 20, 102

]
with F = [0.05, 0, 5]. It is readily 287

seen that there are significant qualitative differences between the corresponding 288

space-average heat flow for F = 0.05 and F = 0.5. For F = 0.05, q̄x (t) for 289

all values of δ and θ has a sinusoidal behavior over time. For F = 0.5, q̄x (t) 290

shows over one cycle various patterns. It is seen that for δ = 0.1 with θ = 0.1, 291

δ = 1 with θ = [0.1, 1] and for δ = 10 and θ = [0.1, 1, 10], i.e., in all cases 292

Fig. 5 Normalized oscillatory flow rate amplitude GA/F vs θ ∈ [10−1, 102
]
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Fig. 6 Space-average axial heat flux q̄x (t) vs t with F = 0.05 (up) and F = 0.5 (down) and
θ = [0.1, 1, 10, 20, 100]. Reproduced from [26], with the permission of AIP Publishing

where δ ≥ θ , q̄x (t) exhibits a sinusoidal pattern. On the contrary, in all cases where 293

δ < θ , q̄x (t) exhibits a rather complex non-sinusoidal pattern indicating that the 294

introduced nonlinearities are responsible for the generation of oscillatory motion 295

containing several harmonics. These results are in agreement with the discussion 296

in Fig. 5, where nonlinear effects are becoming more significant in highly rarefied 297

flow (small δ) and low oscillation frequencies (large θ ). Also, for both values of 298

F , the amplitude of q̄x (t), as of all other macroscopic quantities, is reduced with θ 299

and almost diminishes at very high frequencies, particularly as the gas becomes less 300

rarefied. 301

4 Concluding Remarks 302

A brief overview of rarefied, oscillatory, pressure-driven, linear and nonlinear, fully 303

developed flows of single gases and binary gas mixtures is provided, while the 304

detailed analysis may be found in [24–27]. Here, the discussion is focused on 305

the most notable findings, which include velocity overshooting, gas separation and 306

nonlinear effects. The following concluding remarks are stated: 307

• Velocity overshooting (or the so-called Richardson effect) is present in oscilla- 308

tory, rarefied single and binary gas mixture flows, but as the flow becomes more 309

rarefied higher frequencies are needed to trigger this phenomenon. 310
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• Gas separation in oscillatory binary gas mixture, may be present in the whole 311

range of gas rarefaction provided that the flow is subject to adequate high 312

oscillation frequency. 313

• Range of applicability of linear theory is much wider than expected in terms 314

of the imposed amplitude of the oscillatory pressure gradient. The oscillatory 315

axial heat flux is the mostly affected quantity and the only one that, due to 316

nonlinearities, may exhibit a complex pattern. 317

The present results may be useful in the design of technological devices operating 318

at moderate and high frequencies in the whole range of gas rarefaction, applicable 319

in various technological fields. 320
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