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a b s t r a c t 

In this work we derive a general model for N−phase isotropic, incompressible, rate-independent elasto- 

plastic materials at finite strains. The model is based on the nonlinear homogenization variational (or 

modified secant) method which makes use of a linear comparison composite (LCC) material to estimate 

the effective flow stress of the nonlinear composite material. The homogenization approach leads to an 

optimization problem which needs to be solved numerically for the general case of a N−phase composite. 

In the special case of a two-phase composite an analytical result is obtained for the effective flow stress 

of the elasto-plastic composite material. Next, the model is validated by periodic three-dimensional unit 

cell calculations comprising a large number of spherical inclusions (of various sizes and of two differ- 

ent types) distributed randomly in a matrix phase. We find that the use of the lower Hashin–Shtrikman 

bound for the LCC gives the best predictions by comparison with the unit cell calculations for both the 

macroscopic stress-strain response as well as for the average strains in each of the phases. The formu- 

lation is subsequently extended to include hardening of the different phases. Interestingly, the model is 

found to be in excellent agreement even in the case where each of the phases follows a rather different 

hardening response. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The present work deals with the analytical and numerical es-

timation of the effective as well as the phase average response of

N−phase incompressible isotropic elasto-plastic metallic compos-

ites. Special attention is given to particulate microstructures, i.e.,

composite materials which can be considered to comprise a dis-

tinct matrix phase and an isotropic distribution of spherical parti-

cles ( Willis et al., 1982 ) (or in a more general setting an isotropic

distribution of phases ( Willis, 1977 )). In the present study, the par-

ticles are considered to be stiffer than the matrix phase, which

is the case in most metallic materials of interest, such as TRIP

steels, dual phase steels, aluminum alloys and others. Such ma-

terials, usually contain second-phase particles (e.g., intermetallics,

carbon particles) or just second and third phase variants (e.g., re-

tained austenite, bainite, martensitic phases). In addition, these
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hases/particles tend to reinforce the yield strength of the com-

osite while they usually have different strength and hardening

ehavior than the host matrix phase. 

In the literature of nonlinear homogenization there exists a

arge number of studies for two-phase composite materials. The

eader is referred to Ponte Castañeda and Suquet (1998) , Ponte

astañeda (2002) , Idiart et al. (2006) , and Idiart (2008) for a re-

iew of the nonlinear homogenization schemes such as the ones

sed in the present work and relevant estimates. Nonetheless, very

ew studies exist in the context of three- or N−phase rate indepen-

ent elasto plastic composites. 

In view of this, the present work uses the nonlinear variational

omogenization method ( Ponte Castañeda, 1991 ) or equivalently

he modified secant method ( Suquet, 1995 ), which makes use of

 linear comparison composite (LCC) material, to estimate the ef-

ective response of a N−phase nonlinear composite material. Even

hough, this method exists for several years most of the studies

n the context of composite materials have been focused on two-

hase composites where the optimization process required by the

ethod can be done analytically (see for instance deBotton and

onte Castañeda (1993) ). Nevertheless, as the number of phases

http://dx.doi.org/10.1016/j.ijsolstr.2016.02.022
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ncreases to three or more the optimization can only be done nu-

erically. Perhaps, that is the reason that in his original work,

onte Castañeda (1992) proposed general expressions (and bounds)

or N−phase composites, but its numerical/analytical resolution re-

ained untractable until today due to the complex optimization

rocedures required by the nonlinear homogenization method. 

It should be pointed out at this point that these homogeniza-

ion theories treat separately the elastic (which in the present

ase is trivial) and the plastic homogenization problem. That of

ourse has certain impact if cyclic loading is considered which is

eyond the scope of the present work and is not considered here.

evertheless, recently, Lahellec and Suquet (2007) proposed an

ncremental variational formulation for materials with a hereditary

ehavior described by two potentials: a free energy and a dissi-

ation function. This method has been introduced mainly to deal

ith the coupled elasto-plastic response of composites in an at-

empt to resolve the cyclic response of these materials (see also re-

ent work by Brassart et al. (2011) ). Note that these more advanced

ethods use the aforementioned or variants of the LCC estimates.

n this regard, the present study, albeit not using this coupled

cheme, reveals the nature of equations required to deal with

 general N−phase composite material and could be potentially

seful in the future for such more complete incremental schemes,

hich are based upon those simpler LCC homogenization theories.

.1. Scope of the present work and major results 

The scope of the present work is to provide a semi-analytical

odel for N−phase isotropic, incompressible rate-independent

lasto-plastic materials. Simple analytical expressions are given

or the effective yield stress of a two-phase composite (see also

 deBotton and Ponte Castañeda, 1993 )), while a simple semi-

nalytical expression (requiring the solution of a constrained op-

imization problem for N − 1 scalar quantities) is given for the

−phase composite. Additional analytical expressions are also pro-

ided for the phase concentration tensors and average strains in

ach phase in terms of the aforementioned optimized scalar quan-

ities. In the context of two- and three-phase materials the model

s assessed by appropriate three-dimensional multi-particle two-

nd three-phase periodic unit cell calculations considering both

ardening and non-hardening phases. The agreement is found to

e good not only for the effective yield stress but also for the

hase average strains thus allowing for the extension of this model

o include arbitrary isotropic hardening of the phases. 

Specifically, we use the methodology developed by Ponte Cas-

añeda and co-workers ( Ponte Castañeda, 1991; Suquet, 1995 ) to

erive a model for the rate-independent elastoplastic behavior of

 macroscopically isotropic composite comprising N phases. When

he constituent phases are perfectly plastic the corresponding flow

tress of the composite material ˜ σ0 is determined from the solu-

ion of a constrained optimization problem: 

˜ 0 = 

√ √ √ √ √ √ 

inf 
y (i ) ≥0 

y (1) =1 
i =2 ,...,N 

( 
N ∑ 

r=1 

c (r) σ (r) 
0 

2 
y (r) 

) ( 
N ∑ 

p=1 

c (p) 

3 y (p) + 2 y 0 

) ( 
N ∑ 

s =1 

c (s ) y (s ) 

3 y (s ) + 2 y 0 

) −1 

. 

(1) 

here N is the number of phases, (c (i ) , σ (i ) 
0 

) are the volume frac-

ion and flow stress of phase i , and y ( i ) are positive optimization

arameters. In turn, y 0 is a reference scalar to be chosen accord-

ng to various linear homogenization schemes. For instance, best

esults are obtained with the well known Hashin–Shtrikman lower

ound choice, i.e., y 0 = y (1) = 1 . 

In the special case of a two-phase composite (N = 2) , the op-

imization problem is solved analytically and the estimate for the
omposite flow stress becomes 

˜ σ0 

σ (1) 
0 

= 

⎧ ⎨ 

⎩ 

5 c (2) r+ c (1) 
√ 

9+6 c (2) −6 c (2) r 2 

3+2 c (2) if 1 ≤ r ≤ 5 

/√ 

4 + 6 c (2) , 

1 

2 

√ 

4 + 6 c (2) if r ≥ 5 

/√ 

4 + 6 c (2) , 

(2) 

here r = σ (2) 
0 

/σ (1) 
0 

is the contrast ratio. The predictions of the

omogenization model agree well with the predictions of detailed

hree-dimensional unit cell finite element calculations as shown in

he following. 

The homogenization technique provides also accurate estimates

or the average strains in the constituent phases. These estimates

orm the basis for the development of an approximate analytical

odel for the elastoplastic behavior of a composite with harden-

ng phases. A method for the numerical integration of the result-

ng elastic-plastic equations is developed and the model is imple-

ented into the ABAQUS general purpose finite element code. The

redictions of the model agree well with the results of detailed

nit cell finite element calculations of a composite with hardening

hases. 

Standard notation is used throughout. Boldface symbols denote

ensors the orders of which are indicated by the context. The usual

ummation convention is used for repeated Latin indices of ten-

or components with respect to a fixed Cartesian coordinate sys-

em with base vectors e i (i = 1 , 2 , 3) . The prefice det indicates

he determinant, a superscript T indicates the transpose, and the

ubscripts s and a the symmetric and anti-symmetric parts of a

econd-order tensor. A superposed dot denotes the material time

erivative. Let A , B be second-order tensors, and C , D fourth-order

ensors; the following products are used in the text: (A · B ) i j =
 ik B k j , A : B = A i j B i j , (A B ) i jkl = A i j B kl , (C : A ) i j = C i jkl A kl , and (C :

 ) i jkl = C i jpq D pqkl . The inverse C 

−1 of a fourth-order tensor C that

as the “minor” symmetries C i jkl = C jikl = C i jlk is defined so that

 : C 

−1 = C 

−1 : C = I , where I is the symmetric fourth-order iden-

ity tensor with Cartesian components I i jkl = (δik δ jl + δil δ jk ) / 2 , δij 

eing the Kronecker delta. 

. Power-law creep and perfect plasticity 

We consider an incompressible creeping solid characterized by

 power-law stress potential U of the form 

 ( σe ) = 

σ0 ˙ ε 0 
n + 1 

(
σe 

σ0 

)n +1 

, (3) 

here σ 0 is a reference stress, ˙ ε 0 a reference strain rate, n the

reep exponent (1 ≤ n ≤ ∞ ), σe = 

√ 

3 
2 s : s the von Mises equiv-

lent stress, σ the stress tensor, p = σkk / 3 the hydrostatic stress,

nd s = σ − p δ the stress deviator, δ being the second-order iden-

ity tensor. The corresponding deformation rate D is defined as 

 = 

∂U 

∂ σ
= 

˙ ε̄ N , ˙ ε̄ = ˙ ε 0 

(
σe 

σ0 

)n 

, N = 

∂σe 

∂ σ
= 

3 

2 σe 
s , (4)

here N is a second order tensor of constant magnitude (N : N =
3 
2 ) that defines the direction of D and 

˙ ε̄ = 

√ 

2 
3 D : D is the equiva-

ent plastic strain rate that defines the magnitude of D . Note that

 kk = 0 . 

The special case in which the exponent takes the value of unity

 n = 1 ) corresponds to a linearly viscous solid: 

 L (σe ) = 

σ 2 
e 

6 μ
, D = 

∂U L 

∂ σ
= 

s 

2 μ
, (5)

here μ = σ0 / (3 ˙ ε 0 ) is the viscosity. 

