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Flexoelectricity, the linear coupling of strain
gradient and electric polarization, is inherently a
size-dependent phenomenon. The energy storage
function for a flexoelectric material depends not
only on polarization and strain, but also strain-
gradient. Thus, conventional finite-element methods
formulated solely on displacement are inadequate
to treat flexoelectric solids since gradients raise the
order of the governing differential equations. Here,
we introduce a computational framework based
on a mixed formulation developed previously by
one of the present authors and a colleague. This
formulation uses displacement and displacement-
gradient as separate variables which are constrained
in a ‘weighted integral sense’ to enforce their
known relation. We derive a variational formulation
for boundary-value problems for piezo- and/or
flexoelectric solids. We validate this computational
framework against available exact solutions. Our new
computational method is applied to more complex
problems, including a plate with an elliptical hole,
stationary cracks, as well as tension and shear of solids
with a repeating unit cell. Our results address several
issues of theoretical interest, generate predictions of
experimental merit and reveal interesting flexoelectric
phenomena with potential for application.
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1. Introduction
Continuum theories of electro-mechanical phenomena in solids have a long history and have
been the subject of several texts including those of Landau et al. [1], Maugin & Eringen [2],
Kovetz [3] among many others. The classical theory, including that of piezoelectricity, has been
successful in analysing and predicting the electromechanical response of solids even in the
nonlinear regime. Despite its broad applicability this classical theory does not possess an intrinsic
length scale and does not account for gradient effects which are important in certain applications.
Mindlin [4], Toupin [5] and Koiter [6] pioneered the study of gradient effects in elastic solids.
They incorporated strain gradients into the elastic strain energy function and developed a
consistent continuum theory of strain-gradient elasticity (SGE). Later Fleck et al. [7,8] extended
the theory to strain-gradient plasticity. Various finite-element formulations based on these ideas
are also documented in the literature, e.g. [9–13]. Based upon Toupin’s variational principles [14],
it is possible to generalize the above framework to include size-dependent electromechanical
coupling phenomena [15,16], such as flexoelectricity.

Flexoelectricity refers to the linear coupling of strain-gradient and electric polarization. Like
other gradient effects, it gives rise to non-local and size-dependent phenomena. Flexoelectricity
was first proposed in theory half a century ago [17] and shortly after, discovered in experiments
by [18,19]. However, it did not receive much attention within the field of mechanics of solids
largely due to limited means of generating large strain gradients. Recently, there has been a revival
of research interest in this area, mostly stimulated by advanced fabrication and characterization
techniques in nanostructures. Since the gradient scales inversely with the size of the specimen,
typically, strain gradients within nanostructures are much greater than their macroscopic
counterparts. Experiments have convincingly illustrated the significance of flexoelectricity at the
nanoscale and demonstrated its potential to open up novel and unique functionality that cannot
be achieved through other means [20–25]. Concurrent theoretical studies have greatly advanced
our understanding of the microscopic origins of flexoelectricity. Tagantsev [26,27] developed
a framework based on point-charge models and attributed flexoelectricity to lattice effects.
Maranganti & Sharma [28] built on this model and calculated flexoelectric constants through
lattice dynamics. In addition, recent studies by Hong & Vanderbilt [29,30] revealed that electronic
response is also an important aspect of flexoelectricity. We refer the reader to the reviews [31–33]
for a detailed description of the state of the art in this field.

There also have been recent developments in the continuum modelling of flexoelectric
solids [34–39]. The focus in these studies has been to establish a framework for the solution
of useful boundary-value problems of flexoelectric solids that can lead to experiments and
applications. For example, Mao & Purohit [39] have presented analytical solutions to several
one- and two-dimensional problems and later extended their analysis to determine singular
fields around point defects, dislocations and cracks [40]. Finite-element studies have also
been conducted by Abdollahi et al. [41–44]. They studied several non-trivial geometries, e.g.
beam and truncated pyramid structures, which have been extensively used for experimental
measurements. Their studies have led to important insights. For example, the non-uniform
strain-gradient distribution in a truncated-pyramid around sharp edges significantly influences
the measurements of flexoelectric constants. To use the finite-element method with piecewise
continuous shape functions to solve problems for flexoelectric solids, one must confront
the difficulties arising from higher order differential equations. Abdollahi et al. avoided the
use of these piecewise continuous functions by applying a mesh-free technique. For two-
dimensional problems, they needed to discretize only three degrees of freedom, so their method
is computationally efficient. By contrast, our approach still uses the shape function, so it is
compatible with the framework of a majority of the current finite-element codes. Our method
can be easily incorporated into software packages such as ABAQUS. Therefore, it can be used by
non-expert engineers for the analysis of complex geometries.

