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Abstract: The formulation of the half-range moment method (HRMM), well defined in steady rar-
efied gas flows, is extended to linear oscillatory rarefied gas flows, driven by oscillating boundaries.
The oscillatory Stokes (also known as Stokes second problem) and the oscillatory Couette flows,
as representative ones for harmonically oscillating half-space and finite-medium flow setups re-
spectively, are solved. The moment equations are derived from the linearized time-dependent BGK
kinetic equation, operating accordingly over the positive and negative halves of the molecular veloc-
ity space. Moreover, the boundary conditions of the “positive” and “negative” moment equations are
accordingly constructed from the half-range moments of the boundary conditions of the outgoing
distribution function, assuming purely diffuse reflection. The oscillatory Stokes flow is characterized
by the oscillation parameter, while the oscillatory Couette flow by the oscillation and rarefaction
parameters. HRMM results for the amplitude and phase of the velocity and shear stress in a wide
range of the flow parameters are presented and compared with corresponding results, obtained by the
discrete velocity method (DVM). In the oscillatory Stokes flow the so-called penetration depth is also
computed. When the oscillation frequency is lower than the collision frequency excellent agreement
is observed, while when it is about the same or larger some differences are present. Overall, it is
demonstrated that the HRMM can be applied to linear oscillatory rarefied gas flows, providing
accurate results in a very wide range of the involved flow parameters. Since the computational effort
is negligible, it is worthwhile to consider the efficient implementation of the HRMM to stationary
and transient multidimensional rarefied gas flows.

Keywords: half-range moment method; rarefied gas flow; oscillatory Couette flow; Stokes second
problem; oscillation frequency; Knudsen number; gas microflows

1. Introduction

Oscillatory boundary-driven rarefied gas flows have attracted, over the years, consid-
erable attention [1–13], due to their presence in a variety of systems, such as resonating
filters, sensors and actuators, where the computation of the damping forces is crucial in con-
trolling and optimizing the resolution and sensitivity of the signal [14]. Combined effects
of harmonically oscillating both the boundary velocity and temperature have been also
investigated to enhance or to cloak acoustic transduction [15–17]. The research work has
been extended to binary gas mixtures, examining the propagation of sound waves, due to
mechanical and thermal excitation caused by moving boundaries [18–23]. The investigated
setups include flow configurations in half-space, slab, rectangular cavities, comb-drives,
and nonplanar geometries. Very recently, rarefied pressure-driven oscillatory or pulsatile
gas flows in capillaries have been also considered [24–26].

In rarefied oscillatory flows, kinetic effects are appreciable in a wide range of the
involved flow parameters and it is necessary to resort to kinetic modeling. The imple-
mented numerical schemes are mainly based on the stochastic Direct Simulation Monte
Carlo (DSMC) method [1,8,15–17] and the deterministic solution of the Boltzmann equation
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or kinetic model equations by the discrete velocity method (DVM) [2–4,21,22]. As it is
well known, however, in both approaches, the numerical solution may become computa-
tionally very demanding. More specifically, stochastic methods suffer from statistical noise
in low speed flows, while deterministic schemes exhibit very slow convergence rates in
the late transition, slip and hydrodynamic regimes. In addition, in oscillatory gas flows,
compared to the associated steady ones, the computational effort is further increased,
since the main parameters characterizing the flow include the gas rarefaction, as well as
the oscillation frequency.

Alternatively, moment methods, derived from the kinetic equations via the Chapman–
Enskog expansion [27–30] or the Grad moment method [29,31–34] may be implemented.
Oscillatory gas flows have been studied with the regularized 13-moment equations in [30,35]
for relatively large gas rarefaction parameters and low frequencies and the regularized
26-moment equations in [36], obtaining good agreement with kinetic results up to the
transition regime. Full-range moment methods are, in general, computationally very
efficient, but they suffer from certain well-known drawbacks. The range of their appli-
cability is typically limited to flows in the hydrodynamic, slip and the upper transition
regimes [37], while the treatment of suitable boundary conditions, despite the recently
achieved progress [38], remains a cumbersome issue.

On the contrary, half-range moment methods [39–41], derived by the successive
integration of the kinetic equations, separately in the positive and negative molecular
velocity space, based on half-range orthogonal polynomials, circumvents most of the
pitfalls reported in full-range moment methods. The half-range integral operators may
be suitably applied to the boundary conditions to derive the moment equations at the
boundaries in a straightforward manner, while the boundary induced discontinuities in the
flow domain, are more properly captured, enlarging the applicability range of this approach.
Despite their promising features, half-range moment methods have not been widely applied
and the associated work in the literature is rather limited. Half-range moment methods
have been successfully implemented to solve the classical one-dimensional Couette and
Poiseuille flows, as well as the two-dimensional cavity flow and the comb drive flow
configurations [42,43]. In all cases the computed macroscopic quantities exhibit very good
agreement with the corresponding ones, obtained by the solution of kinetic equations, in a
wide range of gas rarefaction, covering the viscous, slip and transition regimes. Half-range
moment methods have also been implemented to accurately estimate the velocity slip
coefficients [44]. More recently, they have been successfully introduced in the formulation
of half-range lattice Boltzmann schemes significantly improving, compared to the typical
full-range lattice Boltzmann method (LBM), the overall computational efficiency [45–49].

Half-range moment methods have not been implemented, so far, in low speed,
harmonically oscillating rarefied gas flows. It would be interesting to investigate the effec-
tiveness of this approach in terms of low, moderate and high oscillation frequencies. As it is
well-known, oscillatory gas flows are in the hydrodynamic (or viscous) regime, when both
the mean free path and collision frequency are much smaller than the characteristic length
and oscillation frequency respectively [2,3]. When either of these restrictions is relaxed,
the flow is classified as rarefied and may be in the transition or free molecular regimes
depending on the time and space characteristic scales [2–5,24–26].