The other limiting case n → ∞ corresponds to a perfectly plas-

ic solid that obeys the von Mises yield condition with flow stress
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σ 0 . In this case the stress function (3) becomes 1 

 ∞ 

(σe ) = 

{
0 when σe ≤ σ0 , 

∞ when σe > σ0 . 
(6)

The threshold stress σ 0 in (6) is the flow stress of the material,

and the flow rule is written in the form 

D = 

˙ ε̄ N , N = 

3 

2 σe 
s , ( with 

˙ ε̄ = 0 if σe < σ0 ) , (7)

where the equivalent plastic strain rate ˙ ε̄ is not defined locally by

the constitutive equations and becomes one of the primary un-

knowns in the rate boundary value problem. 

3. The homogenization method 

We consider a composite material made of N isotropic, incom-

pressible viscoplastic phases. The phases are distributed randomly

and isotropically and are characterized by viscoplastic stress poten-

tials U 

( r ) of the form (3) with constants (σ (r) 
0 

, ˙ ε 0 , n 
(r) ) and μ( r ) in

the linear case, i.e., 

 

(r) 
(
σ (r) 

e 

)
= 

σ (r) 
0 

˙ ε 0 

n 

(r) + 1 

(
σ (r) 

e 

σ (r) 
0 

)n (r) +1 

, U 

(r) 
L 

(σ (r) 
e ) = 

σ (r) 
e 

2 

6 μ(r) 
, (8)

where σ (r) 
e is the von Mises equivalent stress in phase r . The vol-

ume fraction of each phase is c ( r ) ( 
∑ N 

r=1 c 
(r) = 1) . 

The constitutive equation of the isotropic nonlinear compos-

ite is written in terms of the effective viscoplastic stress potential
˜ 
 ( σ) , so that 

D = 

∂ ̃  U 

∂ σ
, (9)

where σ and D are respectively the macroscopic stress and defor-

mation rate in the composite. 

An estimate for ˜ U is obtained by using the variational method-

ology of Ponte Castañeda and co-workers ( Ponte Castañeda (1991) ,

Ponte Castañeda and Suquet (1997) , Ponte Castañeda and Suquet

(1998) ). This methodology has also been proposed independently

for power-law materials by Michel and Suquet (1992) and inter-

preted as a secant homogenization method by Suquet (1995) . The

final form of the estimate reads ( Ponte Castañeda, 1992 ) 

˜ 
 (σe ) = sup 

μ(r) ≥0 

[ 

˜ U L 

(
σe , ˜ μ(μ(r) ) 

)
−

N ∑ 

r=1 

c (r) v (r) 
(
μ(r) 
)] 

, 

˜ U L = 

σ 2 
e 

6 ˜ μ(μ(r) ) 
, (10)

where σ e is the macroscopic von Mises equivalent stress, 

v (r) 
(
μ(r) 
)

= sup 

σ (r) 
e ≥0 

[
U 

(r) 
L 

(
σ (r) 

e , μ(r) 
)

− U 

(r) 
(
σ (r) 

e 

)]
, (11)

U 

(r) 
L 

= 

σ (r) 
e 

2 

6 μ(r) 
, U 

(r) = 

σ (r) 
0 

˙ ε 0 

n 

(r) + 1 

(
σ (r) 

e 

σ (r) 
0 

)n (r) +1 

. (12)

The effective stress potential ˜ U ( σ) is defined in (10) in terms of

the quadratic effective stress potential ˜ U L of a “linear comparison

composite” (LCC) evaluated at the macroscopic stress σ e and the

“corrector functions” v ( r ) , which are defined in (11) as the opti-

mal difference between the quadratic potentials U 

(r) 
L 

and the ac-

tual potentials of the non-linear materials U 

( r ) . The stress tensors

σ (r) 
e in (11) are obtained by the “sup” operation in that equation

and hence v ( r ) are only functions of the individual viscosities of

the linearized phases, μ( r ) . It is worth noting at this point that the
1 Here we take into account that lim 

n →∞ 
A n +1 

n +1 
= 

{0 if A ≤ 1 , 
∞ if A > 1 . 

v

stimate (10) of ˜ U may have the character of a rigorous bound pro-

ided that the corresponding estimate ˜ U L has also the same charac-

er of a bound as discussed in the following. Nonetheless the scope

f the present work is to insist mainly on a good estimate by com-

arison with numerical unit cell calculations and not necessarily

n rigorous bounds. 

In this view, the quadratic potential ˜ U L of the LCC in ( 10 b) uses

he effective viscosity ˜ μ of the LCC that depends on the individual

iscosities μ( r ) and the corresponding volume fractions c ( r ) . One

ay to estimate ˜ μ is to use the well-known Hashin–Shtrikman

elationship for particulate composites (e.g., see Willis et al.

1982) ) 

˜ 
(
μ(r) 
)

= 

( 

N ∑ 

s =1 

c (s ) μ(s ) 

3 μ0 + 2 μ(s ) 

) ( 

N ∑ 

r=1 

c (r) 

3 μ0 + 2 μ(r) 

) −1 

, (13)

here μ0 is a “reference viscosity” to be chosen appropriately. An

pper bound for ˜ μ is produced by (13) when μ0 is chosen to be

he maximum of all μ( r ) and a lower bound is produced when μ0 

s the minimum of all μ( r ) ( Willis et al., 1982 ). 

An important observation made by several authors is that the

ashin–Shtrikman bounds are accurate estimates for composites

ith particulate microstructures, at least for two-phase systems at

oderate volume fraction ( Bonnenfant et al., 1998 ); in particular,

he upper bound is a good estimate when the stiffest material is

he matrix phase and contains inclusions of the most compliant

aterial, whereas the lower bound is a good estimate for the in-

erse situation in which the most compliant material is the matrix

hase containing inclusions of the stiffest material. 

When no phase plays clearly the role of a matrix, the effec-

ive properties of the composite may be estimated by the self-

onsistent method of Hill (1965) . In this case, the relevant mi-

rostructure is granular in character, being composed of ellipsoidal

articles of the different phases with varying size so as to fill

pace. Eq. (13) provides Hill’s self-consistent estimate, if μ0 is

dentified with the effective modulus ˜ μ; in this case, (13) becomes

 polynomial equation of order 2 N for ˜ μ Willis et al. (1982) . 

.1. Strain-rate concentration in the phases 

An approximation for the strain field in the non-linear compos-

te may be obtained from the strain field in the LCC evaluated at

he optimal comparison moduli ˆ μ(r) defined by the optimization

roblem in (10) . In particular, the average deformation rate field in

he phases D 

( r ) may be written in terms of the macroscopic defor-

ation rate D in the form ( Kailasam and Ponte Castañeda, 1998;

onte Castañeda, 2005; Ponte Castañeda and Suquet, 1997; Ponte

astañeda and Zaidman, 1994 ): 

 

(r) = A 

(r) 
(

ˆ μ(i ) (σe ) 
)

: D , r = 1 , 2 , . . . , N, (14)

here A 

( r ) are the fourth-order strain concentration tensors of

he LCC, evaluated at the optimal values 2 , ˆ μ(r) , of the compari-

on moduli, defined by the solution of the optimization problem

n (10) . It is emphasized that the optimal values ˆ μ(r) depend in a

onlinear manner upon the macroscopic von Mises equivalent σ e ,

nd consequently the strain concentration tensors A 

( r ) are in gen-

ral nonlinear functions of the macroscopic stress tensor σ . 
2 Henceforth the superscript ( ̂ . ) serves to denote the optimal value of the rele- 

ant quantity obtained by the corresponding optimization described in the previous 

section. 
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For isotropic composite materials with random microstructures

nd “ellipsoidal symmetry”, A 

( r ) is of the form ( Ponte Castañeda

nd Suquet, 1997 ) 

 

(r) = E 

(r) : 

( 

N ∑ 

s =1 

c (s ) E 

(s ) 

) −1 

, 

E 

(r) = 

[
I + S 0 : L 

−1 
0 : 

(
L 

(r) − L 0 

)]−1 
, (15) 

here I is the symmetric fourth order identity tensor with Carte-

ian components I i jkl = (δik δ jl + δil δ jk ) / 2 , S 0 is the well known

ensor of Eshelby (1957) for the linear “reference material” with

lasticity tensor L 0 introduced in (13) , and 

 0 = 2 μ0 K + 3 κ0 J , L 

(r) = 2 ˆ μ(r) K + 3 κ(r) J , 

J = 

1 

3 

δ δ, K = I − J . (16) 

he quantities ( μ0 , κ0 ) and ( ̂  μ(r) , κ(r) ) in (16) are the shear and

ulk viscosities of the LCC; the bulk viscosities κ0 and κ ( r ) are set

o ∞ after the final expression for D 

( r ) in (14) is derived, in order

o take into account the incompressible nature of the phases and

he composite. 

For composites consisting of an isotropic matrix and a uniform

istribution of spherical inclusions, the Eshelby tensor has the form

 0 = 

6 ( κ0 + 2 μ0 ) 

5 ( 3 κ0 + 4 μ0 ) 
K + 

3 κ0 

3 κ0 + 4 μ0 

J . (17) 

sing (16) and (17) in ( 15 b) and taking into account that J : J =
 , K : K = K , and J : K = 0 , we conclude that 

 

(r) = 

5 μ0 ( 3 κ0 + 4 μ0 ) 

μ0 ( 9 κ0 + 8 μ0 ) + 6 ( κ0 + 2 μ0 ) ̂  μ(r) 
K + 

3 κ0 + 4 μ0 

3 κ(r) + 4 μ0 

J . 