This paper introduces a general framework for finite-element solutions of problems for an
elastic dielectric with flexoelectricity and/or piezoelectricity. The generalized gradient theory
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developed by Mindlin [4] is used to model the gradient effect of elasticity. Piezoelectric as well
as flexoelectric coupling are introduced into the formulation by adding polarization as a variable
in the energy storage function. The energy storage function depends on the strain tensor, second
gradient of displacement and polarization. To avoid using C1 finite elements in our numerical
solution, a mixed formulation based on the work of Amanatidou & Aravas [13] is developed.
In this formulation, displacement and displacement gradient are treated as separate degrees of
freedom and their relationship is enforced in the variational form. This framework is entirely
consistent with the continuum theory of flexoelectricity and is capable of capturing fine structures
due to gradient effects. The finite-element code is validated against benchmark problems with
known analytical solutions. Then it is employed to study three important classes of problems:
plate with an elliptical hole, stationary crack and periodic meta-structures. In the stationary crack
problem, for which an asymptotic solution has been developed by Mao & Purohit [40], the validity
and region of dominance of the asymptotics is determined. The elliptical hole and periodic
structure provide an alternative means of generating large strain gradients; the finite-element
results show how these large gradients influence classical observations and generate crucial
insights that can lead to better measurement in experiments as well as improved functionality
in applications.

Standard notation is used throughout. Tensors, including vectors, are denoted by boldface
symbols, whose orders are indicated by the context. Einstein summation convention is used here
for repeated Latin indices of tensor components with respect to a fixed Cartesian coordinate
system. A comma followed by a subscript, say i, denotes partial differentiation with respect to the
corresponding spatial coordinate xi, i.e. f,i = ∂f/∂xi. Let a and b be vectors and A a second-order
tensor; the following products are used in the text: a · b = aibi, (A · a)i = Aikak, and (a · A)i = akAki.

2. Constitutive model and boundary-value problem
Consider a homogeneous elastic dielectric body and introduce a fixed Cartesian coordinate
system with an orthonormal basis (e1, e2, e3) and spatial coordinates given as (x1, x2, x3). The
body occupies a region Ω in a fixed reference configuration with boundary ∂Ω and outward
unit normal vector n.

In response to mechanical and electrical loads, the body deforms and polarizes. The
mechanical response of the material is described by the displacement vector field u(x1, x2, x3), and
the electric response is characterized by a polarization vector field P(x1, x2, x3), which is related to
bounded or polarized charge in the dielectric.

Infinitesimal displacement gradients are assumed, hence the strain tensor is

εij = 1
2 (ui,j + uj,i) = u(i,j), (2.1)

where a pair of subscripts in parentheses denotes the components of the symmetric part of a
second-order tensor.

Our constitutive model is based on an energy function per unit volume Ũ, which depends on
the infinitesimal strain tensor ε and the second gradient of displacement κ̃ = ∇(∇u) (κ̃ijk = uk,ij),
i.e. Ũ = Ũ(ε, κ̃ , P). The corresponding constitutive equations for the Cauchy stress σ (0), the double-
stress μ̃ (conjugate of κ̃) and the electric field E are

σ
(0)
ij = ∂Ũ

∂εij
, μ̃ijk = ∂Ũ

∂κ̃ijk
and Ei = ∂Ũ

∂Pi
. (2.2)

The field equations of the corresponding boundary-value problem are (Toupin [14])

(σ (0)
ji − μ̃kij,k),j + bi = 0, (2.3)

−ε0φ,ii + Pi,i = q (2.4)

and Ei = −φ,i, (2.5)
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where φ is the electric potential, b the body force per volume, q the free charge per volume
and ε0 is the permittivity of free space. Equation (2.4) represents the conservation of charge. The
corresponding boundary conditions are

ui = ũi on ∂Ωu, (2.6)

