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ABSTRACT

It is well known from the classical torsion theory that the cross section of a
prismatic beam subjected to end torsional moments will rotate and warp in
the longitudinal direction. Rotation is depicted through the angle of twist per
unit length and depends in general on the position along the length of the
beam, while the warping function addresses the longitudinal distortion of the
unrotated cross sections. In the present study, we consider a prismatic beam
that possesses an initial twist which is constant along its length. A thermal
�eld is present along the beam and its ends are loaded with axial forces
and torsional moments. The governing equilibrium equations and the cor-
responding boundary conditions were obtained using an energy variational
statement. A one-dimensional gradient thermoelastic analogue is developed.
The advantageous aspect of the present study is that the additional (and
peculiar) boundary conditions required by the gradient elasticity theory and
the related microstructural lengths, analogous to micromechanical lengths,
emerge in a natural way from the geometrical characteristics of the beamcross
section and thematerial properties. We have examined various examples with
di�erent cross sections and loads todemonstrate the applicability of themodel
to the design of special yarns useful in smart textiles and thermally activated
microdrilling actuators.
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Introduction

Beams are load-carrying structural components used in many technological applications. Their promi-
nent structural performance consists of conveying axial, bending, and torsional loads in a su�cient
way. Simple beam theory dates back to the 17th century when Hooke stated his famous law and was
established as a �rst-order approximation linear theory to investigate the response of a beam under
tensile loads. Since then many research e�orts have been devoted to enrich the classical beam theory
driven by the ever demanding needs for more complicated structures performing to extreme loading
excitations. Despite of the vast literature on the subject, even nowadays beam theory remains a versatile
tool used in the analysis of very challenging and sophisticated problems in the area of mechanics.

In the aerospace industry, structures like helicopter blades, wind turbines, propellers, etc., can be
modeled as simple beams supplemented with one additional characteristic, the pretwist. Pretwist brings
into the analysis some complexity, especially due to the coupling of the various loading conditions. It
is evident that a thorough investigation of pretwisted beams is not con�ned into a narrow academic
research framework but extends beyond to provide solutions into real demanding structures. To this
end, many fervent research e�orts have been devoted to formulate a rigorous theoretical framework for
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beams accounting for all the complex aspects of the induced pretwist. It was no earlier than 50s, when
Chu [1] showed that the torsional rigidity of thin-walled beams with elongated sections is increased
with pretwist using an engineering approach. Over the same period of time, Okubo [2, 3] published
independently his work on the helical springs and twisted beams bymanipulating the three-dimensional
equations of elasticity and formulating a two-dimensional boundary value problem. Later on, Rosen
[4, 6, 7], Hodges [5], Shield [8], and Krenk [9] developed improved technical theories for pretwisted
beams using kinematically admissible displacements and the theorem of minimum potential energy.
Krenk and Gunneskov [10, 11], Kosmatka [12], Jiang and Henshall [13] tackled the problem through
asymptotic analysis and the �nite element method for cross sections of various shapes.

Aside the mechanical loads, the structural performance of pretwisted beams may be signi�cantly
a�ected by imposed thermal stresses. It is well known that the variation of a temperature �eld may
induce thermal stresses in the elastic continuum which can be addressed through the constitutive law
of the material. In the present study, it is assumed that the induced nonuniform temperature �eld is
linear and our attention is con�ned to the case where quasi-static thermal conditions hold, meaning
that the variation of the temperature �eld with time is slow. In this way, the �elds of temperature and
displacement can be thought of as totally decoupled. A thorough analysis regarding the various aspects
of thermoelasticity can be found in many standard textbooks like Hetnarski and Eslami [14] and Boley
and Weiner [15].

Classical continuum mechanics theory is o�en inadequate to describe the mechanical behavior of
materials with microstructure due to the lack of length-scale parameters. Therefore, resort is o�en
sought to more elaborate continuum theories where the role of the microstructure is involved through
intrinsic parameters entering the constitutive law of the continuum. Toupin [16], Mindlin [17], Koiter
[18], and Eringen [19] proposed generalized linear continuum theories which are characterised by stress
nonlocality and the existence of material length scales. Mindlin’s general theory [17] includes three
equivalent forms de�ned on the basis of strain energy function expression of the continuum.

The present work deals with the problem of a pretwisted beam subjected to thermal loads. In�nites-
imal strains and rotations are assumed throughout. A classical structural mechanics approach is used
and an analogy with an one-dimensional strain gradient theory is presented. Mindlin’s form II strain
gradient elasticity theory is used and the strain elastic energy density function of the pretwisted beam
is expressed in terms of the strain tensor and its second spatial gradients. The analogy with the
gradient thermoelasticity stems from the coupling of the axial and torsional deformation, activated by
temperature change. The results developed in the present article extend an earlier work of Kordolemis
et al. [20]. The possible use of this coupling to the design of microdrilling actuators is discussed.

Problem formulation

Consider a homogeneous cylindrical beam with constant cross sections of arbitrary shape as shown in
Figure 1. A �xed Cartesian coordinate system Oxyz with base vectors (ex, ey, ez) is introduced with the
z-axis along the centroids of the cross sections and parallel to the generators of the cylinder. The beam is
assumed to be of lengthL; one of its bases is on the xy-plane and the other is on the plane z = L. The beam
is then pretwisted around the longitudinal z-axis by an amount of twist per unit length α0, such that any
cross section at a distance z from the origin rotates by an amount φ (z) = α0 z. The pretwisted beam is
assumed to be stress free. To ensure performance advantages, rotor blades of turbomachinery, tilt rotor
aircra�, and helicopters are usually twisted. It is convenient to introduce a local Cartesian coordinate
systemOηζ z on arbitrary cross section. The local coordinates (η, ζ ) are related to the global coordinates
(x, y) by the transformation formula

η
(

x, y, z
)

= x cos (α0 z)+ y sin (α0 z) (1)

ζ
(

x, y, z
)

= −x sin (α0 z)+ y cos (α0 z) (2)
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Figure 1. (a) The pretwisted beam with the local coordinate system and (b) the cross section of the beam.

so that

∂η

∂z
= α0 ζ ,

∂ζ

∂z
= −α0 η, and

∂f (η, ζ )

∂z
= α0

(

ζ
∂f

∂η
− η

∂f

∂ζ

)

(3)

where f (η, ζ ) is an arbitrary function.
The material of the beam is homogeneous, isotropic, and linearly elastic. The beam is loaded by

axial forces and torsional moments. In addition to the mechanical loads, the beam is subjected to
thermal loading which causes isotropic thermal expansion throughout the volume of the beam. The
strains caused by the applied loads are assumed to be in�nitesimal small so as the linear kinematics are
applicable. The tensor of thermal strains εth is purely volumetric and can be written in the form

εth(z) = α 1θ(z) δ (4)

where α is the coe�cient of thermal expansion, δ the second-order identity tensor, and 1θ (z) the
imposed (known) change of temperature.