(18) 

hen, using (15) , after some lengthy but otherwise straightforward

alculations we reach the following expression for the strain con-

entration tensors: 

 

(r) = 

1 

3 κ(r) + 4 μ0 

( 

N ∑ 

s =1 

c (s ) 

3 κ(s ) + 4 μ0 

) −1 

J 

+ 

1 

μ0 ( 9 κ0 + 8 μ0 ) + 6 ( κ0 + 2 μ0 ) ̂  μ(r) [ 

N ∑ 

s =1 

c (s ) 

μ0 ( 9 κ0 + 8 μ0 ) + 6 ( κ0 + 2 μ0 ) ̂  μ(s ) 

] −1 

K . (19) 

inally, using (14) , taking into account the incompressibility condi-

ion D kk = 0 (or J : D = 0 ), and considering the limit κ0 → ∞ , we

nd 

 

(r) = lim 

κ0 →∞ 

(
A 

(r) : D 

)
= α(r) D , 

α(r) = 

1 

3 μ0 + 2 ˆ μ(r) 

( 

N ∑ 

s =1 

c (s ) 

3 μ0 + 2 ˆ μ(s ) 

) −1 

. (20) 

e emphasize again that the strain concentration factors α( r ) depend

n general on the macroscopic stress σ (or macroscopic deformation

ate D ) through the optimal moduli ˆ μ(i ) . Eq. (20) implies that 

˙ ¯ (r) = 

√ 

2 

3 

D 

(r) : D 

(r) = α(r) 

√ 

2 

3 

D : D = α(r) ˙ ε̄ or 
d ̄ε (r) 

d ̄ε 
= α(r) 

(21) 

here ˙ ε̄ (r) and 

˙ ε̄ are the average equivalent strain rates in the

hases and the average macroscopic equivalent strain rate respec-

ively. 
.2. Perfectly plastic phases 

We consider the case of perfectly plastic phases ( n ( r ) → ∞ ). The

ptimization in (10) and (11) as n ( r ) → ∞ is carried out in three

teps. In the first step, we consider the optimization over σ (r) 
e in

11) . All creep exponents are set equal in the second step, i.e., we

et n (1) = n (2) = · · · = n (N) ≡ n . In the final third step we consider

he limit n → ∞ . Details of the calculations are given in the fol-

owing. 

Step 1: Calculation of σ (r) 
e in (11) 

The “inner” optimization in (11) is carried out by setting equal

o zero the derivatives 

∂ 

∂σ (r) 
e 

(
U 

(r) 
L 

− U 

(r) 
)

= 0 , (22) 

hich defines the optimal values of σ (r) 
e as 

(r) 
e = 

⎡ 

⎣ 

(
σ (r) 

0 

)n (r) 

3 μ(r) ˙ ε 0 

⎤ 

⎦ 

1 

n (r) −1 

≡ ˆ σ (r) 
e . (23) 

hen the optimal values ˆ σ (r) 
e are substituted into (10) , the expres-

ion for the estimate of the effective stress potential becomes 

˜ U ( σe ) = sup 
μ( r ) ≥0 

⎧ ⎪ ⎨ 

⎪ ⎩ 

σ 2 
e 

6 ˜ μ
(
μ( r ) 
) − 1 

2 

N ∑ 

r=1 

n 

( r ) − 1 

n 

( r ) + 1 

⎡ 

⎣ 

(
σ ( r ) 

0 

)n ( r ) 

˙ ε 0 

⎤ 

⎦ 

2 

n ( r ) −1 

c ( r ) (
3 μ( r ) 

) n ( r ) +1 

n ( r ) −1 

⎫ ⎬ 

⎭ 

, 

(24) 

here ˜ μ(μ(r) ) is defined in (13) . Substitution of the expression

13) for ˜ μ into (24) leads to 

˜ 
 (σe ) = sup 

y (r) ≥0 

y (1) =1 

sup 

μ(1) > 0 

[
F 
(
y (r) 
) σ 2 

e 

6 μ(1) 
− I 
(
μ(1) , y (r) 

)]
, (25) 

here 

 

(
y (r) 
)

= 

μ(1) 

˜ μ
= 

( 

N ∑ 

r=1 

c (r) y (r) 

3 y (r) + 2 y 0 

) ( 

N ∑ 

s =1 

c (s ) 

3 y (s ) + 2 y 0 

) −1 

, (26) 

 

(
μ(1) , y (r) 

)
= 

1 

2 

N ∑ 

r=1 

c (r) n 

(r) − 1 

n 

(r) + 1 

⎡ 

⎣ 

(
σ (r) 

0 

)n (r) 

˙ ε 0 

⎤ 

⎦ 

2 

n (r) −1 (
y (r) 

3 μ(1) 

) n (r) +1 

n (r) −1 

, 

(27) 

 

(r) = 

μ(1) 

μ(r) 
( with y (1) = 1) , and y 0 = 

μ(1) 

μ0 

. (28)

he optimal values of y ( r ) in (25) depend on the values of the vol-

me fractions c ( r ) , the material properties (σ (r) 
0 

, n (r) , ˙ ε 0 ) , and the

acroscopic von Mises equivalent stress σ e . 

The strain concentration values α( r ) defined in (20) can be writ-

en in the form 

(r) = 

ˆ y (r) 

3 ̂

 y (r) + 2 y 0 

( 

N ∑ 

s =1 

c (s ) ˆ y (s ) 

3 ̂

 y (s ) + 2 y 0 

) −1 

, r = 2 , . . . , N, (29)

here ˆ y (r) are the optimal values of y ( r ) resulting from the opti-

ization in (25) . 
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Step 2: Equal creep exponents 
(
n (1) = n (2) = · · · = n (N) ≡ n 

)
When all “creep exponents” are set equal, i.e., n (1) = n (2) =

· · · = n (N) ≡ n, Eq. (25) becomes 

˜ 
 = sup 

y (r) ≥0 

y (1) =1 

sup 

μ(1) > 0 

[ 

σ 2 
e 

6 μ(1) 
F 
(
y (r) 
)

− n − 1 

2(n + 1) 

H 

(
y (r) 
)

(
3 μ(1) 

) n +1 
n −1 

] 

, (30)

where F ( y ( r ) ) is defined in (26) and 

H 

(
y (r) 
)

= 

N ∑ 

r=1 

c (r) 

[ (
σ (r) 

0 

)n 

˙ ε 0 

] 

2 
n −1 (

y (r) 
) n +1 

n −1 
. (31)

The optimal value of μ(1) in (30) is determined by calculating the

partial derivative of the quantity in brackets with respect to μ(1) 

and setting it equal to zero. The resulting value for μ(1) is 

μ(1) = 

1 

3 

[ 

H 

(
y (r) 
)

F 
(
y (r) 
) 1 

σ 2 
e 

] 

n −1 
2 

≡ ˆ μ(1) 
(
y (r) 
)

> 0 (32)

and (30) becomes 

˜ 
 (σe ) = 

σ n +1 
e 

n + 1 

√ √ √ √ 

sup 

y (r) ≥0 

y (1) =1 

[ F ( y (r) )] n +1 

[ H( y (r) )] n −1 
= 

σ n +1 
e 

n + 1 

⎡ 

⎣ sup 

y (r) ≥0 

y (1) =1 

F 
(
y (r) 
)

H 

(
y (r) 
) n −1 

n +1 

⎤ 

⎦ 

n +1 
2 

(33)

It is interesting to note that the expression for the effective stress

potential given in (33) is of the power-law type defined in (3) , i.e.,

when all phases have the same creep exponent n , the effective be-

havior of the composite is also of the power-law type with creep

exponent n implying that ˜ U is a homogeneous function of degree

n + 1 in σ . Also, the optimal values of y ( r ) in (33) are now indepen-

dent of the macroscopic von Mises equivalent stress σ e . 

Step 3: Perfectly plastic phases ( n → ∞ ) 

Using (33) and taking into account that 

lim 

n →∞ 

[ a (n ) ] 
n +1 

n + 1 

= 

{
0 when a ( ∞ ) ≤ 1 , 

∞ when a ( ∞ ) > 1 , 
(34)

we find 

lim 

n →∞ 

˜ U (σe ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 when σe 

√ √ √ √ sup 

y (r) ≥0 

y (1) =1 

F 
(
y (r) 
)

H ∞ 

(
y (r) 
) ≤ 1 , 

∞ when σe 

√ √ √ √ sup 

y (r) ≥0 

y (1) =1 

F 
(
y (r) 
)

H ∞ 

(
y (r) 
) > 1 , 

(35)

where F ( y ( r ) ) is defined in (26) and 

H ∞ 

(
y (r) 
)

= lim 

n →∞ 

H 

(
y (r) 
)

= 

N ∑ 

r=1 

c (r) σ (r) 
0 

2 
y (r) . (36)

Eq. (35) can be written also as 

lim 

n →∞ 

˜ U (σe ) = 

{
0 when σe ≤ ˜ σ0 , 

∞ when σe > ˜ σ0 , 
(37)

˜ σ0 (c (r) , σ (r) 
0 

) = 

√ √ √ √ √ 

inf 
y (i ) ≥0 

y (1) =1 
i =2 , ... ,N 

( 

N ∑ 

r=1 

c (r) σ (r) 
0 

2 
y (r) 

) ( 

N ∑ 

p=1 

c (p) 

3 y (p) + 2 y 0 

) (
w  
ith 

˜ σ0 = 

√ √ √ √ inf 
y (r) ≥0 

y (1) =1 

H ∞ 

(
y (r) 
)

F 
(
y (r) 
) , r = 2 , . . . , N (38)

here H ∞ 

( y ( r ) ) and F ( y ( r ) ) are defined in (36) and (26) respectively,

.e., 

c (s ) y (s ) 

3 y (s ) + 2 y 0 

) −1 

. (39)

Comparing the above Eq. (37) with (6) , we conclude that, when all

hases are perfectly plastic (n = ∞ ) , the form of the estimated ef-

ective stress potential ˜ U (σe ) corresponds to a perfectly plastic ma-

erial that obeys the von Mises yield condition with a flow stress

˜ 0 defined in (39) . This effective flow stress, in turn, is a func-

ion of the phase volume fractions c ( r ) as well as of the phase flow

tresses σ (r) 
0 

. 

Calculation of the estimated effective yield stress ˜ σ0 requires

he solution of the constrained optimization problem in (39) for

he values of y ( r ) , which define in turn the appropriate values of

he viscosities μ( r ) (see (28) ). In the special case of a two-phase

omposite the solution of the optimization problem in (39) can

e found analytically as described in Section 3.2.1 . The solution of

ore general cases presented in the following are obtained by us-

ng the methodology of Kaufman et al. (1995) and the CONMAX

oftware ( http://www.netlib.org/opt/conmax.f ) for the solution of

he optimization problem in (39) . 