In this context, in the present work two prototype oscillatory gas flows, namely the
oscillating plane Couette and Stokes flows are tackled, in the whole range of gas rarefaction
and oscillation frequency by the half-range Hermite moment method. At the kinetic level,
both flows are successfully modeled by the linearized Bhatnagar, Gross, and Krook (BGK)
kinetic equation subject to diffuse boundary conditions [2–4,7,50]. The output quantities
from the half-range moment method include the amplitudes and the phases of the velocity
and shear stresses and they are systematically compared with corresponding results based
on the kinetic solution via the DVM to investigate the range of its validity in solving finite
medium (slab) and half-space oscillatory flow problems.
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The rest of the paper is structured as follows: In Section 2 the flow configurations of
the oscillating plane Couette and Stokes flow problems, along with their kinetic description
are briefly reviewed. The half-range moment method for both considered oscillatory gas
flows is formulated, in a unified manner, in Section 3. In Section 4, the results based on the
half-range moment method are tabulated and compared with the corresponding kinetic
obtained by the DVM. The most important findings and some are concluding remarks are
stated in Section 5.

2. Flow Configurations and Kinetic Formulation

The oscillatory Stokes and Couette flow problems have been solved based on kinetic
modeling and a detailed description of the flow characteristics, as well as of the magnitudes
and phases of the macroscopic quantities of both flows, has been provided [2,3]. Here,
the flow setups and their kinetic formulation are briefly reviewed in order to implement
the half-range moment method described in Section 3.

In the oscillatory Stokes flow (also known as Stokes second problem), the gas occupies
the half space y′ > 0, bounded by an infinitely long plate at y′ = 0, while in the oscillatory
Couette flow the gas is confined between two infinitely long parallel plates located at y′ = 0
and y′ = H′. In both setups the plate at y′ = 0 is parallel to the x′z′ plane and oscillates
harmonically in the x′− direction, with oscillation cyclic frequency ω. Fully-established
oscillatory gas flow at uniform pressure P0 and temperature T0 is assumed. The velocity of
the oscillating plate is expressed as

ŨW
(
t′
)
= Re

[
UW exp

(
−iωt′

)]
(1)

where Re denotes the real part of a complex expression, i =
√
−1, t′ is the time variable

and UW � υ0 is the amplitude of the wall velocity with υ0 =
√

2RT0 denoting the most
probable molecular speed (R is the specific gas constant). The oscillating plate creates an
harmonically oscillating gas flow in the x′− direction, with bulk velocity and shear stress

Ũ
(
t′, y′

)
= Re

[
U
(
y′
)

exp
(
−iωt′

)]
and P̃xy

(
t′, y′

)
= Re

[
Pxy
(
y′
)

exp
(
−iωt′

)]
, (2)

Respectively, where U(y′) and Pxy(y′) are complex quantities. The flow regime is de-
fined by the oscillation frequency ω and the reference equivalent mean free path l = µυ0/P0,
where µ is the gas dynamic viscosity at the reference temperature T0.

Following [2,3] the reference oscillation and gas rarefaction parameters, defined as

θ =
P0

µω
and δ =

P0H′

µυ0
, (3)

respectively, are introduced. The former one is the ratio of the reference collision frequency
ν = P0/µ over the oscillation frequency ω and the latter one the ratio of a reference length
over the equivalent mean free path. As ω ω is decreased, θ is increased, reaching steady-
state conditions as θ → ∞ (ω = 0), while as δ is increased, the equivalent mean free path is
decreased. It is well established that oscillatory gas flows are in the hydrodynamic regime
when both θ >> 1 and δ >> 1 [3,24].

In addition, the following dimensionless quantities are introduced:

t = t′ω, y =
y′ω
υ0

=
y′

lθ
, H =

H′ω
υ0

=
δ

θ
, ũ(t, y) =

Ũ(t′, y′)
UW

, p̃xy(t, y) =
P̃xy(t′, y′)

2P0

υ0

UW
(4)

Then, the dimensionless bulk velocity and shear stress can be written as

ũ(t, y) = Re[u(y) exp(−it)] = uA(y) cos[t− uP(y)] (5)

and
p̃xy(t, y) = Re

[
pxy(y) exp(−it)

]
= pxy,A(y) cos

[
t− pxy,P(y)

]
(6)
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and the results may be presented in terms of the complex velocities u(y) and shear
stresses pxy(y) and more specifically in terms of their amplitudes uA(y), pxy,A(y) and
phases uP(y), pxy,P(y).

Next, the kinetic formulation, based on the perturbed distribution function, which de-
pends on time, space and molecular velocity and obeys the time-dependent linearized BGK
kinetic equation is stated. Taking into consideration that both flows are one-dimensional
and harmonic in time, it is deduced that the dimensionless reduced time-dependent distri-
bution function may be written as

Ỹ
(
t, y, ζy

)
= Re

[
Y
(
y, ζy

)
exp(−it)

]
(7)

where ζy is the y− component of the molecular velocity vector. Here, Y
(
y, ζy

)
denotes

a complex distribution function, which obeys the linearized reduced BGK kinetic equa-
tion [2,3]

ζy
∂Y
∂y

+ (θ − i)Y = θu (8)

where

u(y) =
1√
π

+∞∫
−∞

Y
(
y, ζy

)
e−ζ2

y dζy (9)

Is the complex macroscopic velocity, while the associated complex shear stress is
given by

pxy(y) =
1√
π

+∞∫
−∞

ζyY
(
y, ζy

)
e−ζ2

y dζy (10)

The governing kinetic Equation (8) with the velocity and shear stress expressions (9)
and (10), respectively, are valid in the oscillatory Stokes flow for y ≥ 0 and in the oscillatory
Couette flow for y ∈ [0, H].