Displacement �eld

We use an approximation for the displacement �eld in the beam of the general form (Krenk [9], Simo
and Vu-Quoc [23])

u(x) = w0(z)+ φ(z)× p(x, y)+ β(z)ψ(η, ζ ) ez (5)
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where w0(z) de�nes the displacement of the center of each cross section, p(x, y) = x ex + y ey is the
position vector of material points on the cross section, φ(z) is the in�nitesimal rotation vector of the
cross section,ψ(η, ζ ) is the (known) Saint-Venantwarping function of the cross section (i.e., the solution
of the Saint-Venant torsion problem without pretwist, Sokolniko� [21]), and β(z) is the (unknown)
warping amplitude. In particular, we use

w0(z) = w1(z) ez, φ(z) = φ(z) ez, and β(z) =
dφ(z)

dz
(6)

This displacement �eld is de�ned completely by the generalized displacements (w1(z),φ(z)), which are
determined by minimizing the corresponding potential energy of the beam. The corresponding stresses
will satisfy approximately the equilibrium equations and the traction boundary conditions.

The components (u, v,w) in the (x, y, z) directions of the displacement �eld are1

u
(

y, z
)

= −φ(z) y (7)

v (x, z) = φ(z) x (8)

w (η, ζ , z) = w1 (z)+
dφ (z)

dz
ψ (η, ζ ) (9)

The corresponding components of the in�nitesimal mechanical (as opposed to thermal) strain tensor
can be expressed as

εme
xx (z) = εxx − εthxx =

∂u

∂x
− α 1θ = −α 1θ (z) (10)

εme
yy (z) = εyy − εthyy =

∂v

∂y
− α 1θ = −α 1θ (z) (11)

εme
zz (x, y, z) = εzz − εthzz =

∂w

∂z
− α 1θ =

dw1(z)

dz
+

d2φ (z)

dz2
ψ (η, ζ )+

dφ (z)

dz

∂ψ (η, ζ )

∂z
− α 1θ (z)

(12)

εme
xy = εxy =

1

2

(

∂u

∂y
+
∂v

∂x

)

= 0 (13)

εme
xz (x, y, z) = εxz =

1

2

(

∂u

∂z
+
∂w

∂x

)

=
1

2

dφ (z)

dz

[

−y +
∂ψ (η, ζ )

∂x

]

(14)

εme
yz (x, y, z) = εyz =

1

2

(

∂v

∂z
+
∂w

∂y

)

=
1

2

dφ (z)

dz

[

x +
∂ψ (η, ζ )

∂y

]

(15)

where (...)me and (...)th denote mechanical and thermal parts, respectively.
Of particular interest is the axial mechanical strain εme

zz , which consists of four terms. The �rst term in
Eq. (12) accounts for the axial strain due to axial loading, the second term is due to the nonuniformity of
the rate of twist dφ/dz (Vlasov [22]), the third term is due to pretwist, which introduces the dependence
of the warping functionψ(η, ζ ) on the axial coordinate z [see Eq. (3)], and the fourth term accounts for
the axial thermal strain. It is this particular strain component that brings about the various interactions
between axial- and twist-type of loading. Due tomaterial isotropy, the temperature variation a�ects only
the normal components of strain.

The corresponding stressesσij are determined from the standard isotropic, linearly elastic constitutive
equations that relate σij to ε

me
ij .

1The displacement components u, v in Reference [20] [given by Eq. (3) therein] have been mistyped.
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Potential energy of the beamand the governing di�erential equations

The total elastic strain energy of the isotropic, linearly elastic beam is

U =

∫ L

0

{∫∫

E

2

[

(

εme
xx

)2
+

(

εme
yy

)2
+
(

εme
zz

)2
]

dxdy +

∫∫

2G

[

(

εme
xz

)2
+

(

εme
yz

)2
]

dxdy

}

dz (16)

where E is Young’s modulus, G the elastic shear modulus, and the double integrals on (x, y) (or (η, ζ ))
in all equations of the article are understood to be evaluated over the cross section.

Using the expressions (10)–(15) for the mechanical strain components and integrating by parts, we
conclude a�er some lengthy but otherwise straightforward algebraic manipulations that the variation
δU can be written in the form

δU = −

∫ L

0
δw1

(

EA
d2w1

dz2
+ α0 E S

d2φ

dz2
− α EA

d1θ

dz

)

dz

−

∫ L

0
δφ

[

(

α20 EK + G J
) d2φ

dz2
− α0 α E S

d1θ

dz
+ α0 E S

d2w1

dz2
− E Jω

d4φ

dz4

]

dz

+

[

δw1

(

EA
dw1

dz
+ α0 E S

dφ

dz
− α EA1θ

)]L

0

+

[

δφ

(

−E Jω
d3φ

dz3
+ α0 E S

dw1

dz
− α α0 E S1θ

)]L

0

+

[

dδφ

dz

(

E Jω
d2φ

dz2
+ α0 ER

dφ

dz

)]L

0

(17)

where A is the cross-sectional area,

K =
1

α20

∫∫ (

∂ψ

∂z

)2

dηdζ =

∫∫ (

ζ
∂ψ

∂η
− η

∂ψ

∂ζ

)2

dηdζ ≥ 0 (18)

J =

∫∫

[

(

η +
∂ψ

∂ζ

)2

+

(

−ζ +
∂ψ

∂η

)2
]

dηdζ > 0 (19)

Jω =

∫∫

ψ2 (η, ζ ) dηdζ ≥ 0 (20)

R =
1

α0

∫∫

ψ
∂ψ

∂z
dηdζ =

∫∫

ψ

[

(

∂ψ

∂η

)2

+

(

∂ψ

∂ζ

)2
]

dηdζ (21)

S =
1

α0

∫∫

∂ψ

∂z
dηdζ =

∫∫

[

(

∂ψ

∂η

)2

+

(

∂ψ

∂ζ

)2
]

dηdζ ≥ 0 (22)

and the warping function is normalized so that
∫∫

ψ (η, ζ ) dηdζ = 0.
The quantities (A,K, J, Jω,R, S) in Eqs. (18)–(22) are de�ned completely by the shape of the cross

section. A detailed discussion of the aforementioned geometrical quantities and their physical interpre-
tation is given by Kordolemis et al. [20]; a list of their values for various shapes of the cross section is
presented in the Appendix.

