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A B S T R A C T

A hybrid time-dependent algorithm to simulate the transient response of gas distribution systems of arbitrary
size and complexity, in the whole range of the Knudsen number, is proposed. The pressure evolution in the
vessels is described by a simple macro model derived via mass conservation principals, while the pressure and
mass flow rates in the pipe network are described by a micro model, consisting of the in-house steady-state gas
network code “ARIADNE”, based on kinetic theory. The two models are explicitly coupled, i.e. at each time step
the gas network is solved via ARIADNE and the computed node pressures and pipe flow rates are provided to the
macroscale evolution equations to update the vessel pressures. The proposed methodology and code are suc-
cessfully validated by solving two prototype problems and comparing the results with corresponding ones
available in the literature or obtained by Molflow+. The computational effectiveness and efficiency of the
proposed approach to model large size networks is demonstrated by simulating the transient response of the
ITER torus primary pumping system in the dwell phase. Interesting findings for the torus effective pumping
speed and pressure evolution, including the final pressure at the end of the dwell phase are provided.

1. Introduction

Large gas pumping systems operating in a wide range of the
Knudsen number play a significant role in fusion reactors [1,2] and
particle accelerators [3]. In addition, vacuum gas distribution systems
may be found in many industrial processes and technological fields
including semiconductor technologies, material deposition, vacuum
metallurgy, food packaging and metrology [4,5]. Since these systems
operate from very low pressures (∼ −10 10 Pa) up to atmospheric pres-
sure, the gas flow may be from the free molecular regime up to the
transition or even the slip and viscous flow regimes. To accurately si-
mulate gas flows in a wide range of vacuum conditions, mesoscale ki-
netic modeling, as described by the Boltzmann equation or reliable
kinetic model equations, is required [6]. However, in gas distribution
networks with hundreds or thousands of piping elements, as the ones in
large fusion reactors (e.g. in ITER), applying directly stochastic or de-
terministic kinetic modeling requires formidable computational re-
sources and therefore, several alternative approaches have been de-
veloped.

The so-called electric-hydraulic analogy is frequently used in the
free molecular and viscous limits [7,8]. In this classical approach, the
gas distribution system is replaced by an equivalent electric circuit,
where current and voltage correspond to gas flow rate and pressure

respectively. Then, the steady-state or the transient response of the
equivalent electric circuit may be simulated by typical integrated cir-
cuit codes. However, this methodology is valid only when the whole gas
pipe network operates either in the free molecular or the viscous re-
gimes.

Another more general approach has been elaborated in the
ITERVAC code, developed at the Institute of Technical Physics in the
Karlsruhe Institute of Technology [9,10]. Interpolating between avail-
able solutions in the free molecular and viscous regimes reliable semi-
empirical expressions to compute the conductance through various pipe
elements have been derived and implemented in ITERVAC to model gas
pumping systems operating under various vacuum conditions.
ITERVAC has been successfully applied to simulate several vacuum gas
distribution systems including the ITER divertor pumping system [11].
The code is subject however, to steady-state conditions, as well as to
certain theoretical simplifications.

Recently, an approach for simulating nanofluidic networks of long
and narrow channels via a hybrid molecular-continuum method is
presented in [12], based on the multiscale method proposed in [13,14].
Computational savings are primarily achieved by exploiting length-
scale separation. Hybrid approaches are promising and must be in-
vestigated in multiscale physics problems. Of course, the distinction
between the regions of the domain with different length scales (flow
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regimes) in order to apply the associated theory is not always a
straightforward task.

In this framework, at the University of Thessaly (UTH) in Volos,
Greece, an in-house code has been developed for simulating steady-
state gas pumping distribution systems of arbitrary size and complexity
in the whole range of the Knudsen number (free molecular, transition
and viscous regimes) [15–17]. This is achieved by integrating a dense
kinetic database providing the flow rates through pipe elements of
various geometries subject to any pressure difference into a typical gas
network solver. The flow rates are computed via kinetic modeling and
they are very accurate since they are based on theoretical principles.
The effectiveness of the developed UTH network code to model large
size networks has been demonstrated in [17], where it has been suc-
cessfully implemented to simulate various steady-state gas pumping
scenarios of the ITER divertor system, providing results in good quali-
tative and quantitative agreement with corresponding ones based on
alternative approaches, such as the ITERVAC code and the Direct Si-
mulation Monte Carlo (DSMC) method [11,18]. It is noted that the UTH
code has been developed within the European fusion program in an
effort to simulate the vacuum pumping systems of tokamak type fusion
reactors.

Furthermore, in several occasions the temporal response of the gas
distribution pumping system is needed. This is readily seen in gas
pumping scenarios, where the input operational data are varying with
time or the pressure of the vacuum system must be reduced to a certain
threshold value. A specific application of such flow setup is the dwell
phase operation of fusion reactors (e.g. ITER), where the torus vacuum
vessel must be evacuated between consecutive plasma shots. Although,
this specific application plays a significant role in the efficiency of fu-
sion machines it has not been thoroughly investigated in the literature
[19,20]. In general, as far as the authors are aware of, the transient
response of large size gas distribution systems has not been studied in a
systematic manner. In the present work the in-house UTH steady-state
network code is upgraded and accordingly implemented to simulate
time-dependent gas distribution systems subject to transient boundary
conditions. In the present work the time-dependent behavior of the
whole pipe network is achieved in a hybrid manner [21]. At each time
step, the steady-state flow configuration is solved, based on kinetic
modeling, to compute the amount of gas pumped out from each vacuum
vessel through the pipe network and then, the pressure of all vacuum
vessels is updated by applying the mass conservation principle and the
equation of state.