The optimal values y ( r ) in (39) depend on the values of the

olume fractions c ( r ) and the flow stresses σ (r) 
0 

of the phases but

re independent of the macroscopic stress state. Also, depending on

he parameters of the problem, the optimal values ˆ y (r) = ˆ μ(1) / ̂  μ(r) 

ay be one of the extreme values 0 or ∞ . The value ˆ y (r) = 0

orresponds to a rigid comparison material for phase r , whereas

ˆ  (r) = ∞ corresponds to an incompressible comparison material

ith zero stiffness (i.e., to an “incompressible void” comparison

aterial). It should be noted that it is possible to have ˆ y (r) =
ˆ (1) / ̂  μ(r) = 0 (rigid comparison material) even for finite σ (r) 

0 
(e.g.,

ee deBotton and Ponte Castañeda (1993) and Section 3.2.1 below).

The strain concentration values α( r ) defined in (20) can be writ-

en in the form 

α(r) = 

ˆ y (r) 

3 ̂

 y (r) + 2 y 0 

( 

N ∑ 

s =1 

c (s ) ˆ y (s ) 

3 ̂

 y (s ) + 2 y 0 

) −1 

, (40)

here ˆ y (r) are the optimal values of y ( r ) resulting from the opti-

ization in (39) . 

.2.1. The two-phase perfectly plastic composite—An analytic estimate

or the effective flow stress and the strain concentration factors 

We consider an isotropic two-phase composite (N = 2 , c 1 + c 2 =
) . Each phase is perfectly plastic with flow stress σ (1) 

0 
and σ (2) 

0 
.

e treat phase 1 as the “matrix” and phase 2 with σ (2) 
0 

> σ (1) 
0 

as

he reinforcing particles. In that case it is possible to obtain ana-

ytical expressions for the effective flow stress ˜ σ0 . 

The estimate for ˜ σ0 depends on the chosen value of the ref-

rence viscosity μ0 in (13) . Results for various choices of μ0 are

eported in Papadioti and will be discussed briefly later in this

ection. Here we present in some detail the formulation based on

 Hashin–Shtrikman lower bound with μ0 = μ(1) (y 0 = 1) ; as it

ill be discussed in the following Section 4 , this particular choice

http://www.netlib.org/opt/conmax.f
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f μ0 shows the best agreement with detailed unit cell finite ele-

ent calculations. For μ0 = μ(1) , the ratio H ∞ 

/ F in (38) takes the

alue 

H ∞ 

(
y (2) 
)

F 
(
y (2) 
) = σ (1) 

0 

2 (
c (1) + c (2) r 2 y (2) 

) 2 + 3 c (2) + 3 c (1) y (2) 

2 c (1) + 

(
3 + 2 c (2) 

)
y (2) 

, 

r = 

σ (2) 
0 

σ (1) 
0 

> 1 . (41) 

he optimum value of y (2) to be used in (38) is calculated by using

he condition 

∂ 

∂y (2) 

(
H ∞ 

F 

)
= 0 (42) 

ogether with the constraint y (2) ≥ 0. After some lengthy, but

traightforward, calculations we find the resulting optimal value

ˆ  (2) to be 

ˆ 
 

(2) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

3 + 2 c (2) 

[ 

−2 c (1) + 

5 √ 

3 

√ (
3 + 2 c (2) 

) 1 

r 2 
− 2 c (2) 

] 

if 

0 if 

here 

r cr = 

5 √ 

4 + 6 c (2) 
and c (2) 

cr = 

1 

6 

[(
5 

r 

)2 

− 4 

]
. (44)

ccording to (43) , for a given particle concentration c (2) , when the

ontrast ratio r = σ (2) 
0 

/σ (1) 
0 

is larger than a value r cr , the compar-

son material for phase 2 (particles) is rigid ( ̂  y (2) = 0) . 

The corresponding estimate for the effective flow stress result-

ng from (38) is 

˜ σ0 

σ (1) 
0 

= 

⎧ ⎨ 

⎩ 

1 

3 + 2 c (2) 

(
5 c (2) r + c (1) 

√ 

9 + 6 c (2) (1 − r 2 ) 
)

if 1 ≤
1 

2 

√ 

4 + 6 c (2) if r cr ≤

he result stated in (45) was first presented by deBotton and Ponte

astañeda (1993) , who used a “dissipation function” formulation

as opposed to the “stress potential” approach used here). For all

olume fractions c (2) , there is a value r cr of the contrast ratio

 = σ (2) 
0 

/σ (1) 
0 

beyond which the predicted effective flow stress ˜ σ0 

oes not vary with r . For values of r larger than r cr , the optimal

alue of y (2) = μ(1) /μ(2) vanishes or μ(2) = ∞ , i.e., for r ≥ r cr the

omparison material 2 (particles) does not deform; therefore, fur-

her increase of σ (2) 
0 

does not change the effective flow stress ˜ σ0 . 

The estimate for the effective flow stress ˜ σ0 depends on the

hoice of the reference viscosity μ0 . Fig. 1 shows the predicted

˜ 0 for various choices of μ0 for a volume fraction c (2) = 0 . 30 .

he curves marked H-S − and H-S + correspond to μ0 = μ(1) and

0 = μ(2) respectively, and “self consistent” corresponds to μ0 =
˜ . We emphasize that the Hashin–Shtrikman lower bound H-S −

(μ0 = μ(1) ) shows the best agreement with detailed unit cell fi-

ite element calculations presented in the following section. 

The strain concentration values α( r ) given in (29) can be written

n the form 

α(1) = 

d ̄ε (1) 

d ̄ε 
= 

1 

( 2 y 0 + 3 ) D 

, 

α(2) = 

d ̄ε (2) 

d ̄ε 
= 

ˆ y (2) (
2 y 0 + 3 ̂

 y (2) 
)
D 

, (46) 
r  
 ≤ r cr 

(
c (2) ≤ c (2) 

cr 

)
, 

 cr 

(
c (2) ≥ c (2) 

cr 

)
, 

(43) 

 cr 

(
c (2) ≤ c (2) 

cr 

)
, (

c (2) 
cr ≤ c (2) 

)
. 

(45) 

here 

D = 

c (1) 

2 y 0 + 3 

+ 

c (2) ˆ y (2) 

2 y 0 + 3 ̂

 y (2) 
(47) 

nd ˆ y (2) is defined in (43) . 

. Unit cell finite element calculations and assessment of the 

odels 

In this section we present the results of unit cell finite element

alculations for a composite material made up of a statistically

sotropic random distribution of isotropic, linearly-elastic perfectly-

lastic spherical inclusions embedded in a continuous, isotropic,

inearly-elastic perfectly-plastic matrix. The elastic Young modulus

sed in the finite element calculations for all phases is three orders

f magnitude higher than the highest yield stress involved; this

inimizes the effects of elasticity and the results are very close

o those of rigid-perfectly-plastic materials. 

We study numerically two- and three-phase composites. The

atrix is labelled as phase 1 and the reinforcing particles are

pherical and have higher flow stresses (σ (i ) 
0 

> σ (1) 
0 

, i > 1) . 

The periodic unit cell is a cube with edge size L and is con-

tructed using the method presented by Segurado and Llorca

2002) (see also Fritzen et al., 2012 ) and extended to polydisperse

nclusion distributions by Lopez-Pamies et al. (2013) . The virtual

icrostructure contains a dispersion of a sufficiently large number

f non-overlapping spheres of uniform (monodisperse) or differ-

nt (polydisperse) size. The inclusions are randomly located within

he cell and are generated using the Random Sequential Adsorp-

ion Algorithm (RSA) ( Rintoul and Torquato, 1997 ). In addition,

he unit cell is periodic, i.e., it can be repeated in all three di-

ections to represent a 3-D periodic structure. For the two-phase

omposite and for c (2) ≤ 0.20 monodisperse spheres are used; for

igher volume fractions polydisperse (variable size) distributions

re used. In the present study, the two-phase polydisperse ap-

roach of Lopez-Pamies et al. (2013) is readily extended to obtain

irtual microstructures with three-phases or more. For instance,

enoting the matrix phase with 1 and the two inclusion phases

ith 2 and 3, the extension is straightforward and requires the

ontinuous alternation of spheres of phase 2 and spheres of phase

 during the RSA process. Of course this simple extension can be

epeated as often as necessary to obtain an N−phase virtual mi-

rostructure provided that the concentration of each of the phases

s known. Moreover, as discussed briefly in the following, a conver-

ence study with respect to the number of spheres is done for all

irtual microstructures used in this study to ensure isotropy and

rgodicity of the virtual unit cell. 

Finite element discretizations of the cubic unit cell were cre-

ted from the particle center distributions using the mesh gen-

rator code NETGEN ( Schöberl, 1997 ), which has the capability

o create periodic meshes as required. All calculations were car-

ied out using the ABAQUS general purpose finite element code
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Fig. 1. Variation of effective normalized flow stress ˜ σ0 /σ
(1) 
0 

with contrast ratio r = σ (2) 
0 

/σ (1) 
0 

as predicted by various models for a volume fraction c (2) = 0 . 30 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

u

 

w  

d  

p  

f

u  

w  

F  

o  

 

t  

i  

u  

f  

c  

c  

t

 

t

F  
( Hibbitt, 1977 ). Three dimensional 10-node quadratic tetrahe-

dral elements with a constant pressure interpolation were used

(C3D10H in ABAQUS); all analy s es were carried out incrementally

and accounted for geometry changes due to deformation (finite

strain solutions). 

Fig. 2 shows the finite element meshes used for a two-phase

composite with volume fractions c (2) = 0.10, 0.20, 0.30, and 0.40.

The distributions are monodisperse for c (2) = 0.10 and 0.20, and

polydisperse for c (2) = 0.30 and 0.40. Fig. 3 shows a typical finite

element mesh of a unit cell for a three-phase polydisperse com-

posite for a matrix with volume fraction c (1) = 0 . 60 and two dif-

ferent inclusion types with c (2) = 0 . 25 and c (3) = 0 . 15 . 