Furthermore, the associated linearized boundary conditions, assuming purely diffuse
reflection at the walls, read at y = 0, for both problems, as

Y
(
0, ζy > 0

)
= 1 (11)

The second linearized boundary condition reads for the half space problem as

lim
y→∞

Y
(
y, ζy < 0

)
= 0 (12)

and for the slab problem as
Y
(

H, ζy < 0
)
= 0 (13)

Boundary conditions (12) and (13) are deduced by considering incoming Maxwellian
distributions with zero bulk velocity at reference temperature, which is well justified since
in the former case, adequately far from the plate (y→ ∞) the oscillation is fully damped
and in the latter one the upper plate is stationary (y = H). In the oscillatory Stokes flow, it is
useful to introduce the so-called penetration depth L, defined as the distance y, where the
velocity amplitude decays down to 1% of the corresponding one of the oscillating plate
(uw,A = 1).

It is evident that, in dimensionless form, the oscillatory Stokes flow depends solely
on θ, while the oscillatory Couette, in addition to θ, depends via boundary condition (13)
also on δ. In the present work the values of the oscillation parameter θ = [0.5, 1, 10, 50]
refer to very high, high, moderate, and low oscillation frequencies respectively. It is noted
however, that the associated dimensional oscillation frequencies also depend on the level
of gas rarefaction, i.e., on reference pressure. For example, for Argon at 293 K in a device
with θ = 1, the corresponding oscillation frequencies may be in the megahertz range at
P0 = 200 Pa and in the kilohertz range at P0 = 0.2 Pa.
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The kinetic description of the two oscillatory flows under consideration is defined
by Equations (8)–(13). The half-range moment method, starting from these equations,
is formulated in the next section.

3. Formulation of the Half-Range Moment Method

The half-range moment method (HRMM) is constructed on the basis of the half-range
Hermite polynomials; i.e., polynomials which are orthogonal only over the half range on the
molecular velocity [0,±∞) [43,47]. The definition of the half-range Hermite polynomials is
presented in Section 3.1, followed by the formulation of the HRMM in Section 3.2.

3.1. Definition of the Half-Range Hermite Polynomials

The half-range Hermite polynomials H+
n (x) and H−n (x) are defined in x ∈ [0, +∞)

and x ∈ (−∞ , 0] respectively and satisfy the orthogonality conditions〈
H±m , H±n

〉±
= δmne±m (14)

where 〈., .〉± denote the scalar products

〈 f , g〉+ =

+∞∫
0

f ge−x2
dx and 〈 f , g〉− =

0∫
−∞

f ge−x2
dx, (15)

δmn is the Kronecker delta function and e±m some know quantities. The half-range Hermite
polynomials can be written as

H±n (x) = xn +
n−1

∑
j=0

α±n,jx
j (16)

for x ≷ 0 and zero otherwise and are obtained by the Gram-Schmidt orthogonalization
procedure according to

H±n = xn −
n−1

∑
j=0

〈
xn, H±j

〉±
〈

H±j , H±j
〉±H±j (17)

Using this procedure, the coefficients α are

α±n,m = 0, m > n (18a)

α±n,m = 1, m = n (18b)

α±n,m = −
n−1

∑
j=i

〈
xn, xj +

j−1
∑

k=0
α±j,kxk

〉±
〈

xj +
j−1
∑

k=0
α±j,kxk, xj +

j−1
∑

k=0
α±j,kxk

〉+ α±j,m, m < n (18c)

The coefficients α can be expressed in matrix form as A± =
[
α±n,m

]
. It is convenient to

express powers of x in terms of the polynomials as

xn = H+
n +

n−1

∑
m=0

β+
n,mH+

m , x > 0 and xn = H−n +
n−1

∑
m=0

β−n,mH−m , x < 0, (19)

where the coefficients β are expressed in matrix form as B± =
[
β±n,m

]
and are given by

B± =
(

A±
)−1. (20)



Fluids 2021, 6, 17 6 of 18

3.2. Formulation of the Half-Range Moment Method

The half-range moments of the distribution function for both the oscillatory Stokes
and Couette flows are defined as

M+
m(y) = 1√

π

+∞∫
0

H+
m
(
ζy
)
Y
(
y, ζy

)
e−ζ2

y dζy,

M−m(y) = 1√
π

0∫
−∞

H−m
(
ζy
)
Y
(
y, ζy

)
e−ζ2

y dζy

(21)

and the macroscopic velocity and shear stress distributions are readily expressed in terms
of the half-range moments as

u(y) = M+
0 (y) + M−0 (y) (22)

and
pxy(y) = M+

1 (y) + M−1 (y) + β+
1,0M+

0 (y) + β−1,0M−0 (y), (23)

with the coefficients β±1,0, defined by Equation (20). Applying the integral operators

1√
π

+∞∫
0

ζk
y(·)e−ζ2

y dζy and
1√
π

0∫
−∞

ζk
y(·)e−ζ2

y dζy (24)

for k = 0, . . . , N to the kinetic Equation (8), the following system of ordinary differential
equations (ODEs) for the positive and negative half-range moments is obtained:

d
dy

[
m+1

∑
j=0

β+
m+1,j M

+
j

]
+ (θ − i)

m

∑
j=0

β+
m,j M

+
j =

θ

2
√

π
Γ
(

m + 1
2

)(
M+

0 + M−0
)
, m = 0, . . . , N (25a)

d
dy

[
m+1

∑
j=0

β−m+1,j M
−
j

]
+ (θ − i)

m

∑
j=0

β−m,j M
−
j = (−1)m θ

2
√

π
Γ
(

m + 1
2

)(
M+

0 + M−0
)
, m = 0, . . . , N (25b)