The next sections of the paper are structured as follows: In Section 2,
the components and input data of a typical gas distribution network are
provided (Section 2.1), the steady-state part of the algorithm, focusing
on certain advancements performed in the present work, is described
(Section 2.2) and the proposed hybrid time-dependent algorithm is
presented (Section 2.3). In Section 3, the proposed transient metho-
dology and algorithm are validated in two benchmark flow configura-
tions. The first one is related to gas expansion into vacuum and the
second one to a distribution system with two vacuum vessels and one
pump. The temporal evolution of the pressures are compared in the
former case with DSMC results available in the literature [22,23] and in
the latter case with results obtained by the Test particle Monte Carlo
(TPMC) code Molflow+ [24]. In Section 4, the transient dwell phase
pump-down of the ITER fusion reactor is simulated and the obtained
results include the torus effective pumping speed with respect to the
torus pressure, as well as, the temporal evolution of the torus pressure.
Concluding remarks are presented in Section 5.

2. Formulation of the time-dependent algorithm

2.1. Definition of gas distribution system components and algorithm input
data

The components of a typical gas distribution system and the

associated input data in the gas network algorithm are provided.
In general, a gas distribution system may be modeled by a pipe

network represented by an undirected graph consisting of n nodes and
p piping elements acting as the connections between two nodes [25]. A
variety of node types may be used to represent the different components
of a gas pipe network. More specifically, junctions between two or more
pipes are represented by the inner nodes ni, vessels and pumps are re-
presented by the vessel nodes nv and pump nodes np respectively, while
constant pressure regions are represented by the so-called fixed-pres-
sure nodes nf . The total number of nodes is = + + +n n n n ni f v p.
Furthermore, closed paths formed by connecting adjacent nodes and
open paths formed by connecting two fixed-pressure, vessel or pump
nodes are named loops and pseudoloops respectively. Both of them are
involved in the formulation of the equations modeling the network. The
number of independent loops and pseudoloops, in a well-defined net-
work, are given by = − +l p n 1 and = + + −l n n n( ) 1p f v p respec-
tively. The loops and pseudoloops of the network are determined by the
well-known depth-first-search algorithm (DFS) [26]. The DFS algorithm
is a graph traversing procedure which starts at an arbitrary node and
explores the graph as far as possible before backtracking.

A schematic representation of a sample network for demonstration
and clarity purposes is shown in Fig. 1. It consists of =n 9 nodes and

=p 10 pipes. The total number of nodes includes =n 6i inner nodes
(circles), =n 1f fixed-pressure nodes (squares), =n 1v vessel node
(pentagon) and =n 1p pump node (triangle). Also, there is a set of =l 2
independent loops and =l 2p pseudoloops denoted by l l,1 2 and pl pl,1 2
respectively.

To complete the description of the network configuration, addi-
tional geometrical data are needed. It is very important to properly
specify the node ( =i n1, ..., ) and pipe ( =j p1, ..., ) indexing, the type
of each node and the connectivity matrix defining the connections be-
tween the nodes of the network. Also, the length Lj and the hydraulic
radius Rh j, for each piping element =j p1, ..., , as well as the volume V
of the vessel at each vessel node are specified. It is noted that unless
otherwise stated, all piping elements are considered as circular tubes
and the hydraulic radius concept is applied in the case of non-circular
piping elements.

Next, the operational input data of the gas distribution system are
provided. They commonly include the molar mass and the viscosity of
the pumped gas species, the network temperature T , the constant
pressure values Pi at the fixed pressure nodes, the initial pressure P t( )i 0

at the vessel nodes at some initial time t0, the flow demand (gain or loss)
Wi at the inner nodes, the outgassing or gas injection data Q t( )in i, at all
vessel nodes and the characteristic pumping speed - inlet pressure curve
S P* ( )i i of all pumps. In the case of no flow demand or outgassing or gas
injection the corresponding quantities are set equal to zero. In the
sample network of Fig. 1 some of the required operational data are

Fig. 1. Schematic representation of a sample network with indicative geome-
trical and operational data.
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shown for demonstration purposes. At fixed-pressure node 1 the pres-
sure is P1, at inner node 3 the flow demand is W3, at vessel node 4 the
initial pressure is P t( )4 0 and the outgassing data are given by some
Q t( )in,4 and at the pump node 9 the characteristic curve is defined as
S P* ( )9 9 .

All above described geometrical and operational data must be
provided in the algorithm in order to advance in the simulation of the
steady-state or the transient response of the gas distribution network.

2.2. The upgraded UTH steady-state network code

The algorithm of the UTH steady-state network code is first briefly
reviewed mainly for completeness and clarity purposes. The flowchart
of this code is shown in Fig. 2. Then, certain code advancements, which
are performed in the present work and are integrated in the steady-state
code, required for its extension to the transient model, are also pre-
sented. The flowchart of the upgraded UTH steady-state network code is
shown in Fig. 3.