Let pz and mz be the axially distributed force and torsional moment, respectively, applied along the
beam, i.e.,

pz = −
dN (z)

dz
and mz = −

dT (z)

dz
(23)
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where N(z) and T(z) are the the axial force and torsional moment along the beam. The variation of the
work δW of the external forces can be written in the form:

δW =

∫ L

0

(

pz δw1 + mz δφ
)

dz + [N δw1]
L
0 + [T δφ]L0 +

[

(−B̄) δ
dφ

dz

]L

0

(24)

where B̄ denotes the boundary values of the bimoment, which is de�ned as:

B(z) = −

∫

A
σzz(x, y, z)ψ(x, y, z) dxdy with σzz = E εzz (Vlasov [22]).

The condition of minimum potential energy can be written in the form δU − δW = 0. Substituting
Eqs. (17) and (24) in the condition δU − δW = 0, we arrive at the following Euler–Lagrange equations

d2w1

dz2
+
α0 S

A

d2φ

dz2
= −

pz

EA
+ α

d1θ

dz
(25)

− ℓ2
d4φ

dz4
+

(

1 +
α20 K

J

E

G

)

d2φ

dz2
+
α0 S

J

E

G

d2w1

dz2
= −

mz

G J
+
α0 S

J

E

G
α
d1θ

dz
(26)

and boundary conditions at the ends z = 0 and z = L:

w1 = w̄1 or
dw1

dz
+
α0 S

A

dφ

dz
=

N̄

E A
+ α 1θ̄ ,

(

with1θ̄ = 1θ(0) or1θ(L)
)

(27)

φ = φ̄ or − ℓ2
d3φ

dz3
+

(

1 +
α20 K

J

E

G

)

dφ

dz
+
α0 S

J

E

G

dw1

dz
=

T̄

G J
+
α0 S

J

E

G
α 1θ̄ (28)

dφ

dz
= ¯̄φ or ℓ2

d2φ

dz2
+
α0 R

J

E

G

dφ

dz
= −

B̄

G J
(29)

where

ℓ2 =
Jω

J

E

G
(30)

and (w̄1, φ̄,
¯̄φ, N̄, T̄, B̄) are the applied “loads” at the ends of the beam. Equations (25)–(29) de�ne the

boundary value problem that determines the unknown functions w1(z) and φ(z). It should be noted
that the aforementioned boundary value problem can be derived from that listed by Kordolemis et al.
[20], if dw1/dz in [20] is replaced by dw1/dz − α 1θ .

Guided by Eqs. (27), (28), and (29), we write

N(z) = EA

[

dw1(z)

dz
− α1θ(z)

]

+ α0 S E
dφ(z)

dz
(31)

T(z) = G J

[

dφ(z)

dz
− ℓ2

d3φ(z)

dz3

]

+ α0 S E

[

dw1(z)

dz
− α 1θ(z)

]

+ α20 K E
dφ(z)

dz
(32)

B(z) = −G J ℓ2
d2φ(z)

dz2
− α0 RE

dφ(z)

dz
(33)

Then Eqs. (25) and (26) are equivalent to Eq. (23), i.e.,

dN(z)

dz
= −pz(z) (34)

dT(z)

dz
= −mz(z) (35)

and the boundary conditions (27), (28), and (29) take the form

w1 = w̄1 or N = N̄ (36)

φ = φ̄ or T = T̄ (37)



JOURNAL OF THERMAL STRESSES 1237

dφ

dz
= ¯̄φ or B = B̄ (38)

It is worth mentioning the tension–torsion coupling when the beam is pretwisted. If α0 6= 0, the axial
force N(z) de�ned in Eq. (31) depends on the rotation φ(z). Similarly, the torsional moment T(z)
depends on the axial displacement w1(z), when α0 6= 0. Also note that, for α0 = 0, the bimoment
B(z) is nonzero when the rate of twist dφ(z)/dz is not constant along the beam; however, for α0 6= 0,
a nonzero bimoment develops even for constant rate of twist dφ(z)/dz along the beam (see Eq. (33)).
Equations (31)–(33) that relate the structural loads (N,T,B) to the generalized displacements (w1,φ)
can be viewed as structural constitutive equations for the beam.

The expression for the torsional moment T(z) in Eq. (32) can be written as the sum of three terms:

T = TSV + TB + Tα0 (39)

TSV =

∫ ∫

(x σzy − y σzx) dxdy = G J
dφ(z)

dz
(40)

TB =
dB

dz
= −G J ℓ2

d3φ(z)

dz3
− α0 RE

d2φ(z)

dz2
(41)

Tα0 =

∫ ∫

σzz
∂ψ

∂z
dxdy = α0 S E

[

dw1(z)

dz
− α 1θ(z)

]

+ α20 K E
dφ(z)

dz
+ α0 RE

d2φ(z)

dz2
(42)

where σzz = E εzz, TSV is the standard term that arises from the Saint-Venant shear stresses, TB is the
torque due to the nonuniformity of the rate of twist dφ/dz (Vlasov [22]), andTα0 is the additional torque
(“bishear”) due to pretwist α0 (see Simo and Vu-Quoc [23], Eq. (31c)). It should be noted that the shear
stresses responsible for TB and Tα0 appear to have no strain counterpart (see Eqs. (14) and (15)). The
situation is analogous to that in the Bernoulli–Euler technical beam theory, where shear stresses are o�en
calculated and the assumption of “plane sections” (shear strains are ignored) is used at the same time.