The system (25) consists of 2N + 2 moment equations and involves 2N + 4 moments.
The following two expressions are used for closure:

dM+
N+1

dy
= 0,

dM−N+1
dy

= 0. (26)

Next, the associated initial conditions are defined. In Equation (25a) for the positive
half-range moments M+

m , the initial conditions are applied at y = 0 and the solution
propagates for ascending values of distance y. In Equation (25b) for the negative half-range
moments M−m , the initial conditions are applied at y→ ∞ and y = H for the oscillatory
Stokes and Couette flows respectively and the solution propagates for descending values
of distance y. Appling the integral operators (21) to the boundary conditions (11)–(13) it is
deduced that the initial conditions for both problems at y = 0 for Equation (25a) read

M+
m(0) +

m−1

∑
j=0

β+
m,j M

+
j (0) =

1
2
√

π
Γ
(

m + 1
2

)
, m = 0, . . . , N, (27)

while at the other boundary, the initial condition for the oscillatory Stokes and Couette
flows are

lim
y→∞

M−m(y) = 0 (28)

and
M−m(H) = 0 (29)
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respectively. The initial conditions Equation (27) represent a linear system involving only
the positive half-range moments at the oscillating boundary, which is solved to find M+

m(0).
The system of ODEs, defined by Equation (25), can be written in matrix form as

C±
dM±

dy
= C±1 M± + C±2 M± + C±2 M∓ (30)

where
M± =

[
M±0 M±1 M±2 . . . M±N

]T (31)

and
dM±

dy
=

[
dM±0

dy
dM±1

dy
dM±2

dy
. . .

dM±N
dy

]T

(32)

are column matrices, with elements the half-range moments and their derivatives, respectively,

C± =



β±1,0 1 0 0 · · · 0

β±2,0 β±2,1 1 0 · · · 0

β±3,0 β±3,1 β±3,2 1 · · · 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...
β±N+1,0 β±N+1,1 β±N+1,2 β±N+1,3 · · · β±N+1,N


(33)

C±1 = −(θ − i)



1 0 0
... · · · 0

β±1,0 1 0
... · · · 0

β±2,0 β±2,1 1
... · · · 0

...
...

...
...

. . .
...

...
...

...
...

. . .
...

β±N,0 β±N,1 β±N,2 · · · β±N,N−1 1


(34)

C+
2 = θ

2
√

π



Γ
(

1
2

)
0 0

... · · · 0

Γ
( 2

2
)

0 0
... · · · 0

Γ
( 3

2
)

0 0
... · · · 0

...
...

...
...

. . .
...

...
...

...
...

. . .
...

Γ
(

N+1
2

)
0 0 · · · 0 0


,

C−2 = θ
2
√

π



(−1)0Γ
(

1
2

)
0 0

... · · · 0

(−1)1Γ
( 2

2
)

0 0
... · · · 0

(−1)2Γ
( 3

2
)

0 0
... · · · 0

...
...

...
...

. . .
...

...
...

...
...

. . .
...

(−1)NΓ
(

N+1
2

)
0 0 · · · 0 0



(35)

are coefficient matrices.
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It is convenient to rewrite the system of ODEs in more compact form as

H
dM
dy

= Θ M (36)

where

M =
[
M+ M−

]T ,
dM
dy

=

[
dM+

dy
dM−

dy

]T

(37)

are column matrices involving both positive and negative half-range moments and their
derivatives respectively, while

H =

[
C+ 0
0 C−

]
, Θ =

[
C+

1 + C+
2 C+

2
C−2 C−1 + C−2

]
(38)

are coefficient matrices.
The system of ODEs, given by Equation (36) for the unknown moments may be

rewritten as
dM
dy

= Λ M (39)

with
Λ=H−1Θ (40)

Equation (39) describes a homogeneous system of linear first order differential equa-
tions, with constant coefficients and can be analytically solved. The general solution to
Equation (39) is

M = c1η(1)er1y + c2η(2)er2y + . . . + c2n+2η(2n+2)er2n+2y (41)

where rj are the eigenvalues and η(j) the respective eigenvectors of the coefficient matrix Λ,
while cj are constants, which are chosen to satisfy the initial conditions. The eigenvalues
and eigenvectors of the coefficient matrix have been calculated using the LAPACK library.

Then, the macroscopic velocity and shear stress, given by Equations (22) and (23),
may be readily expressed in terms of the analytical solution (41), as

u(y) =
J

∑
j=1

gje
rjy (42)

and

pxy(y) =
J

∑
j=1

hje
rjy (43)

with rj denoting the eigenvalues and gj, hj the coefficients of the respective terms. The coef-
ficients gj and hj are a sums of products of the eigenvectors with the constant coefficients of
Equation (41). For the oscillatory Stokes problem, in order to satisfy the boundary condition
at the far field, the coefficients of the eigenvalues with positive real part are set equal to
zero and J = N + 1. On the contrary for the oscillatory Couette flow J = 2N + 2.

In the supplementary material of the present work, the computed eigenvalues rj and
associated coefficients gj and hj for the velocity and shear stress distributions are provided
for N = 1, 3 and 5. Tables S1–S6, with θ = 1, 5, 10, 20, 50, refer to the oscillatory Stokes
flow and Tables S7–S15, with θ = 1, 10, 20 and δ = 0.1, 1, 10, 20, refer to the oscillatory
Couette flow.