Starting with the brief review of the code, shown in the flowchart of
Fig. 2, it is seen that the solution of the pipe network is obtained in an
iterative manner assuming initially the pressure at all inner nodes. In
each iteration, the following linear algebraic system, consisting of the
mass conservation equations at the inner nodes

∑ ± − = =M W i n( ˙ ) 0, 1, ...,
j

i j i i,
(1)

and the energy conservation equations along the loops

∑ ± = =ΔP M k l( ( ˙ )) 0, 1, ...,
j

k j k j, ,
(2)

and pseudoloops

∑ ± = =ΔP M ΔP m l( ( ˙ )) , 1, ...,
j

m j m j m p, ,
(3)

is solved. The summation index j refers, in Eq. (1) to the pipes con-
nected to node i and in Eqs. (2) and (3) to the pipes included in loop k
and pseudoloop m respectively. In Eq. (1), the unknown quantities
± Ṁi j, are the mass flow rates at node i from pipe j. The plus and minus
signs correspond to flow into and out of the node respectively. Also, the
quantities ± Wi denote the known mass flow demand at some node i and
they are taken as positive or negative when they are exiting or entering
the system respectively. In Eqs. (2) and (3), the quantities ± ΔPk j, and
± ΔPm j, are the pressure difference between the inlet and outlet pressure
of pipe j and depend on the respective mass flow rates Ṁk j, and Ṁm j, .
The plus sign is used if the flow in pipe j is in the clockwise direction or
otherwise the minus sign is employed. In Eq. (3), ΔPm is the pressure
difference between the first and the last pseudoloop nodes. Depending
on the specific geometrical and operational data for each pipe element,
the pressure differences in the energy balance equations (2) and (3) are
substituted by kinetic theory expressions in terms of the associated mass
flow rates deducing a closed system of algebraic equations to be solved
for the unknown mass flow rates. It is noted that the dimensionless flow
rates involved in the aforementioned kinetic expressions are obtained
by a micro model that consists of the kinetic solution of pressure-driven
flows through pipes in the whole range of the involved parameters. A
detailed description of the involved kinetic expressions is provided in
[17].

Fig. 2. Flowchart of the UTH steady-state code applied in [17].

Fig. 3. Flowchart of the present upgraded UTH steady-state code (ARIADNE).
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Once the linear system is solved and the mass flow rates of all piping
elements are computed, all inner node pressures are updated based on
the kinetic pressure drop relations and are compared to the previous
ones. The iterative procedure is continued until the relative pressure
difference between two successive iterations at all inner nodes is
smaller than a specified value.

In addition to the inner node pressures and the pipe mass flow rates,
the network solution also provides the pipe conductance

= =C M
ΔP

R T i p
˙

( )
, 1, ...,i

i

i
g 0

(4)

and the pumping speed of the pump

= = =S Q
P

M R T
P

i n
˙

, 1, ...,i
i

i

i g

i
p

0

(5)

where T0 is a reference temperature, =R k m/g B is the specific gas
constant (kB is the Boltzmann constant and m the molar mass) and Qi
denotes the pump throughput or the so-called PV flow. Both the con-
ductance and the pumping speed are of major practical interest in va-
cuum gas dynamics.

Continuing with the upgraded UTH steady-state code, shown in the
flowchart of Fig. 3, it is noted that the main advancement refers to pipe
networks with a single or multiple pumps. In this case an additional
iterative procedure is required, in order to meet the pumping speed
restrictions, i.e. to satisfy the pumping speed - inlet pressure S P* ( )i i at
each pump node. Following the initial assumption of the pump pres-
sures, the network solver, as described above (Fig. 2), is applied to
compute the pipe mass flow rates and the node pressures of the net-
work, including the pumping speeds at the pump nodes. The pumping
speed differences between the obtained solution S P( )i i,0 ,0 and the given
pumping speed curve S P* ( )i i , defined as

= −ΔS S P S P S P( * ( ) ( ))/ * ( )i i i i i i i,0 ,0 ,0 ,0 ,0 , is computed and stored for all
pumps =i n1, ..., p.

Next, all pump pressures are set to the initial pressure assumption
except for a specific pump pressure Pj, which is changed by a small
amount εj. The network is solved again and the pumping speed differ-
ences = −ΔS S P S P S P( * ( ) ( ))/ * ( )i j i i j i j i j i i j, , , , , are computed and stored for all
pump nodes =i n1, ..., p. This computation is performed for all pumps

=j n1, ..., p and when it is completed, the Jacobian
= −J ΔS ΔS ε( )/i j i j i i, , ,0 , =i j n, 1, ..., p is constructed.
Then, the linear system of equations × = −J ΔP ΔSi j i i, ,0 is solved and

all pump pressures are updated as = +P P ΔPi i i. The procedure is re-
peated until the network solution with regard to the pumping speeds
fulfills the convergence criterion imposed on ΔSi,0. The applied meth-
odology is Newton’s iterative method, where the partial derivatives are
numerically computed and its convergence close to the solution is su-
perlinear.

It is important to note that in the aforementioned iterative method,
the main computational effort is due to the initial network solution to
compute ΔSi,0. The subsequent solutions of the network for each pump

=j n1, ..., p in order to compute ΔSi j, converge much faster than the
initial one (generally in a single iteration) and this is achieved by taking
the inner node pressures of the previous network solution as the initial
assumption of the inner node pressures for the current network solu-
tion. Thus, the involved computational effort is only slightly increased
by increasing the number of pumps in the network.

In addition to the above, the involved kinetic data bases, needed in
the implementation of the steady-state network code, have been ac-
cordingly enriched with more dense flow rate results in terms of the
operating conditions and geometrical data. Also, efficient interpolating
algorithms have been integrated in the code to improve its accuracy.
The steady-state code has been restructured based on object-oriented
programming to facilitate its accessibility, adaptation and im-
plementation in various technological applications.

All these advancements significantly increase the robustness and the
efficiency of the steady-state network code. It is noted that the hybrid

time-dependent simulation of the gas distribution system, described in
the next subsection, involves the solution of a steady-state network
configuration in each time step.

In order to facilitate the discussion in the rest of the paper, as well as
for future reference, an acronym is given to the upgraded UTH steady-
state code. The acronym is “ARIADNE” and stands for Algorithm for
Rarefied gas flow in Arbitrary Distribution Networks.