(σ (0)
ji − μ̃kij,k)nj + [(∇t

pnp)nk − ∇t
k](nmμ̃mki) = Q̃i on ∂ΩQ, (2.7)

∇nui = d̃i on ∂Ωd, (2.8)

njnkμ̃jki = R̃i on ∂ΩR, (2.9)

ui = ṽi on Cβ
u , (2.10)

[[
j nk μ̃kji]] = T̃i on Cβ

T, (2.11)

φ = φ̃ on ∂Ωφ (2.12)

and (−ε0φ,i + Pi)ni = −ω̃ on ∂Ωω, (2.13)

where (ũ, Q̃, d̃, R̃, ṽ, T̃, φ̃, ω̃) are known functions, ∇n = n · ∇ = ni(∂/∂xi) is the normal derivative,
∇t = ∇ − n∇n the ‘surface gradient’ on ∂Ω , ∂Ωu ∪ ∂ΩQ = ∂Ωd ∪ ∂ΩR = ∂Ωφ ∪ ∂Ωω = ∂Ω , and
∂Ωu ∩ ∂ΩQ = ∂Ωd ∩ ∂ΩR = ∂Ωφ ∩ ∂Ωω = ∅. The double brackets [[ ]] indicate the jump in the
value of the enclosed quantity across Cβ , and � = s × n, where s is the unit vector tangent
to Cβ .

3. Variational formulation
Following the works of Amanatidou & Aravas [13] and Yang & Batra [45,46], we can show that
the boundary-value problem defined in §2 can be formulated alternatively by the stationarity
condition δΠ = 0 of the functional

Π (u, α, σ̃ (2), φ, P) =
∫
Ω

[
Ũ(u(i,j), κ̃(α), P) − 1

2
ε0φ,iφ,i + Piφ,i

]
dΩ

+
∫
Ω

(ui,j − αij)σ̃
(2)
ji dΩ +

∫
∂Ω

(∇t
j ui − αt

ij)nkμ̃kji(u, α, P) dS

−
∫
Ω

biui dΩ −
∫
∂ΩQ

Q̃iui dS −
∫
∂ΩR

R̃iαijnj dS −
∑
β

∮
Cβ

T

T̃iui ds

+
∫
Ω

qφ dV +
∫
∂Ωω

ω̃φ dS, (3.1)

where κ̃ijm(α) = αjm,i, αt = α − (α · n)n is the ‘tangential part’ of α on ∂Ω , with δu = 0 on ∂Ωu and

Cβ
u , δα · n = 0 on ∂Ωd, and δφ = 0 on ∂Ωφ . Using the ‘surface divergence theorem’

∫
∂Ω

∇t
j qj dS =

∫
∂Ω

(∇t
knk)njqj dS +

∑
β

∮
Cβ

[
j qj] ds, (3.2)

for qj = m̃jiδui and taking into account that (∇tδui)m̃ik = δui,jm̃t
ik, with m̃ik = njμ̃jik and m̃t

ik = m̃ik −
m̃ijnjnk, we conclude

∫
∂Ω

{[(∇t
pnp)nk − ∇t

k]m̃ki}δui dS =
∫
∂Ω

m̃t
ikδui,k dS −

∑
β

∮
Cβ

[
km̃ki]δui ds. (3.3)
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Using the above identity, we can readily show that the stationarity condition δΠ = 0 implies the
field equations

(σ (0)
ij + σ̃

(2)
ij ),j + bi = 0, (3.4)

σ̃
(2)
ij = −μ̃kij,k, (3.5)

αij = ui,j, (3.6)

Ei = −φ,i (3.7)

and (−ε0φ,i + Pi),i = q, (3.8)

and the boundary conditions

(σ (0)
ji + σ̃

(2)
ij )nj + [(∇t

pnp)nk − ∇t
k](nmμ̃mki) = Q̃i on ∂ΩQ, (3.9)

njnkμ̃jki = R̃i on ∂ΩR, (3.10)

[[
jnkμ̃kji]] = T̃i on Cβ

T, (3.11)

(−ε0φ,i + Pi)ni = −ω̃ on ∂Ωω (3.12)

and αt
ij = ∇t

j ui on ∂Ω , (3.13)

with σ
(0)
ij = ∂Ũ/∂u(i,j), μ̃ijk = ∂Ũ/∂κ̃ijk and Ei = ∂Ũ/∂Pi.