4.1. The effective yield stress 

We determine numerically the effective yield stress by solving

the problem of a unit cell loaded in uniaxial tension. Periodicity

conditions are imposed on the boundary of the unit cell. A detailed

discussion of the periodic boundary con ditions on a unit cell can

be found in ( Suquet et al., 1987 ) or ( Michel et al., 1999 ). Here, the

periodic boundary conditions on the unit cell are imposed as fol-

lows (see Mbiakop et al. (2015b) and Papadioti for more details).

Referring to Fig. 4 , if we fix vertex 1 in order to eliminate rigid

body translations, then, in view of the periodicity of the displace-

ment field, we can write the displacements u at vertices 2, 4, and
 of the unit cell in the form 

 

(2) 
i 

= (F i 1 − δi 1 ) L, u 

(4) 
i 

= (F i 2 − δi 2 ) L, u 

(5) 
i 

= (F i 3 − δi 3 ) L, 

(48)

here F ij are the components of the macroscopic deformation gra-

ient F . The periodicity of the problem requires also that the dis-

lacements of material points at the same position on opposite

aces of the cell should satisfy the conditions 

u 

RIGHT − u 

LEFT = u 

(2) , u 

TOP − u 

BOTTOM = u 

(4) , 

 

FRONT − u 

BACK = u 

(5) , (49)

here the superscripts (LEFT, RIGHT), (BOTTOM, TOP), and (BACK,

RONT) denote collectively all material points located respectively

n the faces of the cell at (X 1 = 0 , X 1 = L ) , (X 2 = 0 , X 2 = L ) , and

(X 3 = 0 , X 3 = L ) . Eq. (49) show that the periodic constraints be-

ween all corresponding opposite boundary points can be written

n terms of the displacements of the three vertex points ( u 

(2) , u 

(4) ,

 

(5) ), which are defined, in turn, in (48) by the macroscopic de-

ormation gradient F . In ABAQUS, for given F , we impose boundary

onditions on ( u 

(2) , u 

(4) , u 

(5) ) according to (48) , and the periodicity

onstraints (49) are enforced through a “user MPC” subroutine (or

he “EQUATION” option). 

For the problem of uniaxial tension in direction 1, the deforma-

ion gradient is of the form 

 = λ e 1 e 1 + λt (e 2 e 2 + e 3 e 3 ) , (50)
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Fig. 2. Finite element discretization of cubic unit cells for two-phase composites containing a random distribution of 30 spherical particles for volume fractions of 10, 20, 

30 and 40%. The finite element meshes have (200,869; 112,281; 165,371; 159,303) nodes and (83,270; 45,679; 67,790; 65,543) elements respectively. The corresponding total 

numbers of degrees of freedom, including pressures, are (436,067; 245,485; 360,533; 346,823). 

Fig. 3. Finite element discretization of a cubic unit cell for a three-phase composite 

containing a random distribution of 30 polydisperse spherical particles with vol- 

ume fractions c (2) = 0 . 25 (yellow) and c (3) = 0 . 15 (blue). The finite element mesh 

has 303,953 nodes, 124,225 elements, and the total number of degrees of freedom, 

including pressures, is 663,409. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Periodic unit cell. 
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w
1 

3 The alternative calculation < σ11 > = R (2) 
1 

/A cell appears to be less convenient as 

it requires evaluation of the current cross sectional area of the deformed cell A cell 

which in general does not remain flat due to the complex microstructure of the 

unit cell. 
here ( λ, λt ) are the axial and transverse stretch ratios and e i the

ase vectors along the coordinate axes shown in Fig. 4 ; the bound-

ry conditions (48) become 

 

(2) 
1 

= (λ − 1) L, u 

(4) 
2 

= u 

(5) 
3 

= (λt − 1) L, (51) 

 

(2) 
2 

= u 

(2) 
3 

= u 

(4) 
1 

= u 

(4) 
3 

= u 

(5) 
1 

= u 

(5) 
2 

= 0 . (52) 

n ABAQUS, we prescribe u (2) 
1 

(i.e., λ) and set R (4) 
2 

= R (5) 
3 

= 0 ,

here R (N) 
i 

denotes the i th component of the force at node N . The

uantities R (2) 
1 

and (u (4) 
2 

, u (5) 
3 

) , i.e., λt , are determined by the finite

lement solution. The corresponding macroscopic stresses σ ij are

etermined from the numerical calculation of the average stresses
σ ij > in the finite element solution: 3 

 σi j > = 

1 

V cell 

∫ 
V cell 

σi j (x ) dV, (53) 

here V cell is the total volume of the deformed finite element

esh. 

The conditions u (4) 
2 

= u (5) 
3 

and < σ22 > = < σ33 > = < σ12 > =
 σ13 > = < σ23 > = 0 are used to verify the correctness of the finite

lement solution. 

The nodal displacement u (2) 
1 

was increased gradually, the solu-

ion was developed incrementally, and the average stress <σ 11 >

as determined by (53) at the end of every increment. As u (2) 
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Fig. 5. Variation of normalized effective flow stress ˜ σ0 /σ
(1) 
0 

with contrast ratio r = σ (2) 
0 

/σ (1) 
0 

for different values of the volume fraction c (2) . The full triangles are the results 

of the unit cell finite element calculations and the solid lines are the predictions (39) of the model based on the H-S − estimate (μ0 = μ(1) ) . The maximum difference 

between the numerical results and the analytical estimates is 3%. 
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increases, the calculated average stress <σ 11 > reaches a constant

value, which defines the effective flow stress of the composite ˜ σ0 . 

Fig. 5 shows the variation of the calculated effective flow stress

from the unit cell finite element calculations with the contrast

ratio r = σ (2) 
0 

/σ (1) 
0 

for various volume fractions, together with

the predictions (39) of the homogenization model, based on the

Hashin-Shtrikman lower bound H-S − (μ0 = μ(1) ) . 4 For that data

shown in Fig. 5 , the maximum difference between the predictions

(39) and the results of the unit cell finite element calculations is

3% (note that the vertical axis in Fig. 1 starts at the value of 1). It is

also interesting to mention that an increase of the flow stress σ (2) 
0 

in the inclusions beyond (approximately) two times the flow stress

of the matrix (2 σ (1) 
0 

) does not change the effective flow stress of

the composite for all volume fractions considered here. The finite

element calculations confirm the fact that, for σ (2) 
0 

� 2 σ (1) 
0 

, the

inclusions do not deform plastically in the deforming unit cell and

are in agreement with earlier numerical results of Suquet (1997)

for c (2) = 30% and by Ponte Castañeda et al. (2001) and Idiart et al.

(2006) for c (2) = 15% . As we will see in the following, this result is

due to the fact that the particles behave as being rigid beyond fur-

ther increase of σ (2) 
0 

. 

Fig. 6 shows the variation of ˜ σ0 /σ
(1) 
0 

of a three-phase com-

posite for different values of the volume fraction c (3) as deter-

mined from the unit cell finite element calculations and the pre-

dictions (39) of the homogenization model. The material data are

typical for a TRIP 5 steel with a ferritic matrix (phase 1) contain-

ing retained austenite (phase 2), which transforms gradually to

martensite (phase 3) as the TRIP steel deforms plastically (e.g., see

Papatriantafillou et al. (2006) ). 
4 Of all possible choices for μ0 shown in Fig. 1 , the Hashin–Shtrikman lower 

bound H-S − (μ0 = μ(1) ) gives the best estimate by comparison to the predictions 

of the unit cell results. 
5 TRIP is the acronym for TR ansformation I nduced P lasticity. 

(
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a  
In order to check the isotropy of the unit cell, we carried out

alculations for uniaxial tension in directions 2 and 3. In all cases,

he results were identical to those shown in Figs. 5 and 6 . 

.2. The strain concentration tensors 

The unit cell finite element calculations discussed above were

sed also to determine the strain concentration factors defined in

20) as follows. At the end of every increment in the finite element

olution the average value of the Eulerian logarithmic strain tensor

 

( r ) was determined in every phase of the composite, where the

uperscript ( r ) denotes “phase r ”. The macroscopic axial logarith-

ic strain was also determined as ε̄ = ln λ, where λ is the axial

tretch ratio used in (51) to drive the finite element calculations.

nterestingly, the components of < ε ( r ) > are found to be propor-

ional to ε̄ in the context of the present study; in particular, it is

ound that 

 ε (r) 
i j 

> = C i j ε̄ , (54)

hich leads to the following estimate for the strain concentration
( r ) : 

(r) = 

d ̄ε (r) 

d ̄ε 
= 

√ 

2 

3 

C i j C i j . (55)

ig. 7 shows the variation of the strain concentration factors α( r ) 

n a two-phase composite with the contrast ratio r = σ (2) 
0 

/σ (1) 
0 

for

arious volume fractions as determined from the unit cell finite el-

ment calculations ( Eq. (54) ) and the homogenization theory ( Eqs.

46)–(47) ). 

An important observation in the context of this figure is that at

 contrast ratio of r � 2, a sharp transition is observed where the

articles start behaving as being rigid, i.e., the average strain in

he particle is almost zero. This is validated by both the model and

he numerical results. In terms of the homogenization procedure,

his implies that the case of infinite contrast, i.e., rigid particles,

nd finite contrast is very similar beyond a value of r � 2. A weak
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Fig. 6. Variation of effective normalized flow stress ˜ σ0 /σ
(1) 
0 

of a three-phase composite with a matrix volume fraction c (1) = 0 . 60 for different values of the volume fraction 

c (3) . The homogenization estimates are based on H-S − and the contrast ratios are σ (2) 
0 

/σ (1) 
0 

= 1 . 875 and σ (3) 
0 

/σ (1) 
0 

= 5 . 
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ependence of this sharp transition upon the volume fraction c is

bserved in these figures. 

Similar plots for a three-phase composite are shown in Fig. 8 .

he predictions of the homogenization theory agree well with the

esults of the unit cell finite element calculations. 