4. Results and Discussion

The computational results include the magnitudes and phases of the velocity and
shear stress distributions, as well as the penetration depth, in terms of the flow parameters
and are presented in tabulated and graphical form. The convergence rate of the half-
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range methodology is examined by providing results for N = 1, 3, 5, with N denoting the
order of the HRMM. In addition the accuracy and the validity range of the HRMM are
investigated by comparing the converged results with corresponding ones obtained by
the DVM. Most of the implemented DVM results are reported in [2,3], while for specific
values of θ and δ not reported in [2,3], they have been obtained in the context of the present
work. The present DVM results are obtained using in the molecular velocity space the roots
of the Legendre polynomial of order 300 for θ ≤ 1 and 80 for θ > 1, accordingly mapped
from (−1, 1) to (0,+∞) and (−∞, 0) and in the physical space a 2nd order finite difference
scheme. In the oscillatory Stokes and Couette flows the physical domains are y ∈ [0, 20]
and y ∈ [0, H], with H = δ/θ, respectively. The former one is divided into 2× 104 intervals
and the latter one into 2× 102 × H intervals. The relative differences between the DVM
and HRMM results are calculated as

rd =

∣∣QDVM −QHRMM
∣∣

Max{QDVM, QHRMM}
× 100% (44)

where Q may be any of the computed quantities.
The results for the oscillatory Stokes and Couette flows are presented and discussed

in Sections 4.1 and 4.2 respectively.

4.1. Oscillatory Stokes Flow

The HRMM results for the oscillatory Stokes flow are presented in Tables 1 and 2,
where the complex velocity and shear stress respectively, at y = 0, are provided, in Figure 1,
where the associated distributions are plotted and in Table 3, where the penetration depth
is specified. The results are in a wide range of the oscillation parameter θ and the corre-
sponding DVM results are also included.

Table 1. Oscillatory Stokes flow; velocity amplitude and phase (rad) at the oscillating wall (y = 0) for
various values of θ based on the HRMM, with N = 1, 3, 5 and the DVM.

θ
HRMM

DVMN = 1 N = 3 N = 5

uA(0)
0.5 5.174(−1) 5.174(−1) 5.174(−1) 5.174(−1)
1 5.538(−1) 5.538(−1) 5.538(−1) 5.538(−1)
5 7.291(−1) 7.291(−1) 7.291(−1) 7.291(−1)

10 7.988(−1) 7.988(−1) 7.988(−1) 7.988(−1)
50 9.046(−1) 9.046(−1) 9.046(−1) 9.046(−1)

uP(0)
0.5 1.127(−1) 1.127(−1) 1.127(−1) 1.127(−1)
1 1.792(−1) 1.792(−1) 1.792(−1) 1.792(−1)
5 2.062(−1) 2.062(−1) 2.062(−1) 2.062(−1)

10 1.699(−1) 1.699(−1) 1.699(−1) 1.699(−1)
50 8.967(−2) 8.967(−2) 8.967(−2) 8.967(−2)

In Table 1 the velocity amplitude and phase at the oscillatory plate, denoted by
uA(0) and uP(0) respectively, are tabulated for θ = [0.5, 1, 5, 10, 50]. The convergence of
both amplitudes and phases is rapid and even with N = 1 the results agree with the
corresponding DVM results to four significant figures. Similarly, in Table 2 the shear stress
amplitude pxy,A(0) and phase pxy,P(0) are provided. Now the convergence is not as rapid
as before, but again it is very good and the results with N = 5 are in excellent agreement
with the corresponding DVM results. More specifically, there is always an agreement
to four significant figures, within ±1 to the fourth digit, except for θ = 0.5, where the
agreement drops to three figures. It is noted that higher order HRMM solutions provide
identical results with the corresponding ones reported for N = 5.
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Table 2. Oscillatory Stokes flow; shear stress amplitude and phase (rad) at the oscillating wall (y = 0)
for various values of θ based on the HRMM, with N = 1, 3, 5 and the DVM.

θ
HRMM

DVMN = 1 N = 3 N = 5

pxy,A(0)
0.5 2.776(−1) 2.776(−1) 2.776(−1) 2.781(−1)
1 2.674(−1) 2.687(−1) 2.688(−1) 2.689(−1)
5 1.999(−1) 2.016(−1) 2.016(−1) 2.017(−1)

10 1.616(−1) 1.625(−1) 1.625(−1) 1.625(−1)
50 8.652(−2) 8.664(−2) 8.664(−2) 8.664(−2)

−pxy,P(0)
0.5 9.478(−2) 9.101(−2) 9.079(−2) 9.074(−2)
1 1.713(−1) 1.664(−1) 1.662(−1) 1.662(−1)
5 4.113(−1) 4.135(−1) 4.137(−1) 4.137(−1)

10 5.023(−1) 5.062(−1) 5.063(−1) 5.063(−1)
50 6.483(−1) 6.505(−1) 6.505(−1) 6.505(−1)Fluids 2021, 6, x FOR PEER REVIEW 11 of 20 
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Table 3. Oscillatory Stokes flow; dimensionless penetration depth (L) for various values of θ based
on the HRMM, with N = 1, 3, 5 and the DVM.

θ
HRMM

DVM rd (%)N = 1 N = 3 N = 5

0.5 8.007 3.608 5.124 4.880 4.76
1 4.501 3.269 3.693 3.600 2.52
5 1.793 1.760 1.762 1.743 1.11

10 1.319 1.307 1.307 1.307 0.00
50 6.265(−1) 6.252(−1) 6.252(−1) 6.252(−1) 0.00

In Figure 1, the HRMM velocity and shear stress amplitude and phase distribu-
tions, with N = 5, are plotted and compared with the corresponding DVM ones for
θ = [0.5, 1, 5, 10, 50]. Excellent agreement is observed for all four quantities uA(y), uP(y),
pxy,A(y), pxy,P(y) when θ ≥ 5, i.e., in moderate and low frequencies. For θ = 1 (high
frequencies), the profiles of the velocity and shear stress amplitudes of the HRMM and
DVM are also in very good agreement, but some discrepancies start to appear between
their associated phase profiles. Then, for θ = 0.5 (very high frequencies), slight differences
are observed in the amplitudes, while larger discrepancies are present in the phases, which,
in general, are increased moving away from the boundary.