In the above functional, the quantities σ̃
(2)
ij and nkμ̃kij are Lagrange multipliers that enforce the

corresponding constraints in Ω and on ∂Ω .

4. ‘Mixed’ finite-element formulation
Functional (3.1) forms the basis for a ‘mixed’ finite-element formulation, in which u, α, σ̃ (2), φ and
P are the nodal variables. The stationarity condition δΠ leads to

∫
Ω

(σ (0)
ji + σ̃

(2)
ji )δui,j dΩ +

∫
Ω

(−σ̃
(2)
ij δαji + μ̃ijkδκ̃ijk)dΩ

+
∫
Ω

(ui,j − αij)δσ̃
(2)
ji dΩ +

∫
∂Ω

[m̃t
ik(δui,k − δαik) + (ui,k − αik)δm̃t

ik]dS

+
∫
Ω

(Ei + φ,i)δPi dΩ +
∫
Ω

(−ε0φ,i + Pi)δφ,i dΩ

=
∫
Ω

biδui dΩ +
∫
∂ΩQ

Q̃iδui dS +
∫
∂ΩR

R̃inkδαik dS +
∑
β

∮
Cβ

T

T̃iδui ds

−
∫
Ω

qδφ dΩ −
∫
∂Ωω

ω̃δφ dS, (4.1)

where κ̃ijk = αjk,i, σ
(0)
ij = ∂Ũ/∂u(i,j), μ̃ijk = ∂Ũ/∂κ̃ijk, Ei = ∂Ũ/∂Pi, m̃ij = nkμ̃kij and m̃t

ij = m̃ij −
m̃iknknj, with δu = 0 on ∂Ωu and Cβ

u , δα · n = 0 on ∂Ωd, and δφ = 0 on ∂Ωφ .
The finite-element solutions are based on (4.1). We develop the 9-node isoparametric plane-

strain element (I9-87) shown in figure 1. The quantities (u1, u2, α11, α22, α21, α12, φ) are used
as degrees of freedom at all nodes; the quantities (σ̃ (2)

11 , σ̃ (2)
22 , σ̃ (2)

12 , σ̃ (2)
21 , P1, P2) are additional

degrees of freedom at the corner nodes. A bi-quadratic Lagrangian interpolation for (u1, u2, α11,
α22, α21, α12, φ) and a bi-linear interpolation for (σ̃ (2)

11 , σ̃ (2)
22 , σ̃ (2)

12 , σ̃ (2)
21 , P1, P2) are used in the

isoparametric plane. The resulting global interpolation for all nodal quantities is continuous in
a finite-element mesh.
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Figure 1. Schematic of finite element I9-87.

The element described above is implemented into the ABAQUS general purpose finite-element
program [47]. This code provides a general interface so that a particular new element can be
introduced as a ‘user subroutine’ (UEL).

The formulation described by the functional (3.1) is valid for materials with energy function
of a general form, including those with nonlinear constitutive laws. Here we focus attention on
linear materials with a general energy function Ũ of the form

Ũ(ε, κ̃ , P) = 1
2Lijklεijεkl + 1

2 Aijkpqrκ̃ijkκ̃pqr + 1
2 aijPiPj + dijkεijPk + fijkmκ̃ijkPm, (4.2)

where L is the fourth-order elasticity tensor, and (Aijkpqr, aij, dijk, fijkm) are constitutive tensors. In
the problems, we use isotropic materials with an energy function Ũ of the form

Ũ(ε, κ̃ , P) = 1
2 λεiiεjj + μεijεij + 1

2 
2[λκ̃ijjκ̃ikk + μ(κ̃ijk κ̃ijk + κ̃ijk κ̃kji)]