2.3. The hybrid time-dependent algorithm

Algorithms coupling computational techniques at different scales
are defined as hybrid algorithms. The direct simulation of time-de-
pendent gas pumping scenarios can be computationally very expensive,
even in comparatively small or moderate size vacuum systems.
Particularly, in large size vacuum systems, such as the ITER divertor
pumping system, the computational cost of a direct time-dependent
approach is prohibitive. In cases where a time scale separation is ap-
plicable the hybrid time-dependent approach proposed in [21], ex-
plicitly coupling a macro model for the vessels of the gas distribution
system with a micro model for the piping elements, may be im-
plemented to significantly reduce computational effort.

The time characterizing the flow inside the piping elements is de-
fined as the time needed to cross a characteristic length with the most
probable molecular speed =υ R T2 g0 of the conveying gas and is given
by

=t R υm h 0 (6)

where Rh is the hydraulic radius of the piping element, Rg is the specific
gas constant and T is the network temperature. The corresponding
characteristic time inside a vessel is [21]

=t V υ R( )M h0
2 (7)

where V is the volume of the vessel.
Since the macroscopic quantities in the vessels vary in a much

slower pace than those in the pipes it is readily seen that > >t tM m (e.g.
the instantaneous variation of the mass flow rate in the piping elements
modifies the vessel pressure in a quasi-steady manner). Therefore, it is
reasonable to exploit the time scale separation and investigate sepa-
rately the network vessels and pipes by the corresponding macro and
micro models, which are explicitly coupled in sequence (not simulta-
neously). The micro model is consisting of the upgraded UTH steady-
state code (ARIADNE) described in the previous subsection.

The macro model describing the temporal evolution of pressure P t( )i
in some vacuum vessel i can be derived by considering the mass balance
in the vessel and the equation of state. It is easily deduced that

= +V dP t
dt

Q t M t R T( ) ( ) ˙ ( )i
i

in i i g, (8)

where the throughput Q t( )in i, is entering the vacuum vessel at some
time t due to either outgassing or direct gas injection inside the vacuum
vessel and the mass flow rate M t˙ ( )i is entering (positive) or exiting
(negative) the vacuum vessel through the piping elements connecting
the vessel with the distribution system (pipe network). Equation (8) can
also be written in terms of the effective vessel pumping speed S t( )eff i, in
the equivalent form

= −V dP t
dt

Q t P t S t( ) ( ) ( ) ( ).i
i

in i i eff i, , (9)

It is noted that, in the notation used S t( )eff i, is considered as positive
when gas is pumped out of the vessel i. The ordinary differential
equations (8) or (9), defining the macro model, subject to the corre-
sponding initial conditions P t( )i 0 , are numerically solved by typical
integration schemes (e.g. Runge Kutta methods) once the macroscale
time integration step Δt is specified.

The coupling between the macro and micro models is rather simple
and it is shown in the flowchart of Fig. 4. At each macroscale time step
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the gas distribution system is solved via ARIADNE, which includes a
micro model computing the dimensionless flow rates at each pipe of the
network in the whole range of the Knudsen number. Thus, at some
certain time t , based on the current input conditions, the mass flow
rates and the pressures of the network are computed. The output data
are written to respective output files. The time is updated as +t Δt , the
vessel node pressures are updated via Eq. (8) or (9) (macro model) and
the algorithm can move to the next time step. The evolution in time
proceeds until a specified final time tf or an equilibrium state is
reached.

The computational gain of the hybrid time-dependent algorithm is
due to the fact that ARIADNE is only implemented at each macroscale
and not microscale time step. The proposed time-dependent algorithm
is benchmarked in the next section.

3. Benchmarking of the time-dependent algorithm

The time-dependent algorithm implementing the ARIADNE code at
each time step is validated by solving two prototype problems.

The first prototype problem involves gas expansion into vacuum.
More specifically, the dynamic standard apparatus for the measurement
of the response and relaxation times of vacuum gauges developed by
Physikalische-Technische Bundesanstalt (PTB) is considered [22]. In
Fig. 5, the schematic representation of the flow setup of prototype
problem 1 is provided. Two vessels, namely the upstream and down-
stream vessels with volumes =V 3.11 l and =V 1852 l respectively, are
interconnected via a circular tube with length =L 0.492 mm and radius

=R 0.50565h mm. The valve between the two vessels is closed. The
upstream vessel is filled with a monatomic gas up to an initial pressure
of = =P t( 0) 10001 0 Pa, while the downstream vessel is evacuated via a
turbomolecular pump to a negligible pressure. Next, the valve rapidly
opens and time-dependent gas expansion between the two vessels oc-
curs. The turbomolecular pump keeps running during the whole

experiment in order to maintain high vacuum at the downstream vessel
( =P 02 Pa). This flow setup has been considered in [23] and the tem-
poral evolution of the upstream pressure vessel P t( )1 for the monatomic
gases of He, Ne, Ar and Kr has been obtained both computationally and
experimentally indicating very good comparison between the corre-
sponding results. The computational work in [23] is based on the same
hybrid scheme implemented in the present work, with the steady-state
solution at each time step however obtained by the DSMC method.

In the ARIADNE code the above configuration is represented as a
vessel node (upstream vessel) connected with a fixed-pressure node
(downstream vessel) via a single piping element. The input data include
the vessel volume V1, the length L and radius Rh of the tube, the initial
upstream pressure =P t( 0)1 0 , the fixed-pressure =P 02 Pa and the time-
step = −Δt 10 4 s. Also, the conveying gas properties, shown in Table 1,
are provided.