The problem in terms of w1(z)

Weuse the approach ofKordolemis et al. [20] and formulate the problem in terms ofw1(z) by eliminating
φ(z) from Eqs. (25) and (26). Solving Eq. (25) for d2φ/dz2 and substituting the result in Eq. (26), we
arrive at the following fourth-order di�erential equation for w1(z):

g2
d4w1(z)

dz4
−

d2w1(z)

dz2
=

q(z)

EA
+ α

[

g2
d31θ(z)

dz3
−

d1θ(z)

dz

]

(43)

where

q(z) =
1

c2

(

1 +
α20 K

J

E

G

)

pz(z)− g2
d2pz(z)

dz2
−
α0 E S

c2
mz(z)

G J
(44)

and

c2 = 1 + α20
E

GJ

(

K −
S2

A

)

≥ 0, g2 =
ℓ2

c2
(45)

To express the boundary conditions in terms of w1 only, we use Eq. (25) to �nd

d2φ

dz2
=

A

α0 S

(

−
pz

EA
−

d2w1

dz2
+ α

d1θ

dz

)

and
d3φ

dz3
=

A

α0 S

(

−
1

EA

dpz

dz
−

d3w1

dz3
+ α

d21θ

dz2

)

(46)
Then, we combine Eqs. (27) and (28) �rst and Eqs. (27) and (29) next, to eliminate dφ/dz from them.
Finally, we substitute Eq. (46) into the two equations resulting from the aforementioned eliminations
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and arrive at the following two boundary conditions at the ends z = 0 and z = L:

w1 = w̄1 or − g2
d3w1

dz3
+

dw1

dz
=

P̄

E A
+ α

(

−g21θ̄ ′′ +1θ̄
)

(

with1θ̄ ′′ = d21θ
dz2

∣

∣

∣

z=0
or d21θ

dz2

∣

∣

∣

z=L

)

(47)

and

dw1

dz
= ¯̄w1 or g2

d2w1

dz2
+ h

dw1

dz
=

Ȳ

E A
+ α

(

g21θ̄ ′ + h1θ̄
)

(

with1θ̄ ′ = d1θ
dz

∣

∣

∣

z=0
or d1θ

dz

∣

∣

∣

z=L

)

(48)

where

P̄ = g2 p̄′
z +

1

c2

(

1 +
α20 K

J

E

G

)

N̄ −
α0 S

c2 J

E

G
T̄

(

with p̄′
z =

dpz

dz

∣

∣

∣

z=0
or

dpz

dz

∣

∣

∣

z=L

)

(49)

Ȳ = −g2 p̄z + h N̄ +
α0 S

c2 J

E

G
B̄

(

with p̄z = pz(0) or pz(L)

)

(50)

¯̄w1 =
N̄

E A
−
α0 S

A
¯̄φ + α 1θ̄ (51)

h =
α0 R

c2 J

E

G
(52)

The quantity h de�ned in Eq. (52) has dimensions of length and can be viewed as a surface boundary
material length parameter. Kordolemis et al. [20] have pointed out that |h| ≤ g. The sign of h is the
same as the sign of the pretwist α0. In cross sections that have one axis of symmetry, the cross-sectional
geometric parameter R vanishes and h = 0.

The quantities P̄ and Ȳ introduced in Eqs. (49) and (50) are “generalized end loads” and are de�ned
in terms of the “traditional mechanical end loads” (N̄, T̄, p̄z, B̄). We note that h enters the problem only
when the generalized load Ȳ is prescribed at one or both ends of the beam, i.e., when boundary condition
(48b) is active; for example, in “fully constrained problems” wherew1 and dw1/dz are prescribed at both
ends, the axial displacement �eld w1(z) in the beam is independent of h.

We use the expressions in Eqs. (49) and (50) to de�ne the generalized loads P(z) and Y(z) on any
cross section along the beam:

P(z) = g2
dpz(z)

dz
+

1

c2

(

1 +
α20 K

J

E

G

)

N(z)−
α0 S

c2 J

E

G
T(z) (53)

Y(z) = −g2 pz(z)+ hN(z)+
α0 S

c2 J

E

G
B(z) (54)

We can also use Eqs. (31)–(33) and (46) to arrive at the following alternative relations for the generalized
loads P(z) and Y(z):

P(z) = EA

(

1 − g2
d2

dz2

)[

dw1(z)

dz
− α 1θ(z)

]

(55)

Y(z) = EA

(

h + g2
d

dz

)[

dw1(z)

dz
− α 1θ(z)

]

(56)

Equations (43), (47), and (48) de�ne the boundary value problem that determines w1(z). Once
w1(z) has been determined, the solution is completed with the calculation of φ(z) from the
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di�erential equation (25):

d2φ(z)

dz2
= −

A

α0 S

{

d

dz

[

dw1(z)

dz
− α 1θ(z)

]

+
pz(z)

EA

}

(57)

and the appropriate boundary condition at z = 0 and L.
The general solution of Eqs. (43) and (57) is

w1(z) = c1 L sinh
z

g
+ c2 L cosh

z

g
+ c3 z + c4 L + α

∫

1θ(z)dz

−
g

EA

∫ z

0

(

z − ζ

g
− sinh

z − ζ

g

)

q(ζ ) dζ (58)

and

φ(z) = −
A

α0 S

{

w1(z)− α

∫

1θ(z) dz +
1

EA

∫ [∫

pz(z) dz

]

dz

}

+ c5
z

L
+ c6 (59)

where (c1, c2, c3, c4, c5, c6) are dimensionless constants to be determined from the boundary conditions.
In “Analogy with one-dimensional gradient thermoelasticity” section, the one-dimensional gradient

linear thermoelastic model of a homogeneous and isotropic bar under axial loading is presented and the
direct analogy with the approach of this section is highlighted. In “Cases studies for various boundary
conditions” section, analytical expressions of the displacement �eld w1(z) and the generalized loads
(P,Y) are developed for various boundary conditions and a linear thermal load. It is also demonstrated
that the interplay between the axial force N, torque T, and the bimoment B initiates the actuating
character of the beam through thermal loading.

Analogy with one-dimensional gradient thermoelasticity

We consider quasi-static strain-gradient thermoelasticity and let τij be the components of the Cauchy
stress tensor, µijk the components of the double-stress tensor, and Fi the components of the body force
(force per unit volume). In a Cartesian coordinate system (x1, x2, x3) = (x, y, z), the equations of
equilibrium take the form (Filopoulos et al. [24], [25]),

(

τji − µkji,k

)

,j
+ Fi = 0 (60)

The associated kinematic and traction boundary conditions are

ui = ūi or P̄i = nj
(

τji − µkij,k

)

− Dj

(

nk µkji

)

+
(

Dpnp
)

nj nk µkji (61)

ui,j nj = ¯̄ui or Ȳi = nk nj µjki (62)

where ū and ¯̄u are prescribed displacement and normal derivatives of displacements, P̄ prescribed
generalized tractions, Ȳ prescribed generalized double tractions, n the unit outward normal to the
boundary, Dj =

(

δjk − nj nk
)

∂
∂xk

, δjk the Kronecker delta, repeated indices imply summation, and a

comma followed by a subscript, say i, denotes partial di�erentiationwith respect to the spatial coordinate
xi, e.g., A,i = ∂A/∂xi.

