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h i g h l i g h t s

• The range of validity of linear kinetic modeling in simulating rarefied gas flows in capillaries is computationally investigated.
• The applicability margins are specified in terms of the gas rarefaction, pressure ratio and tube aspect ratio.
• It is deduced that linear solutions are valid in a much wider range than expected resulting in great computational savings.
• Specific applicability criteria are provided.
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a b s t r a c t

The range of validity of various linear kinetic modeling approaches simulating rarefied pressure driven
gas flow through circular tubes is computationally investigated by comparing the flowrates obtained
by the linear approaches with the corresponding nonlinear ones. The applicability margins of the linear
theories in termsof the parameters determining the flow (gas rarefaction, pressure ratio, tube aspect ratio)
are specified, provided that the introduced deviation norm is smaller than a specific value. The work is
motivated by the fact that computational effort is significantly reduced when linear, instead of nonlinear,
kinetic modeling is implemented. It is found that the range of validity of the linear solutions is much
wider than the expected one, as defined by their formal mathematical constrains and it remains valid in a
range of parameters, where the DSMC method and nonlinear kinetic modeling become computationally
inefficient, resulting in great computational savings.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

Rarefied single gas flows through circular tubes of finite length
driven by various pressure differences have attracted, over the
years, considerable attention due to their wide applicability in
industrial processes and technological applications operating in
the whole range of the Knudsen number [1–13]. In most cases,
the flow problem is numerically solved either stochastically based
on the direct simulation Monte Carlo (DSMC) method [14] or
deterministically based on the direct numerical solution of the
Boltzmann equation (BE) [15] as well as of suitable kinetic model
equations [1,2,6]. Very good agreement between corresponding
results obtained by the DSMC method, the BE and kinetic
models (BGK [16], ES [17], Shakhov [18]) has been observed
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for flows through orifices and tubes of finite length subject to
various ratios of the downstream over the upstream pressure
including expansion into vacuum [8,19,20]. This good comparison
is sustainable across all flow regimes. In addition, computational
results match experimental data very well [5,21–23].

In spite the simple geometry of the flow configuration,
the required computational effort (CPU time and memory) to
simulate pressure driven rarefied gas flows through tubes of finite
length, is considerable. This is due to the number of involved
parameters specifying the flow and the size of the computational
domain [3–6]. The dimensionless parameters fully determining
the flow setup are the reference Knudsen number (or rarefaction
parameter), the ratio of the downstream over the upstream
pressure and the tube aspect ratio (length over radius). The
computational domain includes the tube as well as large upstream
and downstream regions (reservoirs) in order to properly impose
boundary conditions for the incoming distributions at kinetic level.

The computational effort may be significantly reduced when
linear (instead of nonlinear) kinetic modeling is introduced based
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on the linearized version of kinetic model equations. In linear
modeling the number of parameters is reduced and in some cases
the upstream and downstream regions are eliminated. Of course,
linear treatment itself is subject to several restrictions such as very
small pressure differences and very large capillary aspect ratios.
As noted in [24], the validity of linear theory is ensured for flows
in the free molecular and lower part of the transition regimes
by small Mach numbers and for flows in the upper part of the
transition and slip regimes by small Reynolds numbers. It has been
recently shown however, that the various implemented linear
kinetic approaches may capture the correct behavior of the flow
field well beyond their formal mathematical limitations [25–29].
Taking into consideration that the DSMC method and nonlinear
kineticmodeling become computationally inefficient exactly in the
range of parameters where linear treatment may still be valid it
is of practical interest to investigate in a detail and systematic
manner the range of applicability of the various linear kinetic
theories. There is also theoretical interest, since the numerical
solvers of the governing linearized kinetic equations are amenable
to mathematical treatment.

The aim of the present work is to computationally investigate
the range of validity of the various linear kinetic modeling ap-
proaches and to provide their specific applicability margins within
some accepted deviation in terms of the involved parameters de-
termining the flow conditions. The decision is made by compar-
ing the flowrates obtained by linear approaches with correspond-
ing nonlinear ones, based on available data from previous works
[4,5,10,13,26–28], as well as on additional results obtained in the
present work in order to cover an adequately wide range of all in-
volved parameters. Such an analysis comparing linear and nonlin-
ear results has beenmade for slit flow in [25,29] and for orifice flow
in [29].