To further investigate the behavior of the solution in the whole flow domain, in Table 3,
the HRMM penetration depth L, along with the corresponding one computed by the DVM,
are tabulated for θ = [0.5, 1, 5, 10, 50]. It is observed that the convergence rate of the
HRMM, as well as the discrepancies between the HRMM and DVM penetration depth,
deteriorate as θ is decreased, i.e., as the oscillation frequency is increased. More specifically,
for θ = [ 10, 50] the penetration depths agree to four significant figures, while for θ = [1, 5]
the agreement drops to two digits and finally, for θ = 0.5 down to one, with the corre-
sponding relative differences varying from zero up to 5%. As the oscillation parameter is
further decreased the discrepancies are increased.

Examining carefully the computed quantities, it is observed that at high and very high
oscillation frequencies (θ ≤ 1) spurious oscillations appear in the macroscopic quantities of
the analytical solution in the vicinity of the oscillating wall, covering in some cases a major
part of the flow domain. Then, the solution of the half-range moment equations becomes
numerically sensitive to small errors of the involved quantities. Similar observations have
been reported concerning the DVM in [3,51] and the half-range LBM in [49,52]. A splitting
scheme like the one in [3,52] may be applied to reduce the spurious oscillations. Overall,
it may be stated that the present HRMM solution at the oscillating plate always provides
computationally very efficient results for arbitrary oscillation frequency but in the case
of high and very high oscillation frequencies and far from the oscillating plate, does not
accurately capture the detailed flow characteristics.

4.2. Oscillatory Couette Flow

The HRMM results for the oscillatory Couette flow include the complex shear stress
at the oscillating (Tables 4 and 5) and stationary (Tables 6 and 7) plates, as well as the
complex velocity distribution (Figure 2), in wide ranges of the oscillation parameter θ and
gas rarefaction parameter δ. The corresponding DVM results are also included.

In Table 4 the shear stress amplitude at the oscillating plate pxy,A(0) is tabulated for
δ = [0.01, 0.1, 1, 10, 50] and θ = [0.5, 1, 10, 50, ∞]. The values of θ → ∞ (ω = 0) refer to the
corresponding steady (not oscillating) Couette flow [2,53]. The steady-state HRMM results
are reported in [43] and also computed in the present work. It is readily seen that the agree-
ment between the HRMM and DVM results for θ → ∞ is excellent. The corresponding
results for the shear stress phase pxy,P(0) is shown in Table 5 for δ = [0.1, 1, 10, 50] and the
same set of θ. The phases for δ = 0.01 are not reported because they are of O

(
10−4–10−6)

and any comparison with DVM results is misleading. It is observed that in all cases the
convergence rate is fast and the relative differences between HRMM and DVM results is
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very small. It is also clear that as the oscillation parameter is decreased the differences
are slightly increased, remaining always however in the shear stress amplitudes less than
0.2% and in the shear stress phases less than 1%. The latter remark is not valid in the
cases of δ = 0.1 and θ ≤ 1 where the relative differences in the phases for δ = 0.1 and
θ = [0.5, 1] reach 5.6%. In the case of δ = 0.1 and θ = 1, the relative difference is decreased
by implementing a ninth order HRMM. Then, the value of the shear stress amplitude
becomes pxy,A(0) = −2.233(−2) and the relative difference drops to 0.54%. The need of
resorting to higher order moments for specific set of flow parameters in order to improve
accuracy has been also reported in [46–48] However, in the case of δ = 0.1 and θ = 0.5,
the relative difference is not reduced, even by applying higher order moments.

Table 4. Oscillatory Couette flow; shear stress amplitude at the oscillating wall pxy,A(y = 0) for
various values of δ and θ based on the HRMM, with N = 1, 3, 5 and the DVM, along with the relative
difference between corresponding results.