We consider the one-dimensional strain gradient linear thermoelastic problem of a homogeneous
and isotropic bar in tension/compression (see also Kordolemis et al. [20]). Poisson’s ratio is assumed to
vanish and the only nonzero displacement component is uz(z), where z is the direction of the bar axis.
Then, the only nonzero components of strain, stress, and double stress are εzz = duz/dz, τzz, and µzzz.
The equilibrium equation (60) and the boundary conditions (61) and (62) at the ends of the bar are
written as:

dτzz

dz
−

d2µzzz

dz2
+ Fz = 0 (63)
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and at the ends z = 0 and z = L

uz = ūz or P̄z = τzz −
dµzzz

dz
(64)

duz

dz
= ¯̄uz or Ȳz = µzzz (65)

We use the results of Filopoulos et al. [24],[25] for the special case of one-dimensional linear strain
gradient thermoelasticity, as it was done in the absence of thermal loads by Tsepoura et al. [26], and
write the thermoelastic constitutive equations in the form

τzz = E

(

εme
zz + h

dεme
zz

dz

)

, µzzz = E

(

h εme
zz + g2

dεme
zz

dz

)

, with εme
zz =

duz

dz
− α1θ (66)

where E is Young’s modulus, (h, g) “material lengths,” α the coe�cient of thermal expansion, and1θ the
change of temperature along the bar. The simpli�ed constitutive equations (66) have not been explicitly
presented before, but they are tacitly included by Filopoulos et al. [24, 25]. The constitutive equations
(66) can be written in the form:

τzz(z) = E

(

duz

dz
+ h

d2uz

dz2

)

− α E

(

1θ + h
d1θ

dz

)

(67)

µzzz(z) = E

(

h
duz

dz
+ g2

d2uz

dz2

)

− α E

(

h1θ + g2
d1θ

dz

)

(68)

Substituting the above expressions for τzz and µzzz in the governing equilibrium equation and the
boundary conditions (63)–(65), we arrive at the following boundary value problem for uz(z):

g2
d4uz(z)

dz4
−

d2uz(z)

dz2
=

fz(z)

EA
+ α

[

g2
d31θ(z)

dz3
−

d1θ(z)

dz

]

(69)

and at the ends z = 0 and z = L:

uz = ūz or − g2
d3uz

dz3
+

duz

dz
=

P̄z

EA
+ α

(

−g2
d21θ̄

dz2
+1θ̄

)

(70)

duz

dz
= ¯̄uz or g2

d2uz

dz2
+ h

duz

dz
=

Ȳz

EA
+ α

(

g2
d1θ̄

dz
+ h1θ̄

)

(71)

where A is the cross-sectional area and fz(z) = Fz(z)A the axial body force per unit length of the bar.
Kordolemis et al. [20] have shown that the conditions g ≥ 0 and |h| ≤ g are required for uniqueness

of solution.
Equations (69)–(71) compare directly to Eqs. (43), (47), and (48) and establish a direct analogy

between the thermal problem of the pretwisted beam and the one-dimensional strain gradient ther-
moelastic continuum, provided the substitutions listed in Table 1 are made.

Table 1. Equivalent quantities between the pretwisted beam and the one-dimensional gradient thermoelastic continuum.

Variable Pretwisted beam Gradient thermoelasticity

Axial displacement w1 (z) uz (z)

Volumematerial length

√

1

c2

Jω

J

E

G
g

Surface material length
α0 R

c2 J

E

G
h

Body force q(z) =
1

c2

(

1 +
α20 K

J

E

G

)

pz(z)− g2
d2pz(z)

dz2
−
α0 E S

c2

mz(z)

G J
fz(z) = Fz(z) A

Generalized traction P̄ = g2 p̄′
z +

1

c2

(

1 +
α20 S

J

E

G

)

N̄ −
α0 S

c2 J

E

G
T̄ P̄z

Generalized double traction Ȳ = −g2 p̄z + h N̄ +
α0 S

c2 J

E

G
B̄ Ȳz

c2 = 1 + α20
E

G J

(

K −
S2

A

)

, g ≥ 0, −g ≤ h ≤ g
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Case studies for various boundary conditions

In this section, we present various case studies for the problem of a pretwisted beam subjected to thermal
loads under di�erent boundary conditions. We want to examine the e�ects of temperature variation
1θ(z) on the mechanical behavior of the pretwisted beam.We assume that the mechanical loads (N,T)
take constant values along the pretwisted beam, i.e., N(z) = N = const. and T(z) = T = const.
(pz = 0,mz = 0). The corresponding values of the generalized loads (P,Y) are

P =
1

c2

(

1 +
α20 K

J

E

G

)

N −
α0 S

c2 J

E

G
T = const. (72)

Y(z) = hN +
α0 S

c2 J

E

G
B(z) (73)

We note that P is constant along the beam, whereas Y may vary with z due to the bimoment B(z). The
bimoment takes nonzero values when there is pretwist or the rate of twist dφ/dz is not constant along
the beam (Vlasov [22]) and is determined from Eq. (33):

B(z) = −ℓ2 G J
d2φ(z)

dz2
− α0 RE

dφ(z)

dz
.

To examine the e�ects of temperature variation 1θ(z) on the mechanical behavior of the pretwisted
beam, we consider a linear temperature variation along the beam of the form

1θ(z) = 1θ0

(

1 + D
z

L

)

(74)

where 1θ0 is the magnitude of temperature change at z = 0 and D is a dimensionless constant that
controls the temperature gradient along the beam, i.e., 1θ(0) = 1θ0 and 1θ(L) = 1θ0(1 + D).
Homogeneous mechanical boundary conditions are used in all problems analyzed, i.e., we assume that
(w1 = 0 or P = 0) and (dw1/dz = 0 or Y = 0) at the ends of the beam, so that the only applied “load”
on the beam is the aforementioned temperature �eld1θ(z). In view of the linearity of the problem and
the absence of any mechanical loads, the solution is proportional to α 1θ0.

It is emphasized that vanishing of the generalized loads (P,Y) at the ends of the beam does not
necessarilymean that the corresponding end values of the truemechanical loads (N,T) vanish as well. In
fact, the corresponding values ofN andT at the ends of the beam are determined fromEqs. (72) and (73).
In the �rst three examples, the beam is constrained axially at both ends (w1(0) = w1(L) = 0) and the
corresponding reactions are studied. In the last two examples, the end at z = 0 is fully constrained
(

w1(0) = dw1
dz

∣

∣

∣

z=0
= 0

)

and the response at the other end is studied.