2. Flow configuration and modeling

Although the flow configuration is well known [4–6], it is also
described here for completeness and clarity. Consider the steady-
state monatomic gas flow through a tube of length L and radius R,
connecting two vessels denoted by A and B. The gas pressures PA, PB
and temperatures TA, TB at the two vessels, far from the connecting
tube, are maintained constant with PA > PB and TA = TB. The walls
of the reservoirs andof the tube are alsomaintained at temperature
TA. The flow setup with the coordinate system and its origin are
shown in Fig. 1. Due to the pressure difference there is an axisym-
metric flow in the axial direction with the macroscopic distribu-
tions varying in the radial and axial directions. At the open bound-
aries (dotted lines) the gas is at rest and the incoming distributions
are the local Maxwellian ones. The volume of the upstream and
downstream vessels is large enough to ensure proper implemen-
tation of the boundary conditions at the open boundaries. At the
walls (solid lines) purely diffusive gas–surface interaction is con-
sidered. Along the symmetry axis r̂ = 0 purely specular reflection
is applied. It is assumed that the flowing monatomic gas consists
of hard-sphere molecules. The quantities at vessel A far from the
tube are taken as the reference ones. Also, the reference length and
velocity are the tube radius R and the most probable speed υA =
2RgTA respectively (Rg = kB/m, with kB being the Boltzmann

constant andm the molecular mass, denotes the gas constant).
This flow configuration is five-dimensional (two dimensions in

the physical space and three in the velocity space) and it is defined
by three dimensionless input parameters: (i) the reference gas
rarefaction parameter

δA =
PAR

µAυA
(1)
Fig. 1. View of the flow configuration.

with µA being a reference viscosity at temperature TA, (ii) the
pressure ratio PB/PA and (iii) the aspect ratio L/R.

The quantity of major practical importance is themass flowrate
defined as

ṀNL = 2π
 R

0
mn̂


r̂, ẑ


ûz


r̂, ẑ


r̂dr̂. (2)

Introducing r = r̂/R as well as the dimensionless number density
n = n̂/nA and axial component of the bulk velocity uz = ûz/υA,
the mass flow rate is rewritten as

ṀNL =

√
πR2PA
υA

WNL (3)

where

WNL = 4
√

π

 1

0
n (r, z) uz (r, z) rdr (4)

is the dimensionless flowrate. The subscript ‘‘NL’’ denotes nonlin-
ear results. The dimensionless flow rate WNL has been computed,
based on the DSMCmethod, the Boltzmann equation and the non-
linear BGK and Shakhov kinetic model equations, in terms of δA ∈
0, 102, PB/PA ∈ [0, 0.9] and L/R ∈ [0, 50] in [4,5,10,13,19].
For the needs of the present work the DSMC results for flow

through tubes up to L/R = 10 into vacuum and various pres-
sure ratios, reported in [4,5] respectively, have been introduced.
The results in [10], based on the Shakhov model, have been im-
plemented for flow through longer tubes with 10 ≤ L/R ≤ 50
into vacuum. Furthermore, additional results based on the BGK
and Shakhov models have been obtained here, within the afore-
mentioned range of parameters, in order to have an adequately
dense database of the nonlinear flowrates. In all cases modeling is
based on hard sphere molecules with purely diffuse gas–surface
interaction. As noted in [8,19,20], all approaches provide corre-
sponding results in very good agreement and therefore using either
the DSMC method or the BGK or the Shakhov models to build the
flowrate database does not affect the concluding remarks concern-
ing the applicability range of the linear schemes. The implemented
DSMC solver is described in detail in [4,5]. The solution of the BGK
and Shakhov models is obtained discretizing the physical space by
a second order scheme and themolecular velocity space by the dis-
crete velocity method. This deterministic approach has been de-
scribed and successfully applied in several flow and heat transfer
configurations [2,6,15,27,30,31]. The introduced numerical error
(uncertainty) in the computed flow rates is always taken less than
1%. These nonlinear flowrates are used as the reference ones, in or-
der to investigate the applicability of the linear approaches.

In general, the computational effort is increased as δA is
increased and the gas flow becomes less rarefied as well as
the tube aspect ratio L/R is increased. In the implemented
DSMC algorithm the computational effort is also increased as the
pressure ratio PB/PA approaches one, while on the contrary, the
convergence speed of the deterministic discrete velocity codes
remains approximately the same at any pressure ratio. In addition,
the DSMC code runs in serial mode, while the deterministic codes
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are highly parallelized. The involved computational effort depends
on the set of flow parameters and on the code optimization and for
the prescribed accuracy it may vary from few hours up to several
days of CPU time.