In Fig. 6 the temporal evolution of the upstream vessel pressure
P t( )1 computed by the present time-dependent algorithm is plotted for
all four monatomic gases. The experimental and computational results
in [23] are also provided for comparison purposes. As it is clearly seen
there is always an excellent agreement between the corresponding re-
sults. It is noted that the agreement between the present computational
results and the experimental results of [23] is improved compared to
the corresponding one reported in [23] and this is mainly contributed
to the more dense kinetic database and interpolation algorithms im-
plemented in ARIADNE. Based on this comparison, the proper im-
plementation of the hybrid time-dependent scheme in the ARIADNE
code is demonstrated.

The second prototype problem involves the transient response of a
small size pipe network in the free molecular regime and its comparison
with the well-established TPMC code Molflow+ [24]. In Fig. 7, the
schematic representation of the network of prototype problem 2 is
provided. It consists of two vacuum vessels, with volumes = =V V 81 2 l,
one cryogenic pump, with sticking coefficient 0.8, running at all times
and five piping elements. The nodes 1 and 2 are vessel nodes, the nodes
3, 4 and 5 are inner nodes and node 6 is a pump node. A sample

Fig. 4. Flowchart of the hybrid time-dependent algorithm.

Fig. 5. Schematic representation of the gas expansion network (prototype
problem 1).

Table 1
Gas properties of He, Ne, Ar and Kr.

Gas He Ne Ar Kr

Molar mass [Kg/Kmol] 4.003 20.18 39.95 83.80
Viscosity at 295 K [μPas] 19.70 30.89 22.80 24.86

Fig. 6. Temporal evolution of the upstream vessel pressure for He, Ne, Ar and
Kr in prototype problem 1; comparison between the present time-dependent
algorithm and [23].

N. Vasileiadis and D. Valougeorgis Fusion Engineering and Design 151 (2020) 111383

5



material inside vessel V1 is outgassing helium at a rate of
= × − −Q t e( ) 2.5 10 t

1
3 2 Pam3/s, while =Q t( ) 02 Pam3/s. The length and

the radius of the pipes are given in Fig. 7. On purpose, the ratios of the
length over the radius are in a wide range, varying from 7.87 up to
30.5, in order to have a more complete comparison.

In the TPMC time-dependent simulation the above network has
been designed in the open source software Salome [27] and has been
imported into Molflow+, along with all input data. The network has
been simulated for 10 s by Molflow+and the computed temporal
pressure evolution at the six network nodes =i 1, ..., 6, is shown in
Fig. 8. In addition, from the Molflow+ simulation the pumping speed at
the pump node is found to be constant throughout the simulation and
equal to 4.8 m3/s. This constant pumping speed value (instead of the
sticking coefficient) has been imported as input data in the ARIADNE
code, since the pumping speed - inlet pressure curve must be defined for
all pumps. Having properly defined all input data, the present time-
dependent algorithm is implemented. The deduced temporal pressure
evolution at the six nodes of the network, are also plotted in Fig. 8. In
all cases an excellent agreement between corresponding results is ob-
served, with the average relative deviation at each node ranging from
0.7% up to 4.4%. The smallest and largest deviations correspond to
nodes 1 (outgassing vessel) and 5 (the elbow before the pump).

From the qualitative point of view the reported transient response of
the system is well expected. At vessel node 1, the pressure P1, is initially

increased due to the high outgassing rates at small times up to some
maximum value and then, as the outgassing is decreased, the pressure is
monotonically decreased due to the presence of the continuously run-
ning pump. At inner nodes 2–5 the pressure evolution follows a similar
trend, obtaining however smaller maximum values. At pump node 6,
the pressure always remains very close to zero.

Based on the solution of these two prototype problems, the im-
plementation of the proposed hybrid scheme is validated and the ac-
curacy of the obtained results is confirmed, to some extend. Having
developed some confidence on the proposed time-dependent algorithm,
its effectiveness in modeling large size networks is demonstrated by
simulating, in the next section, the time-dependent dwell phase of ITER.

4. The transient response of the ITER divertor system in the dwell
phase

4.1. Geometrical and operational data including outgassing

The latest design of the ITER divertor consists of 54 cassettes with a
20mm gap between adjacent cassettes and six direct cryopumps located
at lower ports 4, 6, 10, 12, 16, 18 [2]. The configuration of the pipe
network approximating the ITER divertor pumping system has been
thoroughly described in [17] and therefore only a brief review is pro-
vided here for completeness and clarity purposes. The only difference
between the aforementioned network configuration and the one im-
plemented in the present work is a small modification in the pumping
ducts concerning neutron shielding [28].

In Fig. 9, the cross section of a cassette connected to a cryogenic
pump along with the pipe network approximating the actual gas flow in
the cassette is shown. Each of the 54 cassettes has been approximated
by a pipe network consisting of 43 nodes and 43 pipes. Nodes 1 to 26
and 27 to 43 correspond to the so-called upper and lower cassette parts
respectively, which are connected via two pipes connecting nodes 1–27
and 9-33. In addition, in Fig. 9 the pumping duct network consisting of
7 nodes (not numbered) and 7 pipes, used to approximate the gas flow
from a divertor cassette towards a direct cryopump is presented.

In Fig. 10, the pipe network approximating the 20mm gap between
two adjacent cassettes, consisting of 15 nodes and 41 pipes, is shown. It
is seen that the gap network allows the gas to flow between adjacent
cassettes through the toroidal connections located at nodes 6, 9, 15, 17,
21, 28, 31, 33, 35, 38 and 48. The gap pipe network also allows the gas
to circulate inside the 20mm gap.