The solution is determined by solving the boundary value problem de�ned by Eqs. (43), (47), and
(48). We recall that the general solution for w1(z) and φ(z) is of the form (see Eqs. (58) and (59))

w1(z) = c1 L sinh
z

g
+ c2 L cosh

z

g
+ c3 z + c4 L + α 1θ0 z

(

1 + D
z

2 L

)

(75)

and

φ(z) = −
AL

α0 S

(

c1 sinh
z

g
+ c2 cosh

z

g
+ c3

z

L
+ c4

)

+ c5 z + c6 (76)

The corresponding constant axial force N is determined from Eq. (31):

N = α0 c5 E S (77)

The results show that the nonclassical boundary conditions that enter the problem of the pretwisted
beam may induce an interesting drilling type of actuation that has been observed in various biosystems
and will be discussed a�er the examples.
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Case 1: Beamwith fully constrained ends

We consider a beam with both ends fully constrained as shown in Figure 2 and study the generalized
forces P(z) and Y(z) that develop along the beam.

The boundary conditions in this case read

w1(0) = w1(L) = 0 and
dw1

dz

∣

∣

∣

∣

z=0

=
dw1

dz

∣

∣

∣

∣

z=L

= 0 (78)

Using these boundary conditions in the general solution (75), we �nd

w1(z) = −α 1θ0
LD

2

{

z

L

(

1 −
z

L

)

−
g

L

[

sinh
z

g
− 2 coth

L

2 g

(

sinh
z

2 g

)2
]}

(79)

In this case, the ends of the beam are fully constrained, there are no boundary conditions in terms of Y ,
and the solution for w1(z) is independent of the surface material length h [see discussion in paragraph
before Eq. (33) in “Problem formulation” section]. If the temperature along the length of the beam is
constant, i.e., if D = 0, Eq. (79) implies that w1(z) = 0, in agreement with classical thermoelasticity.
Also in the limit g → 0, we recover the classical solution of linear thermoelasticity:

lim
g→0

w1(z) = −α 1θ0
D

2
z
(

1 −
z

L

)

(80)

Figure 3 shows the variation ofw1(z) for di�erent values of the ratio g/L. Note that, as the internal length
g increases, the axial displacement w1 decreases, thus indicating a sti�ening e�ect when g 6= 0.

The generalized axial load P(z) and the generalized double force Y(z) can be determined from Eqs.
(55) and (56). The resulting value for the generalized load P(z) is constant as expected:

P = −α 1θ0 EA

(

1 +
D

2

)

(81)

The sign of P is the opposite of the sign of1θ0
(

1 + D
2

)

.
The generalized force Y(z) in this case reads

Y(z) = −α 1θ0 EAL

[

h

L

(

1 +
D

2

)

+
D

2 sinh L
2 g

(

g

L
cosh

L − 2 z

2 g
−

h

L
sinh

L − 2 z

2 g

)

]

(82)

We also have that

lim
g→0

Y(z) = −α 1θ0 EAh

(

1 +
D

2

)

and Y(z)|h=0 = −α 1θ0 EA
g D

2 sinh L
2 g

cosh
L − 2 z

2 g
(83)

When both material length vanish (g = h = 0), the generalized double force vanishes (Y = 0), i.e.,
we recover the classical thermoelastic solution, which does not involve double forces. When h = 0, the
generalized double force Y(z) is de�ned by (83b) and its sign is the opposite of the sign of1θ0 D.

Figure 2. A beam with clamped ends (Case 1).
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Figure 3. The axial displacementw1 along the beam for various values of the ratio
g
L (Case 1).

Figure 4 shows the dependence of Y(z) along the beam with the length scale g. As expected, the
magnitude of the generalized double force increases when the material length g increases.

Figure 5 shows the dependence of the generalized double force Y(z) on the surface material length
h. According to Figure 5, it is possible for the generalized double force Y to have di�erent signs at the
two ends of the beam; also the sign of h, which is the same as the sign of the pretwist α0, can in�uence
the sign of Y at the ends of the beam. In the present example, the ends of the beam are fully constrained
(w1 = 0 and dw1/dz = 0 at both ends), and the beam does not have any kinematical freedom at its

Figure 4. The distribution of the generalized axial double force Y for various values of g for h = 0 (Case 1).
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Figure 5. Variation of the generalized double force Y(z) on h for g/L = 0.5 and D = 5 (Case 1).

ends; yet, the results of Figure 5 indicate that by controlling the microstructural parameters h and g,
which can be achieved by changing the geometrical parameters of the cross section and the amount
and sign of pretwist, we can control the magnitude and sign of Y , thus paving the way for the actuating
capabilities of the beam. Such possibilities are explored in the following examples, in which di�erent
boundary conditions are used.

Case 2: Beamwith �xed ends and Y = 0 at both ends

In this second example, the constraints at both ends are relaxed a bit and the conditions dw1
dz

∣

∣

∣

z=0
=

dw1
dz

∣

∣

z=L
= 0 of Case 1 are replaced by Y(0) = Y(L) = 0. The boundary conditions now are (Figure 6)

w1(0) = w1(L) = 0 and Y(0) = Y(L) = 0 (84)

and the constants in Eq. (75) take the values

c1 = −
α 1θ0

1

(

g
L ,

h
L

)

(

1 +
D

2

)

g h

L2

[

g

L

(

cosh
L

g
− 1

)

+
h

L
sinh

L

g

]

(85)

c2 = −c4 =
α 1θ0

1

(

g
L ,

h
L

)

(

1 +
D

2

)

g h

L2

[

h

L

(

cosh
L

g
− 1

)

+
g

L
sinh

L

g

]

(86)

c3 = −
α 1θ0

1

(

g
L ,

h
L

)

(

1 +
D

2

)

g2 − h2

L2
sinh

L

g
(87)

where

1

(

g

L
,
h

L

)

= 2
g h2

L3

(

cosh
L

g
− 1

)

+
g2 − h2

L2
sinh

L

g
≥ 0 (88)

In the limit g → 0, the classical thermoelastic solution (80) for w1(z) is recovered.
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Figure 6. Beam with �xed ends and Y = 0 at both ends (Case 2).

As in Case 1, when the material length g 6= 0, the displacement �eld can change substantially in
magnitude and sign, depending on the particular values of 1θ0, D, g, and h. Also, a larger value of g
results in sti�er response (smaller w1).

The generalized axial force P in this case takes the value

P = −α 1θ0
EA

1

(

g
L ,

h
L

) (2 + D)
g2 − h2

L2
sinh

L

g
(89)

We note that P(−h) = P(h) and that the sign of P is the opposite of the sign of1θ0(2 + D). Also in the
limit g → 0, we recover the value of P given in Eq. (81).