3. Linearized methodologies with corresponding results and
discussion

Depending upon the assumptions made, linearization may be
performed in three ways. The first and more general one is based
solely on the assumption of very small difference between the up-
stream and downstream pressures, i.e. 1P/PA ≪ 1 [26,28,29]. The
other two are both based on the infinite capillary theory (i.e., fully
developed flow in long channels with small local pressure gradi-
ents),without [1,30,31] andwith end effect corrections [28,31–34].

In the discussion to follow the implementation of a linear
approach will be considered as valid provided that the norm
of the relative deviation between corresponding nonlinear and
linear results is smaller than a specific value. In the present work
this upper limit of the deviation norm is set to 10%, since for
engineering purposes this deviation is considered in most cases as
accepted. Based on the presented results similar decisions on the
validity of the linearized theoriesmay be taken for smaller or larger
accepted deviations.

In the first linearization approach the flow configuration is as
shown in Fig. 1, i.e. both inlet and outlet regions are included in the
computational domain. However, the solution now depends only
on δA and L/R, while due to linearization, it is independent of PB/PA,
resulting to significant savings in computational resources. This
linearized flow configuration has been recently solved in [26,27]
based on the linearized Shakhov and BGKmodels respectively. The
linearized mass flowrate, neglecting second order terms in 1P/P0,
is given by

ṀLIN =

√
πR21P
υ0

WLIN (5)

where

WLIN = 4
√

π

 1

0
uz (r, z) rdr (6)

is the dimensionless linearized flowrate reported in [26,27]. The
subscript ‘‘LIN ’’ denotes linear results. It is readily seen that the
ratio of the linearized over the nonlinear mass flowrates is given
by

ṀLIN

ṀNL
=


1 −

PB
PA


WLIN

WNL
(7)

with WLIN being a function only of δA and L/R, while WNL being a
function of all three parameters. In the present work,WLIN is based
on the linearized BGK results presented in [27].

In Fig. 2, the relative percentage deviation

εLIN =

ṀNL − ṀLIN


/ṀNL


× 100 (8)

is plotted for flow through a tube in terms of δA ∈

10−2, 20


for PB/PA = [0.9, 0.5, 0.1, 0] and L/R = [5, 10, 20]. The posi-
tive and negative values of the deviation indicate that the linear
mass flowrates are smaller and larger of the corresponding non-
linear ones respectively. A detailed view of the introduced devia-
tion in terms of the involved parameters is provided. The devia-
tion is within the accepted range of ±10% for all pressure ratios
when L/R = 20 and then, for L/R = 10 and L/R = 5 only when
PB/PA ≥ 0.1 and PB/PA ≥ 0.5 respectively. It is obvious that as L/R
is decreased, the pressure difference must be reduced in order to
sustain the validity of the linear analysis. For δA < 10−2 the devi-
ation remains, in all cases, within ±10%, while is rapidly increased
Fig. 2. Relative percentage deviation εLIN of the linear solution compared to the
nonlinear one in terms of δA and various PB/PA for flow through tubes of (a) L/R =

20, (b) L/R = 10 and (c) L/R = 5.

for δA > 10. This is a clear indication that linear analysis may
be applied to small but finite pressure differences (PB/PA = 0.9),
as well as to moderate (PB/PA = 0.5) and even large (PB/PA = 0.1)



D. Valougeorgis et al. / European Journal of Mechanics B/Fluids 64 (2017) 2–7 5
Fig. 3. Norm of the relative percentage deviation |εLIN | of the linear solution com-
pared to the nonlinear one for flow through a tube in terms of δA (R/L) (1 − PB/PA).

pressure differences depending upon the specific values of L/R and
δA. The present observations for flow through a tube are compati-
ble with the ones made in [29] for orifice flow (L/R = 0), i.e. that
the range of applicability of linear theory in terms of δA becomes
larger as the pressure difference is decreased, as well as that linear
and nonlinear results may be very close even at moderate pressure
ratios (e.g. PB/PA = 0.7 or 0.5) provided that the gas flow is ade-
quately rarefied.