Totally, the resulting pipe network for the ITER divertor gas system,
modeling the torus primary pumping system, consists of 54 × (43+15)
+6 × 7=3174 nodes and 54 × (43+41)+6 × 7=4578 pipes. All the
reported results refer to the network configuration described above.

Continuing with the operational data the so-called “Inductive I”
operation mode of ITER consists of 400 s burn and 1400 s dwell phases.
During the dwell phase the ITER vacuum vessel, having a volume of
1400 m3, must be pumped down to the threshold pressure of × −5 10 4 Pa
in order to start the next plasma shot [19]. The main impediment to the
torus evacuation is the outgassing of hydrogen isotopes and helium
implanted on the vacuum vessel walls during the plasma discharge.

Obviously, the outgassing data of the ITER torus during the dwell-
phase are of major importance for the time-dependent simulations and
are obtained following [19], where a realistic estimation of the ITER
outgassing rate is given by considering corresponding data from JET.
The outgassing rate from the beryllium wall of JET follows an inverse
power law, written as [29]

= −Q t K t( )in
n

1 (10)

where K1 is the initial outgassing rate, t is the dwell phase elapsed time
and n is the decay index. Substituting Eq. (10) into Eq. (8) and (9) yields
the macro model describing the temporal evolution of the ITER torus
pressure P t( ) as

Fig. 7. Schematic representation of the pipe network in the free molecular re-
gime (prototype problem 2).

Fig. 8. Temporal evolution of pressure P t( )i at the six nodes =i 1, ..., 6 of
prototype problem 2; comparison between the present time-dependent algo-
rithm and Molflow+.
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= + = −− −V dP t
dt

K t M t R T K t P t S t( ) ˙ ( ) ( ) ( )n
g

n
eff1 1 (11)

where V is the volume of the torus and S t( )eff the torus effective
pumping speed. For constant effective pumping speed at the torus, Eq.
(11) is trivially solved analytically to deduce the closed form expression

∫=
⎛

⎝
⎜ +

⎞

⎠
⎟

− −P t P t e K
V

x e dx e( ) ( )
S
V t

t

t
n e

S
V t

0
1eff

Seff
V x eff

0

0 (12)

where P t( )0 is some known initial pressure at time t0. The analytical
solution (12), subject to the assumption of constant pumping speed, will
be implemented in Section 4.2 for comparing and physically justifying
some of the results.

It is noted that Eqs. (10–12) hold for >t 0 and thus, following [12],
the dwell phase is assumed to start at =t 1 s, where by setting

=dP dt/ 0, according to Eq. (11), results to = =Q K P S(1) (1) (1)in eff1 .
Based on the experimental data from six consecutive JET pulses
#70530 - #70535 [30] and the JET torus effective pumping speed of

∼S 200eff JET, m3/s, the initial outgassing rate of the vacuum vessel is

estimated between −1.2 1.5 Pam3/s. Thus, assuming the active vessel
areas of JET and ITER being 144 m2 [31] and 700 m2 respectively [19],
the initial outgassing rate of the ITER vessel is estimated between

−5.8 7.2 Pam3/s. The decay index n has been repeatedly reported in the
literature to range between −0.65 0.85 [29,31,32].

Three pumping scenarios are investigated. In the first one the 2
pumps located at lower ports 4 and 6 are operating and the remaining 4
pumps are regenerating, while in the second one the 4 pumps located at
lower ports 4, 6, 10 and 12 are running and the remaining 2 pumps are
regenerating. It is noted that the chosen 2 and 4 pump port config-
uration corresponds to the worst case scenario i.e the minimum torus
effective pumping speed of all possible port configurations. In the third
pumping scenario all 6 cryopumps are operating. The latter scenario
has been investigated for completeness purposes, although in practice
all 6 pumps will not be used at the same time. The limiting pumping
speed of the cryopumps is considered to be 55 m3/s at the reference
temperature of 273.15 K. Since the ITER torus and divertor system
temperature may vary, the temperatures of 400, 600 and 800 K are
considered. The conveying gas is D2 (molar mass 4.028 Kg/Kmol,

Fig. 9. Cross section view of a cassette connected to a pump along with the pipe network approximating the actual gas flow path.

Fig. 10. Cross section view of a gap between adjacent cassettes along with the pipe network approximating the actual gas flow path.
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viscosity of 10.89, 14.34, 17.43 μPas at 400, 600 and 800 K) as the main
outgassing hydrogen isotope [31].

4.2. Results and discussion

Before proceeding with the transient response of the ITER torus
primary pumping system, some steady-state results of the ITER torus
effective pumping speed in terms of the torus pressure are provided.
The pressure at the torus pressure nodes (the pentagonal nodes in
Figs. 9 and 10), is specified and it is introduced, along with the other
needed geometrical and operational data into the ARIADNE code,
which is implemented to find the mass flow rates and pressures in the
divertor network, including the torus effective pumping speed.

In Table 2, tabulated rates of the torus effective pumping speed for
torus node pressures equal to − − − − −[10 , 10 , 10 , 10 , 10 , 1]5 4 3 2 1 Pa are
provided based on the 2, 4 and 6 running pump scenarios at tempera-
tures 400, 600 and 800 K. It is observed that when the torus node
pressure is less than or equal to −10 3 Pa, i.e., when flow is in the free
molecular regime, the torus pumping speed is almost constant and
consequently the pumped throughput is linear with respect to pressure.
On the contrary, when the torus node pressure is higher than∼ −10 3 Pa,
i.e., when the flow is in the transition regime, the torus pumping speed
increases monotonically with the torus pressure. These remarks are
valid for all three running pump scenarios. Furthermore, with the 4 and
6 pumps scenario the torus effective pumping speed is about 2 and 3
times higher than the corresponding one with the 2 pumps, respec-
tively. This behavior indicates that, in both the 4 and 6 pumps scenarios
the flow is not limited by the divertor and each cryopump added to the
system, pumps about the same amount of gas as the other ones.