Fig. 8 shows, in turn, the strain concentration factors in a three-

hase material. The comparison between the model and the finite

lement simulations is qualitatively good, whereas the model tends

o underestimate the straining of the middle phase, i.e., the one

ith yield stress σ (2) 
0 

/σ (1) 
0 

= 1 . 875 . Again, in the case of the third

hase, when σ (3) 
0 

/σ (1) 
0 

= 5 , the particle behaves as rigid which is

onsistent with the observations of the previous figure. 

.3. On the possible dependence of the effective flow stress on J 3 

Ponte Castañeda and Suquet (1995) ; Suquet and Ponte Cas-

añeda (1993) studied the effective mechanical behavior of weakly

nhomogeneous composites and showed that, for the case of in-

ompressible “power-law” phases, the effective potential of the

omposite may depend, to second order, on the third invariant of

he applied strain. 

We carry out detailed unit cell finite element calculations in or-

er to check for a possible dependence of the effective yield stress

˜ 0 on the third invariant J 3 of the stress deviator s ( J 3 = det s ,

here ‘ det’ denotes the determinant). We identify the coordinate

xes shown in Fig. 4 with the principal directions of the stress ten-

or and write the principal stresses in the form 

 

σ1 

σ2 

σ3 

} 

= σe 

⎛ 

⎜ ⎝ 

X 	

{ 

1 

1 

1 

} 

+ 

2 

3 

⎧ ⎪ ⎨ 

⎪ ⎩ 

cos 

(
θ + 

π

6 

)
sin θ

− cos 

(
θ − π

6 

)
⎫ ⎪ ⎬ 

⎪ ⎭ 

⎞ 

⎟ ⎠ 

, (56) 

here X 	 = p/σe is the stress triaxiality and θ is the “Lode angle”,

o that 

 3 = det s = − 2 

σ 3 
e sin 3 θ . (57)
27 
ngle θ takes values in the range −30 ◦ ≤ θ ≤ 30 ◦, where, to within

 given hydrostatic stress, θ = −30 ◦ corresponds to uniaxial ten-

ion, θ = 0 to pure shear, and θ = 30 ◦ to uniaxial compression. 

It is stressed at this point that the composite materials consid-

red in this work are plastically incompressible and thus the ap-

lied stress triaxiality affects only the elastic part which is of no

nterest here. Thus the only relevant invariant studied in this sec-

ion, apart from the J 2 invariant, is the third deviatoric invariant J 3 
efined above. The study of the effect of J 3 , in turn, allows for a

omplete analysis of general triaxial loading states. 

As a consequence of the applied periodic boundary conditions

nd the symmetry of the problem, the macroscopic (average) de-

ormation of the unit cell is entirely described by the displace-

ents of the “reference vertices” (2,4,5), as shown in Fig. 4 , which

an be written in the form 

 

(2) = U 1 e 1 , u 

(4) = U 2 e 2 , u 

(5) = U 3 e 3 . (58)

n ABAQUS, the displacements ( U 1 , U 2 , U 3 ) are tied, through “user

ultipoint constraints”, to the degrees of freedom of a fictitious

ode, which is properly displaced so that the desired triaxiality

 	 and Lode angle θ are achieved. Details of the numerical for-

ulation can be found in ( Mbiakop et al., 2015a; 2015b ) (see also

arsoum and Faleskog (2007) and Papadioti ). 

We carry out finite element calculations in which the unit cell

s loaded with X 	 = 1 / 3 and Lode angles in the range −30 ◦ ≤ θ ≤
0 ◦. The finite element analysis is carried out incrementally; at

he end of each increment the average stress < σ > and the cor-

esponding von Mises equivalent stress σ̄e = 

√ 

3 
2 < s > : < s > are

alculated. As the applied displacement of the fictitious node in-

reases, σ̄e takes a constant value, which defines the effective flow 

tress ˜ σ0 of the periodic composite. 

In order to verify that the desired values have been indeed

chieved, the triaxiality and Lode angle corresponding to the av-

rage stress < σ > are determined at the end of every increment.

lso, since the coordinate axes in the finite element solution are

ssumed to coincide with the principal stress directions, the condi-

ions < σ12 > = < σ13 > = < σ23 > = 0 are checked at the end of ev-

ry increment to verify the accuracy of the finite element solution.
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Fig. 7. Strain concentration factors α(i ) = d ̄ε (i ) /d ̄ε as determined from unit cell finite element calculations and homogenization theory ( Eqs. (46) and (47) ) for a two-phase 

composite. 
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Fig. 9 shows the variation of the effective flow stress ˜ σ0 ,

as determined from unit cell finite element calculations, with

Lode angle θ for particle volume fractions c (2) = 0.10, 0.20, and

0.40. Fig. 9 shows that the effective flow stress of the com-

posite is essentially independent of the third stress invariant J 3 ,

which is in agreement with earlier results by Suquet (1997) , Ponte

Castañeda et al. (2001) and Idiart (2008) in the case of rigid

particles. 

5. Hardening phases 

In this section we present an approximate method for the pre-

diction of the incremental elastoplastic behavior of macroscopically

isotropic composites made of N isotropic, rate-independent, elastic-

plastic hardening phases. Let the flow stresses σ (i ) 
y of each phase

be known functions of the corresponding equivalent plastic strains

ε̄ (i ) (i = 1 , 2 , . . . , N) . At every point of the homogenized composite

the “internal variables” that characterize the local state of the ho-

mogenized continuum are the local values of the equivalent plastic

strains in the phases q = 

(
ε̄ (1) , ε̄ (2) , . . . , ε̄ (N) 

)
. 
For simplicity, we consider infinitesimal displacement gradi-

nts (small strains and rotations); the method is easily extended

o cover the case of finite geometry changes as discussed in

ppendix . The elastic and plastic response of the homogenized

omposite are treated independently, and combined later to obtain

he full elastic-plastic response. The infinitesimal strain tensor ε at

very point in the homogenized material is written as 

 = ε 

e + ε 

p , (59)

here ε e and ε p are the elastic and plastic parts. Linear isotropic

lastic behavior is assumed: 

 

e = M 

e : σ or σ = L 

e : ε 

e , (60)

here M 

e is the isotropic elastic compliance tensor, which is the

nverse of the isotropic elasticity tensor L 

e : 

 

e = 2 μK + 3 κ J , M 

e = 

(
L 

e 
)−1 = 

1 

2 μ
K + 

1 

3 κ
J , (61)

nd μ and κ denote the effective elastic shear and bulk moduli of

he composite. 

Let t be a loading (time-like) parameter and consider an in-

nitesimal change from t n to t n +1 = t n + �t, where �t is “small”.
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Fig. 8. Strain concentration factors α(i ) = d ̄ε (i ) /d ̄ε as determined from unit cell finite element calculations and homogenization theory ( Eq. (40) ) for a three-phase composite. 

Fig. 9. Variation of effective normalized flow stress ˜ σ0 /σ
(1) 
0 

with Lode angle θ for particle volume fractions of 10, 20, and 40%. The results show almost no dependence on 

J 3 . 
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e use the notation A n and A n +1 to denote the values of A at the

tart t n and the end t n +1 of the increment and set �A = A n +1 − A n .

e assume that the effective flow stress is, to a first approxima-

ion, constant over the period (t n , t n +1 ) and can be determined by

he optimization problem in (39) , in which the flow stresses of the

hases take values 

(i ) 
0 

= (1 − β) σ (i ) 
0 

∣∣
n 

+ β σ (i ) 
0 

∣∣
n +1 

, 0 ≤ β ≤ 1 . (62)

here 

σ (i ) 
0 

∣∣
n 

= σ (i ) 
y 

(
ε̄ (i ) 

n 

)
and 

(i ) 
0 

∣∣
n +1 

= σ (i ) 
y 

(
ε̄ (i ) 

n +1 

)
= σ (i ) 

y 

(
ε̄ (i ) 

n + �ε̄ (i ) 
)
. (63) 

ut in other words, the composite is assumed to behave as “incre-

entally perfectly plastic” with a flow stress ˜ σ0 (q n +1 ) , which is
pdated at every increment. The value of ˜ σ0 (q n +1 ) is calculated by

he solution of the corresponding optimization problem (39) using

he σ (i ) 
0 

values defined in (62) . The solution of the optimization

roblem (39) defines also the optimal values ˆ y (r) (q n +1 ) , which de-

ermine the corresponding strain concentration factors α( i ) in (40)

or the increment. The actual calculation is implicit in general, ex-

ept when β = 0 is used in (62) . 

Over any time increment (t n , t n +1 ) the effective yield condition

f the composite is written in the form 

( σ, q n +1 ) = σe − ˜ σ0 ( q n +1 ) = 0 , (64) 

here ˜ σ0 ( q n +1 ) is determined from the solution of the optimiza-

ion problem (39) with σ (i ) 
0 

defined in (62) , and the associated
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flow rule is 

˙ ε 

p = 

˙ ε̄ N , N = 

3 

2 σe 
s , (65)

where ˙ ε̄ = 

√ 

2 
3 

˙ ε p : ˙ ε p is the macroscopic effective equivalent plas-

tic strain rate. The evolution of the equivalent plastic strains in the

phases are written in terms of the strain concentration factors α( i ) 

defined in (40) in terms of the optimal values ˆ y (r) ( q n +1 ) , i.e., 

˙ q i = 

˙ ε̄ α(i ) (q n +1 ) , i = 1 , 2 , . . . , N. (66)

5.1. Numerical integration of constitutive equations 

In the following, we present a method for the numerical inte-

gration of the resulting constitutive equations in the context of a

displacement driven finite element formulation. In a finite element

environment, the solution is developed incrementally and the con-

stitutive equations are integrated at the element Gauss points. At

a Gauss point in the finite element mesh, the solution ( ε n , σn , q n )

at time t n as well as the infinitesimal strain ε n +1 at time t n +1 are

known, and the problem is to determine ( σn +1 , q n +1 ) . 