The generalized double force Y in this case takes the form

Y(z) = −α 1θ0
4EAL

1

(

g
L ,

h
L

) (2 + D)
h(g2 − h2)

L3
sinh

L

2 g
sinh

L − z

2 g
sinh

z

2 g
(90)

We note that Y(−h) = −Y(h), so that Y|h=0 = 0, and that the sign of Y is the opposite of the sign of
1θ0(2 + D)h. Also, in the limit g → 0, Y takes again the value given in Eq. (83a).

It is also interesting to note that in this case, when h = ±g, both P and Y(z) vanish.

Case 3: Beam clamped at both ends with dw1
dz

∣

∣

∣

z=0
= 0 and Y(L) = 0

In this problem, we use “nonsymmetric” boundary conditions at the ends (Figure 7):

w1(0) = w1(L) = 0 and
dw1

dz

∣

∣

∣

∣

z=0

= 0, Y(L) = 0 (91)

and the constants in Eq. (75) take the values

c1 =
α1θ0

1

(

g
L ,

h
L

)

g

L

[

−2
g h

L2
+

g

L

(

2
h

L
+ D

)

cosh
L

g
+ D

h

L
sinh

L

g

]

(92)

c2 = −c4 = −
α 1θ0

1

(

g
L ,

h
L

)

g

L

[

−(2 + D)
h

L
+ D

h

L
cosh

L

g
+

g

L

(

2
h

L
+ D

)

sinh
L

g

]

(93)

c3 =
α1θ0

1

(

g
L ,

h
L

)

{

2
g h

L2
+

g

L

(

−2
h

L
+ 2 + D

)

cosh
L

g
+

[

−2
g2

L2
+ (2 + D)

h

L

]

sinh
L

g

}

(94)
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Figure 7. Beam clamped at both ends with
dw1
dz

∣

∣

∣

z=0
= 0 and Y(L) = 0 (Case 3).

where

1

(

g

L
,
h

L

)

= 2

[

2
g h

L2
+

g

L

(

1 − 2
h

L

)

cosh
L

g
+

(

h

L
−

g2

L2

)

sinh
L

g

]

(95)

In the limit g → 0, the classical thermoelastic solution (80) for w1(z) is recovered.
The generalized axial force P in this case takes the value

P = −α 1θ0
EA

1

(

g
L ,

h
L

)

{

2
g h

L2
+

g

L

(

−2
h

L
+ 2 + D

)

cosh
L

g
+

[

−2
g2

L2
+ (2 + D)

h

L

]

sinh
L

g

}

(96)

In the limit g → 0, we recover the value of P given in Eq. (81) and

P|h=0 = −α 1θ0
EA

2

(2 + D) cosh L
g − 2

g
L sinh

L
g

cosh L
g −

g
L sinh

L
g

Figure 8 shows the variation of Pwith the ratio h/g for di�erent values ofD and for g/L = 0.5. It appears
that the e�ects of h on P become important only for large values of the temperature gradient (measured

Figure 8. Variation of the generalized axial force P with the the ratio h/g and for di�erent values D and for g/L = 0.5 (Case 3).
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Figure 9. The distribution of the generalized axial double force Y for di�erent values of the ratio h/g and for g/L = 0.5, D = 5 (Case 3).

by D), along the beam. The generalized double force Y in this case takes the form

Y(z) = −α 1θ0
2EAL

1

(

g
L ,

h
L

) sinh
L − z

2 g

{(

2
g2 h

L3
+ D

g2 − h2

L2

)

cosh
L − z

2 g
+

+
h

L

[(

−2
g2

L2
+ (2 + D)

h

L

)

cosh
L + z

2 g
− 2

g h

L2
sinh

L − z

2 g

+
g

L

(

−2
h

L
+ 2 + D

)

sinh
L + z

2 g

]}

(97)

In the limit g → 0, Y takes again the value given in Eq. (83a) and

Y(z)|h=0 = −α 1θ0
EAD g

2

sinh L−z
g

cosh L
g −

g
L sinh

L
g

(98)

Figure 9 shows the variation of the double force Y(z) along the beam for di�erent values of the ratio h/g
and for g/L = 0.5 and D = 5. It appears that the surface material length h can in�uence substantially
the generalized axial double force Y along the beam.

Case 4: Beam fully constrained at one end and free at the other

We consider a beam fully constrained at z = 0 and load free at z = L (Figure 10). We recall that the
prescribed temperature �eld1θ(z) is the only driving force.

The boundary conditions for this case read

w1(0) = 0,
dw1

dz

∣

∣

∣

∣

z=0

= 0 and P(L) = 0, Y(L) = 0 (99)
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Figure 10. Beam fully constrained at one end and free at the other (Case 4).

and the axial displacement w1(z) takes the form

w1(z) = α 1θ0 L

[

z

L

(

1 + D
z

2 L

)

−
g

L
sinh

z

g
+

g

L

h cosh L
g + g sinh L

g

g cosh L
g + h sinh L

g

(

cosh
z

g
− 1

)

]

(100)

In the limit g → 0, we recover the corresponding solution of linear thermoelasticity:

lim
g→0

w1(z) = α 1θ0 z
(

1 + D
z

2 L

)

(101)

Careful examination of Eq. (100) reveals that larger values of g result in lower axial displacements
(sti�ening e�ect).

The generalized axial force P takes a constant value and in view of the boundary condition (99c)
vanishes along the beam. The generalized double force Y(z) takes the value

Y(z) = α 1θ0 EA
g2 − h2

g cosh L
g + h sinh L

g

sinh
L − z

g
(102)

Note that Y is independent of the temperature gradient D in this case. Also

lim
g→0

Y(z) = 0 and Y(z)|h=0 = α 1θ0
EA g

cosh L
g

sinh
L − z

g
(103)

Figure 11. The distribution of the generalized axial double force Y for di�erent values of the ratio h/g and for g/L = 0.5 (Case 4).
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Figure 11 shows the variation of the double force Y(z) along the beam for di�erent values of the ratio
h/g and for g/L = 0.5. It appears that the sign of h, i.e., the sign of the pretwist α0, a�ects strongly the
magnitude of Y(z).

Case 5: Beam joint at one end andwith a roller at the other with dw1
dz

∣

∣

∣

z=0,L

The boundary conditions is this case are (Figure 12):

w1(0) = 0, P(L) = 0 and
dw1

dz

∣

∣

∣

∣

z=0

=
dw1

dz

∣

∣

∣

∣

z=L

= 0 (104)

The axial displacement in this case has the form

w1(z) = α 1θ0 L

{

z

L

(

1 + D
z

2 L

)

−

g
L

sinh L
g

[

cosh
L

g
− cosh

L − z

g
+ (1 + D)

(

cosh
z

g
− 1

)]

}

(105)
The axial displacement �eld w1(z) is independent of h, because the boundary conditions do not involve
the generalized double force Y . In the limit g → 0, we recover the corresponding solution of linear
thermoelasticity (Eq. (101)).