A more compact picture of the deviation dependency on
all parameters is provided in Fig. 3, where the norm of the
relative deviation |εLIN | is plotted in terms of the quantity
δA (L/R) (1 − PB/PA). It is seen that |εLIN | ≤ 10% provided that

δA


R
L

 
1 −

PB
PA


≤ 1. (9)

Inequality (9) is the condition which must be satisfied, indepen-
dently of the specific values of each of the three parameters, in or-
der to apply linearization provided that an introduced maximum
deviation within ±10% is permissible. In the case where the per-
missible error is only ±1% the condition to be fulfilled becomes

δA


R
L

 
1 −

PB
PA


≤ 0.005. (10)

Next, the limitations of the infinite capillary theories are
examined starting with the one without end effect correction,
which is by far the most simple and widely used linear
treatment [1,32]. Assuming L/R ≫ 1, the flow is considered as
fully developed and end effects at the inlet and outlet of the tube
are ignored. In addition, pressure (and density) varies only in the
flow direction and remains constant at each cross section of the
channel, i.e. P = P


ẑ


∈ [PA, PB], with ẑ ∈ [0, L]. The flow is driven
by the imposed pressure difference 1P = PA − PB between the
inlet and outlet of the tube. Following a well-known procedure it
is readily deduced that the mass flow rate, as defined by Eq. (2),
may be rewritten in the case of fully developed flow as [1,32]

ṀFD =
πR3

υA

1P
L

WFD. (11)

In Eq. (10),

WFD =
1

δB − δA

 δB

δA

GFDdδ (12)
Fig. 4. Relative percentage deviation εFD,LIN of the fully developed solutionwithout
end effect correction compared to the linear one in terms of δA for flow through a
tube of various L/R.

is computed by integrating the reduced flow rate GFD (δ) between
the inlet and outlet rarefaction parameters δA and δB respectively,
accordingly defined by the corresponding pressures PA and PB.
The subscript ‘‘FD’’ denotes fully developed results. Since GFD (δ)
depends only on δ and no inlet and outlet regions are considered
the computational effort required in the implementation of the
infinite capillary theory is negligible. Extensive results of GFD (δ)
may be easily found in the literature [1,32,37,38]. Here, the values
of the reduced flow rate GFD (δ) are based on the linearized BGK
model [1,32,38]. The ratio of the fully developedmass flowrate over
the corresponding linear one is given by

ṀFD

ṀLIN
=

√
π
R
L
WFD

WLIN
. (13)

The relative percentage deviation

εFD,LIN =

ṀLIN − ṀFD


/ṀLIN


× 100 (14)

of the fully developed solution (without end effect correction)
compared to the linear one in terms of δA ∈


10−3, 50


for various

L/R is plotted in Fig. 4. In all cases the deviation is negative implying
that the fully developed approach overestimates the computed
flow rates. As L/R is increased thedeviation is significantly reduced,
always having in terms of δA a nonmonotonic behavior with a
shallow minimum in the transition regime. In the slip regime
εFD,LIN is slightly increased, while in the free molecular regime is
significantly increased. This is due to the flow developing length
in the tube, which is increased as the flow becomes more rarefied
and therefore, for L/R = 10 and 20 the tube is not long enough
to assume fully developed flow for δA < 1. On the contrary for
L/R = 50 the deviation of the fully developed solution compared
to the linear one remains small in a wide range of gas rarefaction.
Overall, the infinite capillary theory without end effect correction
will result to a deviation within ±10% provided that inequality
(9) is fulfilled and L/R ≥ 50. The fact that in order to justify
the fully developed assumption, the condition L/R ≫ 1 must
be accompanied by a supplementary restriction in the form of
inequality (9), when the flow is not adequately rarefied, has been
previously pointed out in [32,39].

The more advanced implementation of the infinite capillary
theory is the one with the inclusion of the end effect correction
[1,28,33–36]. The main idea of the end effect theory is to correct
the real capillary length L/R by additional lengths 1L1/R and
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Table 1
Length increment 1L/R for various values of the rarefaction parameter δA [26].

δA 0.005 0.05 0.1 0.2 0.4 0.6 0.8 1 2
1L/R 2.22 1.72 1.52 1.33 1.16 1.07 1.01 0.964 0.841

δA 4 6 8 10 . . . ∞

1L/R 0.735 0.704 0.688 0.682 . . . 0.680
Table 2
Relative percentage deviation εEE,LIN =


ṀLIN − ṀEE


/ṀLIN


×100of the end effect

solution compared to the linear one for flow through a tube for various L/R and δA .