Turning next to the time-dependent problem, in Fig. 11, the tem-
poral evolution of the ITER torus pressure during the 1400 s dwell
phase, computed based on the present time-dependent algorithm, im-
plementing the ARIADNE code at each time step, is compared with the
corresponding one, based on the closed form expression (12) subject to
the constant torus effective pumping speed assumption. The compar-
ison is made for the three pumping scenarios at =T 400 K, with initial
torus pressure equal to 1 Pa, average initial outgassing rate =K 6.51
Pam3/s and =n 0.65 and 0.85, which are the lower and upper limiting
values of the decay index. Furthermore, the constant pumping speed in
Eq. (12) is taken from Table 2 for torus pressure −10 5 Pa, equal to
39.16m3/s, 77.22m3/s and 114.2 m3/s for the 2, 4 and 6 running
pumps respectively. The specific values have been chosen since, based
on the results of Table 2, the assumption of the constant pumping speed
is justified in the low pressure regime.

As it is seen in Fig. 11, the results are in good qualitative agreement
in the whole dwell phase. However, for ≤t 300 s, ≤t 200 s and ≤t 100 s
in the cases of 2, 4 and 6 pumps respectively, there are significant
quantitative deviations, with the present time-dependent algorithm
considered as the accurate prediction. These discrepancies are justified,
since for all above specified times the torus pressure is above 10−3Pa
(i.e the gas flow in the transition regime) and the torus effective

pumping speed in all three pumping scenarios is not constant as clearly
seen in Table 2, which makes the analytical solution of Eq. (12) invalid.
On the contrary for >t 300 s, >t 200 s and >t 100 s in the cases of 2, 4
and 6 pumps respectively, with the torus pressure being below
∼10−3Pa and the whole pumping system in the free molecular regime
the two approaches show excellent quantitative agreement. The ob-
servations with regard to the validity of the two approaches are im-
portant for the following reasons: a) The effectiveness of the present
time-dependent algorithm in modeling the transient response of large
size pipe networks is validated; b) When the torus pressure at the end of
the 1400 s dwell phase is the only quantity of interest, it can be accu-
rately predicted directly from Eq. (12), based on the constant torus
pumping speed in the free molecular regime computed by ARIADNE,
without implementing the hybrid time-dependent algorithm; c) The
physical behavior of the torus pressure temporal evolution including
the final torus pressure at the end of the 1400 s dwell phase can be
qualitatively explained based on the simple form of Eq. (12). This third
remark is employed later on in the discussion of the torus pressure
evolution.

The temporal evolution of the torus pressure during the dwell phase
for initial torus pressures equal to 1, −10 1 and −10 2 Pa is plotted in
Fig. 12. The other data are as before (three pumping scenarios, =T 400
K, =K 6.51 Pam3/s, =n 0.65 and 0.85). Starting with the 2 pumps

Table 2
Torus effective pumping speed (m3/s) of D2 for various torus pressures with 2, 4
and 6 pumps running at 400, 600 and 800 K.

Pumping
scenario

2 pumps 4 pumps 6 pumps

Torus
pressure
[Pa]

400 K 600 K 800 K 400 K 600 K 800 K 400 K 600 K 800 K

10-5 39.16 50.20 59.63 77.22 98.94 117.5 114.2 146.3 173.6
10-4 39.17 50.21 59.64 77.25 98.95 117.5 114.3 146.3 173.6
10-3 39.28 50.30 59.71 77.46 99.12 117.6 114.5 146.5 173.8
10-2 40.33 51.18 60.48 79.47 100.8 119.1 117.2 148.7 175.7
10-1 48.61 58.58 67.16 95.01 114.8 131.7 138.4 167.7 192.8
1 79.10 96.07 107.0 152.6 184.0 204.6 225.3 267.7 295.9

Fig. 11. Temporal evolution of the ITER torus pressure, based on ARIADNE and
analytical solution (12), with 2, 4 and 6 pumps operating, initial torus pressure
1 Pa, initial outgassing rate =K 6.51 Pam3/s, temperature =T 400 K and decay
indices =n 0.65 (up) and =n 0.85 (down).
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scenario, it is seen that the torus pressure evolution depends on the
initial torus pressure when approximately ≤t 300 s, while it becomes
identical for all initial pressure conditions when >t 300 s. The observed
behavior also holds with the 4 or 6 pumps scenarios, with the corre-
sponding times, where the merging of the torus pressure temporal
evolution curves takes place, at approximately =t 100 s and =t 200 s
respectively. These remarks are valid for both decay indices. Thus, it
may be concluded that in the range of the investigated parameters the
torus pressure after the 1400 s dwell phase period is independent from
the initial pressure conditions of the torus. The above remark is easily
justified by examining the right hand side of expression (12), where the
first term, related to the initial pressure is constant, while the second
term, related to outgassing, grows with time. Therefore, at adequately
large times the temporal pressure evolution will be independent of the
initial pressure conditions and will only depend on the outgassing term,
assuming that >K S, 0eff1 .

Since many of the required ITER dwell phase data have been either
extrapolated from corresponding JET data or have been assumed, a
parametric study is performed in order to deduce some useful in-
formation on the overall effectiveness of the pumping scenarios in ITER.
In Fig. 13 the final torus pressure after the 1400 s dwell phase is pre-
sented in terms of the initial outgassing rates K1 for the decay indices

=n 0.65 and 0.85, the system temperatures =T 400, 600 and 800 K with
the 2, 4 and 6 pumps operating.