+ 1
2 aPiPi + [f1κ̃iij + f2(κ̃iji + κ̃jii)]Pj, (4.3)

where (λ, μ) are the usual Lamé parameters, 
 is an internal ‘material length’, a is reciprocal
susceptibility constant, which is related to the permittivity of the dielectric ε by ε = ε0 + a−1.
Constants f1, f2 are the two flexoelectric constants and we often refer to f = f1 + 2f2 as the
volumetric flexoelectric constant. Note that the third-order piezoelectric tensor dijk on the right-
hand side of (4.3) vanishes for materials with centrosymmetry, e.g. isotropic or cubic materials.
The corresponding constitutive equations are

σ
(0)
ij = ∂Ũ

∂εij
= 2μεij + λεkkδij, (4.4)

μ̃ijk = ∂Ũ
∂κ̃ijk

= 
2

2
[λ(κ̃innδjk + κ̃jnnδik) + μ(2κ̃ijk + κ̃kji + κ̃kij)]

+ f1δijPk + f2(δik Pj + δjkPi) (4.5)

and Ei = ∂Ũ
∂Pi

= aPi + f1κ̃jji + f2(κ̃ijj + κ̃jij), (4.6)

where δij is the Kronecker delta. Note that, when P = 0 the energy function can be written also in
the well-known form [13]

Ũ(ε, κ̃ , 0) = Û(ε, κ̂) = 1
2 λεiiεjj + μεijεij + 1

2 
2(λκ̂ijjκ̂ikk + 2μκ̂ijkκ̂ijk), (4.7)
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with κ̂ijk = εjk,i, which leads to

σ
(0)
ij − μ̂kij,k = 2μεij + λεkkδij − 
2∇2(2μεij + λεkkδij), (4.8)

where μ̂ijk = ∂Û/∂κ̂ijk = 
2σjk,i. The expression above for σ
(0)
ij − μ̂kij,k is formally similar to the

expression used by Aifantis [48] and Altan & Aifantis [49] in their version of an isotropic gradient
elasticity theory.

5. Applications

(a) Code validation
The element I9-87 passes the patch test of bi-quadratic displacement field under pure gradient
elasticity (all electric nodal degrees of freedom suppressed, i.e. φ = 0, Pi = 0) and bi-linear
potential field for pure electrostatics (all displacement and stress nodal degrees of freedom
suppressed, i.e. ui = 0, αij = 0, σ̃ (2)

ij = 0). Note that a bi-quadratic potential or a bi-quadratic
displacement field generates a quadratic polarization, which cannot be captured by the bi-
linear interpolation used in the element. Therefore, in the case of the coupled electro-mechanical
problem, this element passes the patch test for bi-linear displacement and potential fields. In
addition to the patch-test, the element was validated by comparing the finite-element solution to
the analytical solution of a flexoelectric tube under pressure with a potential difference between
the inner and outer surfaces (figure 2a).

The tube is loaded by internal and external pressures pi and po, respectively, and a voltage
difference V is applied across the inner and outer surfaces. The corresponding boundary
conditions are

Q̃r = −pi, R̃r = 0, φ = V, at r = ri (5.1)

and
Q̃r = −po, R̃r = 0, φ = 0, at r = ro. (5.2)

This problem is of interest for studies of flexoelectric cylindrical capacitors, stress concentration
and defects in flexoelectric materials. The analytical solution of this problem has been given by
Mao & Purohit [39] and can be written in the form

ur(r) = Ar + B
r

+ CK1

(
r

0

)
+ DI1

(
r

0

)
(5.3)

and

φ(r) = G + H ln r − f
aε

(
∂ur

∂r
+ u

r

)
, (5.4)

where (A, B, C, D, G, H) are constants determined from the boundary conditions, f = f1 + 2f2,
aε = 1 + aε0, I1(x) and K1(x) the first-order modified Bessel functions of the first and second kind,
respectively, and


2
0 = 
2 − ε0f 2

aε(λ + 2μ)
, (5.5)

which is the characteristic length scale of this flexoelectric problem.
Calculations are carried out for the following non-dimensional parameters:{

ν,



ri
,

ro

ri
, aε0,

f

ri
√

aE

}
=

{
0.3,

1
3

, 10, 0.18, 0.53
}

, (5.6)

where E is Young’s modulus and ν Poisson’s ratio with which we can recover the Lamé
parameters. In the view of the axial symmetry, the problem is mathematically one-dimensional,
since the solution depends only on the radial coordinate r. In the finite-element calculations, one-
quarter of the cross section was analysed and appropriate symmetry conditions were enforced.
Figure 2b shows the 40 × 20 finite-element mesh used in the calculations.
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u1 = 0,

u2 = 0, a12 = 0

V

ri

pi

po

ro

a21 = 0

(b)(a)