A backward Euler integration scheme is used for the numerical

integration of the flow rule (65) : 

�ε 

p = �ε̄ N n +1 . (67)

The elasticity Eq. (60) is written in the form 

σn +1 = σn + L 

e : ( �ε − �ε 

p ) = σe − 2 μ�ε̄ N n +1 , (68)

where σe = σn + L 

e : �ε is the (known) “elastic predictor”. Con-

sidering the deviatoric part of last equation and using the defini-

tion (65) of N n +1 we conclude that the stress deviator s n +1 is co-

linear with the deviatoric part of the elastic predictor s e . Therefore,

we can determine the direction N n +1 of the plastic strain rate at

 n +1 by using the known elastic predictor as 

N n +1 = 

3 

2 σe 
s n +1 = 

3 

2 σ e 
e 

s e = known , (69)

where σ e 
e = 

√ 

3 
2 s 

e : s e is the von Mises equivalent stress of the

elastic predictor. Projecting (68) in the direction of the plastic

strain rate N n +1 and taking into account that σ : N = σe and N :

N = 

3 
2 , we find σe | n +1 = σ e 

e − 3 μ�ε̄ . Therefore, the yield condi-

tion (64) can be written at the end of the increment in the form

σ e 
e − 3 μ�ε̄ − ˜ σ0 ( q n + �q ) = 0 . (70)

The evolution of the equivalent plastic strains in the phases (66)

are written also as 

�q i = �ε̄ α(i ) (q n + �q ) , i = 1 , 2 , . . . , N. (71)

The problem of integrating the elastoplastic equations for the

homogenized composite reduces to the solution of the set

of N + 1 non-linear Eqs. (70) and (71) for �ε̄ and �q =
(�ε̄ (1) , �ε̄ (2) , . . . , �ε̄ (N) ) . These equations are solved by using

Newton’s method. In every Newton iteration the values of �q are

used to calculate the corresponding σ (i ) 
0 

from (62) and then the

optimization problem (39) is solved by using the CONMAX soft-

ware ( Kaufman et al., 1995 ) to determine the optimal values ˆ y (i ) ;

the values of the effective flow stress ˜ σ0 and the strain concentra-

tion factors α( i ) are then determined and the iterations are contin-

ued until the set tolerances are met. Details on the calculation of

the Jacobian of the Newton loop are given in Papadioti . 

It is emphasized that the calculations are much simpler for a

two-phase composite; in that case, one does not need to invoke

CONMAX, since ˜ σ0 is defined analytically by (45) . 

Once �ε̄ and �q are calculated, Eqs. (68) and (71) are used to

determine the stress σn +1 and the state variables q n +1 . 
emark 1. In the special case where the value β = 0 is used in

62) , the effective flow stress of the composite ˜ σ0 and the strain

oncentration factors α( i ) are determined using the values of the

ow stresses of the phases σ (i ) 
0 

| n at the start of the increment, and

qs. (70) and (71) can be solved analytically: 

ε̄ = 

σ e 
e − ˜ σ0 ( q n ) 

3 μ
and �q i = �ε̄ α(i ) (q n ) . (72)

The integration scheme described above is implemented into

he ABAQUS general purpose finite element program ( Hibbitt,

977 ). This code provides a general interface so that a particular

onstitutive model can be introduced as a user subroutine (UMAT).

he finite element formulation is based on the weak form of

he momentum balance, the solution is carried out incrementally,

nd the discretized nonlinear equations are solved using Newton’s

ethod. In the calculations, the Jacobian of the global Newton

cheme is approximated by the tangent stiffness matrix. Such an

pproximation of the Jacobian is first-order accurate as the size of

he increment �t → 0; it should be emphasized, however, that the

forementioned approximation influences only the rate of conver-

ence of the Newton loop and not the accuracy of the results. 

.2. Unit cell calculations and assessment of the model with 

ardening phases 

In this section we present the results of unit cell finite el-

ment calculations for a composite material made up of a sta-

istically isotropic random distribution of isotropic, linearly-elastic

ardening-plastic spherical inclusions embedded in a continu-

us, isotropic, linearly-elastic hardening-plastic matrix. All analy s es

ere carried out incrementally and accounted for geometry

hanges due to deformation (finite strain solutions). 

In all cases analyzed, the matrix material is identified as “phase

” and the flow stress σ (i ) 
y of “phase i ” is a function of the corre-

ponding equivalent plastic strain ε̄ p : 

(i ) 
y 

(
ε̄ (i ) 
)

= σ (i ) 
0 

(
1 + 

ε̄ (i ) 

ε (i ) 
0 

) 1 

η(i ) 

, ε (i ) 
0 

= 

σ (i ) 
0 

E 
, (73)

here σ (i ) 
0 

= σ (i ) 
y (0) is the yield stress of phase i, E is the elas-

ic Young’s modulus, and the hardening exponents η( i ) take values

n the region 1 ≤ η( i ) ≤ ∞ , with the limiting case η(i ) = ∞ corre-

ponding to perfect plasticity. Note that this hardening exponents

re completely uncorrelated to the creep exponent n ( i ) used in the

efinitions of the stress potentials in the previous sections. 

The values E = 917 σ (1) 
0 

and ν = 0 . 3 for Young’s modulus E and

oisson ratio ν are used in the calculations. In addition, one-

lement finite element calculations were carried out, in which the

lement is subjected to the same deformation gradient as the unit

ell and the corresponding uniform stress state in the element is

alculated by using the algorithm described in Section 5.1 for the

omogenized material. 

.2.1. Two-phase composites 

We analyze first a two-phase composite with 

σ (2) 
0 

σ (1) 
0 

= 1 . 5 , η(1) = 5 , η(2) = 3 . (74)

he corresponding stress-strain curves of the phases in uniaxial

ension are shown in Fig. 10 . 

Fig. 11 shows the results of the unit cell finite element calcula-

ions together with the predictions of the homogenization model

or the case of uniaxial tension in direction 1 and for inclusion

olume fractions c 2 = 0.10, 0.20, 0.30, and 0.40. The quantity ˜ σ in

ig. 11 is the average stress < σ > in the unit cell calculations
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Fig. 10. Uniaxial stress–strain curves of phases. 

Fig. 11. Stress–strain curves of the two-phase composite in uniaxial tension for different values of the volume fraction c (2) . The solid lines are the results of the unit cell 

finite element calculations and the dash lines are the predictions (39) of the model based on the H-S − estimate (μ0 = μ(1) ) . 
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Fig. 12. Deformed configurations of unit cells in simple shear (γ = 0 . 15) for various values of the volume fraction c (2) . 

Fig. 13. Shear stress-shear strain curves of the two-phase composite in simple shear for different values of the volume fraction c (2) . The solid lines are the results of the unit 

cell finite element calculations and the dash lines are the predictions (39) of the model based on the H-S − estimate (μ0 = μ(1) ) . 



I. Papadioti et al. / International Journal of Solids and Structures 87 (2016) 120–138 135 

a  

e  

m  

a  

f  

e  

b  

e  

w  

c  

E  

a  

(  

g  

m

 

t

F  

w  

t  

f

 

t  

f  

v  

F

τ

w  

t  

s  

d  

i  

F  

u  

e

5

 

F

t

nd the uniform σ 11 stress component in the corresponding one-

lement homogenization calculation. The predictions of the ho-

ogenization model agree well with the numerical results. It is

lso evident from these figures that as we increase the volume

raction of the stiffer particle phase which also has a higher hard-

ning exponent, this leads to a reinforcement of the composite

oth at the level of the yield strength as well as in its hard-

ning response. It is also interesting to note that even though

e have added the hardening behavior of the phases heuristi-

ally to the homogenization model for perfectly plastic phases (see

q. (45) ), the corresponding analytical estimates are in excellent

greement with those obtained by the finite element calculations

see also relevant discussion in ( Suquet, 1997 )). This, in turn, sug-

ests that such a simplified approach is sufficient for this class of

aterials. 

Calculations are also carried out for finite shear deformation. In

his case, the deformation gradient used in (48) is of the form 

 = δ + γ e 1 e 2 , (75)

here γ is the amount of shearing on the 1–2 plane. Fig. 12 shows

he deformed unit cell at γ = 0 . 15 for various inclusion volume

ractions c 2 . 
Fig. 14. Deformed configurations of unit cells of the three-phase comp

ig. 15. Stress–strain curves of the three-phase composite in uniaxial tension and simple 

he dash lines are the predictions (39) of the model based on the H-S − estimate (μ0 = μ
Fig. 13 shows the results of the unit cell finite element calcula-

ions together with the predictions of the homogenization model

or the case of finite shear on the 1–2 plane and for inclusion

olume fractions c 2 = 0.10, 0.20, 0.30, and 0.40. The quantity ˜ τ in

ig. 13 is 

˜ = 

√ 

1 

2 

s i j s i j , (76) 

here s ij is identified with the average deviatoric stresses < s ij > in

he unit cell calculations and with the uniform deviatoric stresses

 ij in the one-element homogenization calculations. Again, the pre-

ictions of the homogenization model agree well with the numer-

cal results. Similar observations to those made in the context of

ig. 11 could also be made in Fig. 13 regarding the effect of vol-

me fraction and the hardening exponent of the phases upon the

ffective response under shear loadings. 

.2.2. Three-phase composites 

We consider next a three-phase composite with 

σ (2) 
0 

σ (1) 
0 

= 1 . 875 , 
σ (3) 

0 

σ (1) 
0 

= 5 , η(1) = 5 , η(2) = 3 , η(3) = 2 . 5 . (77)
osite in uniaxial tension (λ = 1 . 20) and simple shear (γ = 0 . 20) . 

shear. The solid lines are the results of the unit cell finite element calculations and 
(1) ) . 
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The problems of uniaxial tension and finite shear deformation are

solved. 

Fig. 14 shows the deformed unit cells for uniaxial tension at

λ = 1 . 20 and finite shear γ = 0 . 20 . 

Fig. 15 shows the stress-strain curves in uniaxial tension and

finite shear, for a three-phase composite with composition c (1) =
0 . 60 , c (2) = 0 . 25 , and c (3) = 0 . 15 . The predictions of the homoge-

nization model agree well with the results of the unit cell finite el-

ement calculations. The model is capable of predicting sufficiently

well both the initial yield strength of the three-phase composite as

well the hardening evolution as a function of the applied strains

both in uniaxial tension and shear loadings. 