It is readily seen that in all cases the final torus pressure grows
linearly with the initial outgassing rate. This trend is justified by Eq.
(12), where K1 multiplies the growing with time outgassing term, which
is the one, as mentioned above, affecting the final torus pressure. Fur-
thermore, the final torus pressure with the 4 and 6 pumps scenarios is
always reduced about 2 and 3 times respectively, compared to the
corresponding one with the 2 pumps scenario. As mentioned above the
torus effective pumping speed is increased by about 2 and 3 times when
4 and 6 cryopumps are employed. However, a robust connection be-
tween the linear dependence of the two effects, via Eq. (12), has not
been established. It is also seen that the final torus pressure is reduced
as the torus temperature is increased. More specifically, when the torus
temperature is increased from 400 K to 600 K the final torus pressure is
always decreased by about 22%, while when the torus temperature is
doubled from 400 K to 800 K the torus pressure reduction is about 34%.
In addition, for =n 0.85, corresponding to the lowest outgassing sce-
nario, after the 1400 s dwell pumping the target torus pressure of

× −5 10 4 Pa can be always achieved in the cases of 4 and 6 running
pumps, while in the case of 2 operating pumps it is achieved only in a
certain range of the investigated parameters. For =n 0.65, corre-
sponding to the highest outgassing scenario however, the required
threshold pressure is marginally achieved in the expected range of

Fig. 12. Temporal evolution of the ITER torus pressure for initial torus pres-
sures = − −P (1) [10 , 10 , 1]2 1 Pa, with 2, 4 and 6 pumps operating, initial out-
gassing rate =K 6.51 Pam3/s, temperature =T 400 K and decay indices =n 0.65
(up) and =n 0.85 (down).

Fig. 13. Torus pressure after the 1400 s dwell phase in terms of the initial
outgassing rate K1 with 2, 4 and 6 pumps operating, temperature =T 400, 600
and 800 K and decay indices =n 0.85 (up) and =n 0.65 (down).
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initial outgassing rates (5.8-7.2Pam3/s) only when all 6 cryopumps are
employed. Actually, even with the utilization of all 6 cryopumps, con-
sidering the uncertainty of the initial outgassing rate estimation (ex-
trapolated from JET), it cannot be stated with absolute certainty, that
the threshold pressure of × −5 10 4 Pa can be achieved when =n 0.65.

Based on the presented results and the associated discussion, the
feasibility and effectiveness of the proposed time-algorithm, im-
plementing ARIADNE at each macroscale time step, in modeling the
time response of large size gas distribution systems is demonstrated. In
parallel some findings concerning the operation of the ITER torus pri-
mary pumping system in the dwell phase have been presented.

5. Concluding remarks

The in-house UTH code for simulating steady-state gas distribution
systems of arbitrary size and complexity in rarefied conditions has been
advanced to include the computation of the pumping speeds of the
network pumps in a robust and automatic self-consistent manner. Also,
an enriched, denser kinetic data base of the piping elements flow rates
has been integrated into the network solver, to provide more accurate
results in the whole range of the Knudsen number. The code has been
restructured based on object-oriented programming to be more acces-
sible to the user and easily implemented in large size networks. For
future reference, the in-house upgraded UTH steady-state code is
named “ARIADNE”, standing for Algorithm for Rarefied gas flow in
Arbitrary Distribution Networks.

Furthermore, a time-dependent algorithm, based on an explicit
hybrid scheme, is proposed, to simulate the transient response of gas
distribution systems with varying operating conditions. The response
time scale separation of the network vessels and piping elements is
exploited and they are investigated separately by the corresponding
macro and micro models, which are explicitly coupled. The macro
model, describing the pressure evolution in the network vessels, con-
sists of simple ordinary differential equations derived via mass con-
servation principles, while the micro model, describing the pressure
and mass flow rate evolution in the pipe network, consists of the steady-
state code ARIADNE. Coupling between the two models is achieved by
solving at each macroscale time step the gas distribution system via the
micro model and providing the flow rates to the macro model to
compute the pressure in the vessels for the next time step. The com-
putational gain is significant since ARIADNE is implemented only at
each macroscale time step.

The presented code has been successfully benchmarked by solving
two prototype problems and comparing the results with corresponding
ones available in the literature, as well as with the well-established code
Molflow+. In both cases excellent agreement has been observed.

Next, the effectiveness of the time-dependent algorithm to model
large size networks is demonstrated by simulating the ITER time-de-
pendent dwell phase with the duration of 1400 s for various operating
scenarios. Several interesting findings are reported. Regarding the torus
pressure at the end of the dwell phase, which is of major importance, it
has been found that it is independent of the initial torus pressure con-
ditions, it increases linearly with the initial outgassing rate and it de-
creases as the network temperature increases. It is also seen that the
final torus pressure with the 4 and 6 pump scenario is reduced about 2
and 3 times compared to the corresponding one with the 2 pump sce-
nario. Concerning the specified target pressure of × −5 10 4 Pa at the end
of the dwell phase, based on the present simulations subject to the in-
troduced operational and geometrical data, it is concluded that in the
lowest outgassing scenario it can be achieved in a wide range of the
investigated parameters, while on the contrary in the highest out-
gassing scenario it is marginally achieved only in the expected range of
initial outgassing rates when all 6 cryopumps are employed.

It is believed that the presented software has a lot of potential and of
course it may be further advanced. Although both the steady-state
(ARIADNE) and time-dependent hybrid algorithms have been

developed within the EUROfusion program in an effort to simulate the
pumping systems of tokamak type fusion reactors, they can be also
applied in gas distribution systems of other technological fields.
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