δ θ
HRMM

DVM rd(%)
N = 1 N = 3 N = 5

0.01

0.5 2.796(−1) 2.796(−1) 2.797(−1) 2.797(−1) 0.00

1 2.796(−1) 2.796(−1) 2.797(−1) 2.797(−1) 0.00

10 2.796(−1) 2.796(−1) 2.796(−1) 2.797(−1) 0.01

50 2.796(−1) 2.796(−1) 2.796(−1) 2.797(−1) 0.01

∞ 2.812(−1) 2.796(−1) 2.797(−1) 2.797(−1) 0.00

0.1

0.5 2.639(−1) 2.669(−1) 2.676(−1) 2.671(−1) 0.20

1 2.610(−1) 2.625(−1) 2.632(−1) 2.634(−1) 0.06

10 2.600(−1) 2.607(−1) 2.610(−1) 2.612(−1) 0.07

50 2.600(−1) 2.607(−1) 2.610(−1) 2.612(−1) 0.07

∞ 2.560(−1) 2.607(−1) 2.610(−1) 2.612(−1) 0.07

1

0.5 2.774(−1) 2.795(−1) 2.791(−1) 2.794(−1) 0.09

1 2.658(−1) 2.660(−1) 2.667(−1) 2.665(−1) 0.07

10 1.711(−1) 1.742(−1) 1.741(−1) 1.741(−1) 0.01

50 1.666(−1) 1.697(−1) 1.697(−1) 1.697(−1) 0.00

∞ 1.664(−1) 1.695(−1) 1.695(−1) 1.695(−1) 0.00

10

0.5 2.776(−1) 2.781(−1) 2.781(−1) 2.781(−1) 0.00

1 2.674(−1) 2.687(−1) 2.688(−1) 2.689(−1) 0.01

10 1.617(−1) 1.626(−1) 1.626(−1) 1.626(−1) 0.00

50 8.021(−2) 8.030(−2) 8.031(−2) 8.031(−2) 0.00

∞ 4.152(−2) 4.155(−2) 4.156(−2) 4.156(−2) 0.00

50

0.5 2.776(−1) 2.781(−1) 2.781(−1) 2.781(−1) 0.00

1 2.674(−1) 2.687(−1) 2.688(−1) 2.689(−1) 0.01

10 1.616(−1) 1.625(−1) 1.625(−1) 1.625(−1) 0.00

50 8.652(−2) 8.664(−2) 8.664(−2) 8.664(−2) 0.00

∞ 9.608(−3) 9.609(−3) 9.609(−3) 9.610(−3) 0.01
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Table 5. Oscillatory Couette flow; shear stress phase (rad) at the oscillating wall pxy,P(y = 0) for
various values of δ and θ based on the HRMM, with N = 1, 3, 5 and the DVM, along with the relative
difference between corresponding results.

δ θ
HRMM

DVM rd (%)N = 1 N = 3 N = 5

0.1

0.5 −3.716(−2) −3.779(−2) −3.440(−2) −3.322(−2) 3.43
1 −2.039(−2) −2.353(−2) −2.353(−2) −2.221(−2) 5.63

10 −2.103(−3) −2.542(−3) −2.663(−3) −2.644(−3) 0.72
50 −4.207(−4) −5.089(−4) −5.332(−4) −5.299(−4) 0.63

1

0.5 −1.010(−1) −8.913(−2) −9.189(−2) −9.113(−2) 0.83
1 −1.818(−1) −1.892(−1) −1.867(−1) −1.868(−1) 0.05

10 −1.210(−1) −1.157(−1) −1.157(−1) −1.158(−1) 0.07
50 −2.540(−2) −2.437(−2) −2.434(−2) −2.435(−2) 0.06

10

0.5 −9.478(−2) −9.101(−2) −9.079(−2) −9.074(−2) 0.05
1 −1.713(−1) −1.664(−1) −1.662(−1) −1.662(−1) 0.00

10 −5.016(−1) −5.054(−1) −5.055(−1) −5.055(−1) 0.00
50 −6.541(−1) −6.564(−1) −6.564(−1) −6.564(−1) 0.00

50

0.5 −9.478(−2) −9.101(−2) −9.079(−2) −9.074(−2) 0.05
1 −1.713(−1) −1.664(−1) −1.662(−1) −1.662(−1) 0.00

10 −5.023(−1) −5.062(−1) −5.063(−1) −5.063(−1) 0.00
50 −6.483(−1) −6.505(−1) −6.505(−1) −6.505(−1) 0.00

The shear stress amplitude pxy,A(H) and phase pxy,P(H) at the stationary plate y = H,
are tabulated in Tables 6 and 7 respectively for δ = [0.01, 0.1, 1, 10, 50] and θ = [0.5, 1, 10, 50].
At large values of δ and small values of θ, i.e., in the case of a dense gas oscillating with
high frequency, the amplitude of the shear stress diminishes and therefore, results for
δ = 10 and δ = 50 are reported only for θ = [10, 50] and θ = 50 respectively. The observed
discrepancies, both qualitatively and quantitatively, are about the same with the ones
observed at the oscillating plate.

In order to examine the behavior of the HRMM solution in the whole flow domain,
in Figure 2, the distributions of the velocity amplitude and phase between the plates are
plotted. It is noted that the quantities uA(y), uP(y) are plotted in terms of y/H ∈ [0, 1]
(instead of y) for scaling purposes. The graphs are for the indicative values of δ = [0.1, 1, 10]
and θ = [0.5, 1, 5, 50]. It is noted that at δ = 10 and small values of θ, the oscillation is
rapidly damped and therefore the associated velocity phases are shown for θ = [5, 10, 50].
In general, the agreement between the HRMM and DVM distributions is very good for
θ = [5, 10, 50] and then some discrepancies start to appear at θ = 1, which are further
increased at θ = 0.5. Furthermore, the discrepancies become more evident far from the
oscillating wall. It may be stated that, as in the case of oscillatory Stokes flow, the present
HRMM solution of the oscillatory Couette flow is very accurate at low and moderate
frequencies, while it gradually becomes less accurate at high and very high frequencies,
not at the oscillating wall but inside the flow domain.
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Table 6. Oscillatory Couette flow; shear stress amplitude at the stationary wall pxy,A(y = H) for
various values of δ and θ based on the HRMM, with N = 1, 3, 5 and the DVM, along with the relative
difference between corresponding results.

δ θ
HRMM

DVM rd (%)N = 1 N = 3 N = 5

0.01

0.5 2.795(−1) 2.795(−1) 2.794(−1) 2.794(−1) 0.01
1 2.796(−1) 2.796(−1) 2.796(−1) 2.796(−1) 0.00

10 2.796(−1) 2.796(−1) 2.796(−1) 2.797(−1) 0.01
50 2.796(−1) 2.796(−1) 2.796(−1) 2.797(−1) 0.01

0.1

0.5 2.523(−1) 2.486(−1) 2.499(−1) 2.515(−1) 0.63
1 2.580(−1) 2.574(−1) 2.575(−1) 2.580(−1) 0.19

10 2.599(−1) 2.607(−1) 2.609(−1) 2.611(−1) 0.07
50 2.600(−1) 2.607(−1) 2.610(−1) 2.612(−1) 0.07