L/R δA

0.01 0.1 1 2 10 25 50

1 25.16 11.06 −0.30 −0.87 −2.00 1.32 −8.63
2 17.93 6.37 −1.05 −1.16 −1.36 1.03 −5.83
5 8.32 1.56 −1.38 −1.22 −0.86 0.68 −2.75

10 3.35 0.11 −1.21 −1.49 −0.73 0.38 −0.15
20 0.68 −0.51 −1.24 −0.92 −0.29 −0.01 −0.34
50 1.39 −0.32 −0.90 0.72 −0.38 −0.49 −0.55

1L2/R taking into account the end effect phenomena at the inlet
and outlet of the tube respectively. All other assumptions and
characteristics of the fully developed flow, as described above,
remain the same. Recently, based on the linearized BGK model a
methodology has been introduced computing the corrective length
1L/R only in terms of the reference rarefaction parameter δA
independent of the tube length L/R [28]. Following the end effect
correction theory the mass flowrate is given by

ṀEE =
πR3

υA

1P
L

WEE (15)

where

WEE = [1 + 1L1/L + 1L2/L]−1 WFD (16)

is the corrected dimensionless end effect flowrate. The subscript
‘‘EE’’ denotes end effect results. The corrective lengths introduced
in the present analysis are provided in Table 1 and includes all
results of Table 2 in [28] plus some additional corrective lengths
at small values of δA always based on the linearized BGK model.
The ratio of the simplified fully developed mass flowrate over the
corresponding linear and nonlinear ones are given by

ṀEE

ṀLIN
=

√
π


L
R

+
21L
R

−1 WFD

WLIN
(17)

and

ṀEE

ṀNL
=


1 +

1Lin
L

+
1Lout

L

−1 WFD

WNL
(18)

respectively.
In Table 2, based on Eq. (16), the relative percentage deviation

εEE,LIN =

ṀLIN − ṀEE


/ṀLIN


× 100 (19)

of the end effect solution (fully developed solution with end effect
correction) compared to the linear one, for various L/R and δA, is
provided. A great improvement compared to the corresponding
results obtained by the fully developed solution without end effect
correction (shown in Fig. 4), is observed. Now, the end effect results
are in excellent agreement with the linear solution for L/R ≥ 10
across δA ∈


10−2, 50


. The discrepancies with the linear solution

are increased for L/R < 10, particularly at very small values
of δA, where as it is known the end effect theory becomes less
effective [28].

Furthermore, based on Eq. (17) a comparison between end
effect and nonlinear results are shown in Figs. 5 and 6. The relative
percentage deviation

εEE,NL =

ṀNL − ṀEE


/ṀNL


× 100 (20)
Fig. 5. Relative percentage deviation εEE,NL of the end effect solution compared to
the nonlinear one in terms of δA and various PB/PA for flow through tubes of (a)
L/R = 10 and (b) L/R = 5.

is plotted in Fig. 5 in terms of δA ∈

10−2, 20


for PB/PA =

[0.9, 0.5, 0.1] and L/R = [5, 10]. In general, the deviation is rela-
tively small at δA ∈


10−1, 10


and it is increased as δA is further ei-

ther decreased or increased, aswell as L/R and PB/PA are decreased.
A more complete view of the introduced discrepancies is provided
in Fig. 6, where

εEE,NL
 is plotted in terms of δA (L/R) (1 − PB/PA).

The deviation norm is ≤10% for all pressure ratios when L/R = 20
and then, for L/R = 10 and L/R = 5 it remains small when
PB/PA ≥ 0.1 and PB/PA ≥ 0.9 respectively.

Based on the results of Table 2 and Figs. 5 and 6 it is concluded
that the end effect theory will result to a deviation within ±10%
provided that inequality (9) is fulfilled and L/R ≥ 20. In addition,
the deviation norm remains ≤10% even for L/R = 10 provided
that inequality (9) is fulfilled, while PB/PA ≥ 0.1 and δA ≥ 10−2.
This is exactly the great advantage of the end effect correction,
since the range of applicability of the infinite capillary theory is
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Fig. 6. Norm of the relative percentage deviation
εEE,NL

 of the end effect
solution compared to the nonlinear one for flow through a tube in terms of
δA (R/L) (1 − PB/PA).

significantly enhanced, while the involved computational effort
remains negligible, once the data in Table 1 are available.

4. Concluding remarks

The range of validity of various linear approaches for simulat-
ing rarefied pressure driven flow though tubes is computation-
ally investigated. The flowrates obtained by these approaches have
been compared to the corresponding nonlinear ones in a system-
atic manner providing, for an accepted relative deviation norm of
≤10%, the specific applicability limits of each linear theory in terms
of the input parameters. Overall, the range of validity of the lin-
ear solutions is much wider than the expected one, as defined by
their mathematical constrains. It is noted that significant savings
in computational resources are achieved, when linear (instead of
nonlinear) kinetic modeling is introduced.
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