Figure 12. Beam with a joint at one end and a roller to the other with
dw1
dz

∣

∣

∣

z=0,L
= 0 (Case 5).

Figure 13. The distribution of the generalized axial double force Y for di�erent values of the ratio h/g and for g/L = 0.5 (Case 5).
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The generalized axial force P vanishes and Y(z) is

Y(z) = −α 1θ0
EAL

sinh L
g

{

−
g

L
cosh

L − z

g
+ (1 + D)

g

L
cosh

z

g
+

h

L

[

sinh
L − z

g
+ (1 + D) sinh

z

g

]}

(106)
Figure 13 shows the variation of the generalized double force Y(z) along the beam for di�erent values
of the ratio h/g, for g/L = 0.5 and D = 5. Again, the sign of h, i.e., the sign of the pretwist α0 a�ects
strongly the magnitude of Y(z).

Actuation applications

The examples considered in “Cases studies for various boundary conditions” section suggest some inter-
esting applications, if the pretwisted beam is viewed as a thermally activated actuator. The temperature
change along the beam leads to an interplay between the axial force N and the torsional moment T and
a coupling between axial and rotational deformation. We recall Eq. (59), which is repeated below and
shows that the rotation φ(z) of the cross sections in the pretwisted beam is directly related to the axial
displacement w1(z):

φ(z) = −
A

α0 S

{

−w1(z)− α

∫

1θ(z) dz +
1

EA

∫ [∫

pz(z) dz

]

dz

}

+ c5
z

L
+ c6 (107)

We consider again the example of Case 4 in the previous “Cases studies for various boundary conditions”
section, where the pretwisted beam is viewed now as an actuator. The beam is fully constrained at

z = 0
(

w1(0) = 0, dw1
dz

∣

∣

∣

z=0
= 0

)

and the generalized loads vanish at the other end (P(L) = 0,Y(L) = 0).

Taking into account Eqs. (72) and (73), which determine the generalized loads, we conclude that the
generalized axial load-free condition P = 0 at z = L can be achieved by either setting N̄ = 0 and T̄ = 0
at that end or, if there is pretwist (α0 6= 0), by choosing N̄ and T̄ so that the condition

T̄ =
1

α0 S

(

G

E
J + α20 K

)

N̄

is satis�ed. Last equation suggests a drilling type of action of the pretwisted beam which is at the
boundary.

Similarly, the condition Y = 0 at z = L can be achieved if the condition

h N̄ +
α0 S

c2 J

E

G
B̄ = 0

is satis�ed. The displacement at z = L now takes the value

w1(L) = −α 1θ0 g
h +

[

−h +
(

1 + D
2

)

L
]

cosh L
g +

[

−g +
(

1 + D
2

)

h
g L
]

sinh L
g

g cosh L
g + h sinh L

g

(108)

If we also constrain the beam so that φ(0) = 0 and dφ
dz

∣

∣

∣

z=0
= 0, Eq. (76) leads to the conclusion that

φ(L) = −α 1θ0
A g

α0 S

h + (L − h) cosh L
g +

(

h
g L − g

)

sinh L
g

g cosh L
g + h sinh L

g

(109)

If the cross section of the beam has one axis of symmetry, then h = 0 and the above equations simplify
to

w1(L)|h=0 = α 1θ0

[(

1 +
D

2

)

L − g tanh
L

g

]

(110)
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φ(L)|h=0 = α 1θ0
A

α0 S

(

g tanh
L

g
− L

)

(111)

Equations (108)–(111) show that using the appropriate magnitude of1θ0 and choosing the geometrical
characteristics and the pretwist of the beam, we can control the axial displacement and rotation of the
actuator at the free end at z = L.

The value of the generalized double force at the �xed end at z = 0 is

Ȳ = h N̄ +
α0 S

c2 J

E

G
B̄

Themagnitude of the bimoment B̄ depends on the shape of the cross section and takes substantial values
at thin-walled beams. However, if the cross section is such that B̄ ≃ 0, then

Ȳ ≃ h N̄

Since the sign of h depends on the sign of the pretwist, last equation shows that the signs of Ȳ and N̄
may be di�erent. The generalized double force Ȳ is a measure for the warping resistance of the beam’s
cross section due to torsion. A large value of |Ȳ| at z = 0 would indicate high local stressing due to the
restriction of warping at that end. This stressing will be transmitted from the contacting area between
the beam and its supports. The development of such dipolar forces can be utilized together with the
torque T̄ to act as an e�ective microdrilling device.

The model of the pretwisted beam under thermal loading can be useful in explaining bio-systems,
such as the bacteriophages (Prescott [27]). Bacteriophage is a virus that infects and replicates within a
bacterium and can serve as an antibacterial agent treating bacterial infection. Myovirus bacteriophages
bind on a bacterial cell and use a cylindrical sheath surrounding a tubular core to puncture themembrane
of the cell to inject their genetic material [28]. The sheath is very like the pretwisted beam we have
presented in this work. It is made of three polypeptide chains that wind up to form prisms with a le�-
handed pretwist in their initial con�guration. The sheath acts us a cell-puncturing device through a
well-documentedmicrodrilling motion that is triggered by chemical reactions. These reactions have the
mechanical equivalent of the thermal loading that has been described in the present work. More details
of this problem will be addressed in future publications.

Closure-concluding remarks

In the present work, a beam with an initial twist subjected to thermal loads is analyzed using a classical
structural approach. The results of the analysis, compared to the results of the one-dimensional gradient
thermoelasticity, indicate an interesting analogy between the two approaches. This analogy suggests that
the microstructural length-scale parameters of the gradient thermoelastic theory can be related directly
to material and geometrical aspects of the continuum as well as the amount of pretwist, providing a
physical insight of the gradient theory formulation. The proposed formulation was used to analyze
several problems of pretwisted beams under various boundary conditions. These examples demonstrate
that the interplay between the generalized loads through temperature variations renders the beam into
a thermally activated actuator.

Appendix

Figure 14 (Kordolemis et al. [20]) provides a table with the various geometric constants K, Jω, J, S,R for
several cross sections. The table includes also the values of g and h.
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Figure 14. Table with the geometrical constants and lengths for various cross sections.
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