1

0.5 9.264(−2) 7.594(−2) 7.233(−2) 7.521(−1) 3.83
1 9.359(−2) 1.152(−1) 1.106(−1) 1.114(−1) 0.73
10 1.647(−1) 1.679(−1) 1.679(−1) 1.679(−1) 0.00
50 1.663(−1) 1.695(−1) 1.694(−1) 1.694(−1) 0.00

10
10 9.322(−3) 9.138(−3) 9.141(−3) 9.142(−3) 0.01
50 3.503(−2) 3.509(−2) 3.509(−2) 3.509(−2) 0.00

50 50 1.213(−4) 1.193(−4) 1.193(−4) 1.183(−4) 0.80

Table 7. Oscillatory Couette flow; shear stress phase (rad) at the stationary wall pxy,P(y = H) for
various values of δ and θ based on the HRMM, with N = 1, 3, 5 and the DVM, along with the relative
difference between corresponding results.

δ θ
HRMM

DVM rd(%)N = 1 N = 3 N = 5

0.01

0.5 3.530(−2) 3.512(−2) 3.499(−2) 3.451(−2) 1.36
1 1.765(−2) 1.757(−2) 1.751(−2) 1.735(−2) 0.92

10 1.765(−3) 1.757(−3) 1.752(−3) 1.740(−3) 0.67
50 3.530(−4) 3.514(−4) 3.504(−4) 3.481(−4) 0.67

0.1

0.5 3.410(−1) 3.165(−1) 3.046(−1) 3.089(−1) 1.37
1 1.711(−1) 1.643(−1) 1.612(−1) 1.608(−1) 0.28

10 1.713(−2) 1.663(−2) 1.649(−2) 1.649(−2) 0.00
50 3.426(−3) 3.327(−3) 3.298(−3) 3.299(−3) 0.02

1

0.5 1.605 2.331 2.096 2.169 3.38
1 1.204 1.310 1.314 1.305 0.64

10 1.723(−1) 1.716(−1) 1.720(−1) 1.719(−1) 0.05
50 3.463(−2) 3.455(−2) 3.461(−2) 3.459(−2) 0.05

10
10 2.766 2.787 2.787 2.787 0.00
50 8.730(−1) 8.713(−1) 8.712(−1) 8.712(−1) 0.00

50 50 6.493 6.482 6.482 6.497 0.23
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5. Concluding Remarks

A half-range moment method, in terms of the half-range orthogonal Hermite polyno-
mials, for linear oscillatory boundary driven rarefied flows has been constructed. Two flow
configurations are used in order to judge the accuracy of the developed scheme, namely the
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oscillatory Stokes and Couette flows. The former flow (also known as Stokes second prob-
lem) is characterized by the oscillation parameter, while the latter one by the oscillation and
rarefaction parameters. The computed HRMM results include the amplitude and the phase
of the velocity and shear stress distributions for different orders of half-range moments in a
wide range of the flow parameters. In the oscillatory Stokes flow the so-called penetration
depth is also computed. In all cases a comparison has been performed with corresponding
results obtained by the discrete velocity method.

In general, the convergence of the HRMM solution is rapid and a fifth order approx-
imation is very accurate, providing excellent agreement with the corresponding DVM
solution at the oscillating plate, as well as in the flow domain. However, at oscillation
frequencies of the same or higher order of the collision frequency, discrepancies start to
appear in the flow domain. It is believed that these discrepancies are not contributed
to the HRMM, which remains valid even in very high oscillation frequencies, but to the
solution of the deduced system of half-range moments and may be circumvented by intro-
ducing more advanced solvers of ordinary differential equations taking into account the
observed spurious oscillations of the solution. In addition, it may be useful to note that
these very high oscillation frequencies are mainly of theoretical interest and seldom appear
in oscillating systems.

In any case, it has been clearly demonstrated that the half-range moment method
can be applied to oscillatory rarefied gas flows providing accurate results in a very wide
range of the involved flow parameters. Since the computational effort of the HRMM is
negligible, compared to the one of typical computational kinetic type schemes solving for
the distribution function itself, it is worthwhile to consider the efficient implementation of
the HRMM to stationary and transient multidimensional rarefied gas flows.
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for the oscillatory Stokes flow obtained by the HRMM (N = 1). Table S3: Eigenvalues rj with non-
zero coefficients for the oscillatory Stokes flow obtained by the HRMM (N = 3). Table S4: Velocity
and shear stress coefficients gj and hj respectively for the oscillatory Stokes flow obtained by the
HRMM (N = 3). Table S5: Eigenvalues rj with non-zero coefficients for the oscillatory Stokes flow
obtained by the HRMM (N = 5). Table S6: Velocity and shear stress coefficients gj and hj respectively
for the oscillatory Stokes flow obtained by the HRMM (N = 5). Table S7: Eigenvalues rj for the
oscillatory Couette flow obtained by the HRMM (N = 1). Table S8: Velocity coefficients gj for the
oscillatory Couette flow obtained by the HRMM (N = 1). Table S9: Shear stress coefficients hj for
the oscillatory Couette flow obtained by the HRMM (N = 1). Table S10: Eigenvalues rj for the
oscillatory Couette flow obtained by the HRMM (N = 3). Table S11: Velocity coefficients gj for the
oscillatory Couette flow obtained by the HRMM (N = 3). Table S12: Shear stress coefficients hj
for the oscillatory Couette flow obtained by the HRMM (N = 3). Table S13: Eigenvalues rj for the
oscillatory Couette flow obtained by the HRMM (N = 5). Table S14: Velocity coefficients gj for the
oscillatory Couette flow obtained by the HRMM (N = 5). Table S15: Shear stress coefficients hj for
the oscillatory Couette flow obtained by the HRMM (N = 5).
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