6. Concluding remarks 

The present work presents a simple semi-analytical model for

the estimation of the effective as well as the phase average re-

sponse of N−phase incompressible isotropic elasto-plastic metallic

materials. The model is based on the original variational method

of Ponte Castañeda (1991) , which is based on a linear compari-

son composite technique. The resulting expression for the effec-

tive yield strength of the composite requires the solution of a

constrained optimization problem for N − 1 scalar variables and is

much simpler and tractable than the original expressions given in

( Ponte Castañeda, 1992 ). This is achieved by use of the method-

ology of Kaufman et al. (1995) . In the special case of a two-phase

composite, we provide a fully explicit expression which is given via

a piecewise function defined in Eq. (45) . Due to its simplicity and

numerical efficiency, the proposed N−phase model is numerically

implemented in a user-material subroutine which, in turn, allows

for the simulation of three dimensional geometries. 

In addition, the N−phase analytical model is compared with

full field three dimensional finite element simulations of two- and

three-phase multi-particle periodic unit cells. The proposed model

is found to be in good agreement with the finite element results

in most of the cases considered here, even at large particle vol-

ume fractions and different hardening exponents. The agreement is

good both for the effective average stress strain response, as well

as for the phase average strain fields. This last observation allowed

to extend the model in a heuristic manner to account for arbitrary

isotropic hardening of the phases, both in a small and finite strain

formalism. The present combined analytical and numerical study

reveals several nontrivial features which are summarized in the

following. 

One of the main non-intuitive observations in the present work,

which is in accord with former literature, is that in the context of

a two-phase composite when the strength of the particles is al-

most twice that of the matrix the particles behave as being rigid

for all volume fractions considered here. In other words, we ob-

tain a rather sharp transition when the yield stress of the parti-

cle is about two times that of the matrix beyond which the strain

in the particle is negligible, thus leading to an almost rigid re-

sponse of the particle in the sense of straining for a large range

of volume fractions. This result was shown for the effective yield

stress by Suquet (1997) and Idiart (2008) for given particle volume

fraction, whereby it is further shown here that this sharp transi-

tion is weakly sensitive to the particle volume fraction (at least

for volume fractions up to 40%). This, in turn, may have signifi-

cant implications in the strengthening of the composite and pos-

sible debonding/failure of the particle/matrix interface ( Bignonnet

et al., 2015 ), since beyond that contrast ratio the particle stops de-

forming. This of course leads to stress and strain concentrations in

the matrix/article interface. 

A second observation, which has already been made in the con-

text of a plastic matrix with rigid particles by Suquet (1997) and

Idiart (2008) is that the numerical estimates exhibit a dependence
n the third invariant ( J 3 ) of the stress tensor, i.e., on the Lode pa-

ameter or Lode angle. Nonetheless, this dependence is extremely

eak and thus the present model, which does not take into ac-

ount this dependence, is sufficiently accurate for the estimation

f the effective response as well as of the phase average strains

which depend apriori upon the normal to the yield surface). This

bservation of course is valid for phases described by a von Mises

 J 2 ) yield response and does not hold in the case of plastic solids

hat depend directly on the third invariant J 3 via Tresca, Hosh-

ord or Drucker-Prager plasticity (see for instance Barthélémy and

ormieux (2004) and Maghous et al. (2009) ). 

A third, and perhaps more important finding of this work at

east from a more practical point of view, is related to the exten-

ion of the model to arbitrary isotropic hardening of the phases.

n the present work, we carry out first the nonlinear homogeniza-

ion for perfectly plastic phases and then the hardening is added

euristically at the definition of the yield stresses of each of the

hases. This of course is an approximation and does not take into

ccount explicitly the coupling between the different hardening

xponents of the different phases. Nevertheless, the resulting esti-

ates are in very good agreement with the full field finite element

esults (which include this coupling) suggesting that this strategy

s sufficient for the materials and loadings considered in this study.

his good agreement can be directly associated with the fact that

he model predicts accurately enough the phase average strains.

his, however, may not be true if one considers kinematic hard-

ning of the phases or more complex non-proportional loadings

ut again in this case a more advanced homogenization method

eeds to be used such as the one proposed by Lahellec and Suquet

2007) . 

Finally, in this study, we do not consider the extreme case of

 three-phase composite comprising stiff particles and voids. The

eason is that the presence of a soft compressible phase would

ntroduce a dependence on an additional invariant, i.e, pressure

 I 1 ) and the material would be plastically compressible (see for

nstance G ̆ar ̆ajeu and Suquet (1997) and He et al. (2013) ). A vast

mount of studies has been carried out in the context of voided

aterials and is very well known that the present method by de-

ault would lead to overly stiff estimates unless corrected (see for

nstance recent work of Danas and Aravas (2012) and Cao et al.

2015) ). Such work is now underway and will be reported else-

here. 
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ppendix. Finite strain formulation 

The constitutive equations become 

D = D 

e + D 

p , (78)

D 

e = M 

e : σ∇ , (79)

D 

p = 

˙ ε̄ N , N = 

3 

2 σe 
s , (80)

σ (i ) 
0 

= (1 − β) σ (i ) 
0 

∣∣
n 

+ β σ (i ) 
0 

∣∣
n +1 

, (81)

http://www.netlib.org/opt/conmax.f
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P  
�( σ, q ) = σe − ˜ σ0 (q ) = 0 , (82) 

˙ q i = 

˙ ε̄ α(i ) (q ) , i = 1 , 2 , . . . , N, (83) 

here ∇ denotes the Jaumann or co-rotational derivative. 

In a finite element environment, the solution is developed in-

rementally and the constitutive equations are integrated at the el-

ment Gauss integration points. Let F denote the deformation gra-

ient tensor. At a given Gauss point, the solution ( F n , σn , q n ) at

ime t n as well as the deformation gradient F n +1 at time t n +1 are

nown, and the problem is to determine ( σn +1 , q n +1 ). 

The time variation of the deformation gradient F during the

ime increment [ t n , t n +1 ] can be written as 

 (t) = �F (t) · F n = R (t) · U (t) · F n , t n ≤ t ≤ t n +1 , (84)

here R ( t ) and U ( t ) are the rotation and right stretch tensors as-

ociated with �F ( t ). The corresponding deformation rate D ( t ) and

pin W ( t ) tensors are given by 

 (t) ≡
[

˙ F (t) · F −1 (t) 
]

s 
= 

[
� ˙ F (t) · �F −1 (t) 

]
s 
, (85) 

nd 

 (t) ≡
[

˙ F (t) · F −1 (t) 
]

a 
= 

[
� ˙ F (t) · �F −1 (t) 

]
a 
, (86) 

here the subscripts s and a denote the symmetric and anti-

ymmetric parts, respectively. 

If it is assumed that the Lagrangian triad associated with �F ( t )

i.e., the eigenvectors of U ( t )) remains fixed over the time interval

(t n , t n +1 ) , it can be shown readily that 

D (t) = R (t) · ˙ E (t) · R 

T (t ) , W (t ) = 

˙ R (t) · R 

T (t) , 
∇ (t) = R (t) · ˙ ˆ σ(t) · R 

T (t) , (87) 

here a superscript T indicates the transpose of a second-order

ensor, E (t) = ln U (t) is the logarithmic strain relative to the con-

guration at the start of the increment, and 

ˆ σ(t) = R 

T (t) · σ(t) ·
 (t) . 

It is noted that at the start of the increment (t = t n ) 

F n = R n = U n = δ, ˆ σn = σn , and E n = 0 , (88) 

hereas at the end of the increment (t = t n +1 ) 

F n +1 = F n +1 · F −1 
n = R n +1 · U n +1 = known , and 

E n +1 = ln U n +1 = known . (89) 

hen, the constitutive equations of the model can be written as 

˙ E = 

˙ E 

e + 

˙ E 

p or E = E 

e + E 

p , (90) 

˙ E 

e = M 

e : ˙ ˆ σ or E 

e 
n +1 = M 

e : 
(

ˆ σn +1 − σn 

)
, (91) 

˙ E 

p = 

˙ ε̄ ˆ N , ˆ N = 

3 

2 σe 

ˆ s , (92) 

σ (i ) 
0 

= (1 − β) σ (i ) 
0 

∣∣
n 

+ β σ (i ) 
0 

∣∣
n +1 

, (93) 

�( ̂  σ, q ) = σe − ˜ σ0 (q ) = 0 , (94) 

˙ q i = 

˙ ε̄ α(i ) (q ) , i = 1 , 2 , . . . , N, (95) 

here we took into account that E 

e 
n = 0 , ˆ σn = σn , and σe =

 

3 
2 s : s = 

√ 

3 
2 ̂

 s : ̂  s . The constitutive equations listed above are

dentical to those of the infinitesimal strain formulation and can

e integrated as described in Section 5 . The integration determines

ˆ n +1 and the true stresses are calculated as σn +1 = R n +1 · ˆ σn +1 ·
 

T 
n +1 
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The authors regret the following typographical errors which they would like to amend with this corrigendum. 

(i) The line after equation (45) in the original published manuscript ( Papadioti et al., 2016 ) should read: The result stated in (45)

was first presented by Ponte Castañeda and deBotton (1992) ( c.f. equation (16) in that article), who used a “dissipation function”

formulation…

(ii) The paper ( Ponte Castañeda and deBotton, 1992 ) should be added to the list of references of the original published article

( Papadioti et al., 2016 ). 

(iii) In the original article ( Papadioti et al., 2016 ), the values for the phase reference strains ε (i ) 
0 

, defined in equation (73), that have been

used to obtain all results in Section 5 have been mistyped. Equation (73) in the original article ( Papadioti et al., 2016 ) should read

σ (i ) 
y 

(
ε̄ (i ) 

)
= σ (i ) 

0 

(
1 + 

ε̄ (i ) 

ε (i ) 
0 

) 1 

η(i ) 

, ε (i ) 
0 

= 0 . 005 . (1)

As a consequence of the above mistype, the corresponding Fig. 10 in the original article ( Papadioti et al., 2016 ) showing the yield

response of each phase should be replaced by Fig. 1 of the present corrigendum in order to take into account the correct values of

ε (i ) 
0 

shown in Eq. (1) above. 
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Fig. 1. Uniaxial stress-strain curves of phases (Fig. 10 in original article should be replaced with this one). 
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