Figure 2. (a) A cylindrical flexoelectric tube with inner and outer radius ri and ro respectively, is loaded under pressure pi and
po, and a voltage difference V across the two surfaces. (b) Finite-element mesh used in the calculations (40 elements radially,
20 elements circumferentially).
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Figure 3. Comparison of finite-element and analytical solutions: (a) displacement ur , and (b) σ̃ (2)
rr and σ̃

(2)
θθ , for the tube

problem in figure 2. (Online version in colour.)

Figure 3a shows a comparison of the numerical and analytical solutions for the SGE (f1 = f2 = 0)
and the flexoelectric (coupled) problems. In both cases, the numerical solutions agree very well
with the corresponding analytical solutions. For a mixed formulation, the ‘Lagrange multiplier’
fields are of interest due to potential instability. Therefore, a comparison of components of σ̃ (2)

with the analytical solution is also made in figure 3b. The finite-element solution exhibits good
agreement and stability.

Figure 4 shows the variation of the electric potential φ and the polarization Pr as determined
from the finite-element solution together with the analytical solution; again there is excellent
agreement between the numerical and analytical solutions.

(b) Elliptical hole in a plate
We consider the problem of a cylindrical elliptical hole in a plane strain tension field and a uniform
electric field (figure 5). The major axis of the ellipse is in the horizontal x1-direction and the
tension field σ∞ and the electrical field are applied in the vertical x2-direction. The electric field is
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Figure 5. (a) A plate with an elliptical hole. (b) Finite-element mesh used in the calculations.

created by the opposite surface charges ±ω∞ at infinity, as shown in figure 5. The ratio of major
to minor semi-axes of the ellipse is ra/rb = 2. The surface of the hole is assumed to be traction- and
charge-free.

The boundary conditions of the problem are

Q̃1 = 0, Q̃2 = ±σ∞, R̃1 = 0, R̃2 = ± f
aε

ω∞, D2 = ω∞ as x2 → ±∞, (5.7)

Q̃ = 0, R̃1 = 0, R̃2 = ± f1
aε

ω∞, D1 = 0 as x1 → ±∞ (5.8)

and Q̃ = 0, R̃ = 0, D · n = 0 on
(

x1

ra

)2
+

(
x2

rb

)2
= 1, (5.9)

 on October 30, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

(Di=-ε0φ,i+Pi  electric displacement)

http://rspa.royalsocietypublishing.org/


10

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150879

...................................................

0.8

1.0

1.2

1.4

1.6

1.8

2.0
pure SGE
flexoelectric flexoelectric

electrostatics

22
/(

s
•

/E
)

P 2/
w

•

x1/ra
1.0 1.5 2.0 2.5 3.0

x1/ra
1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

2.5

3.0

3.5
(b)(a)

Figure 6. Variation of normal strain ε22 (a) and polarization P2 (b) along x1-axis, for a plate with an elliptical hole as depicted
in figure 5. (Online version in colour.)

where f = f1 + 2f2 and aε = 1 + aε0. The boundary conditions listed above are consistent with
uniform stress and electric fields at infinity.

A square plate with dimensions 2w × 2w, with w = 10ra, is used in the finite-element
calculations; because of symmetry, one half of the plate is analysed and the appropriate symmetry
conditions are imposed (figure 5b). The side w is substantially larger than ra and the solution
of this finite-size plate problem is expected to be close to the infinite domain problem. The
calculations are carried out for

{
ν,




ra
,

rb

ra
,

w
ra

, aε0,
f1

ra
√

a E
,

f

ra
√

a E
=

{
0.30,

1
3

,
1
2

, 10, 0.0018, 0.13, 0.24 . (5.10)

Figure 6 shows the variation of the normal strain ε22 and the polarization P2 along the x1-axis
ahead of the elliptical hole. A concentration of strain and polarization appears at the ‘tip’ of the
hole over a distance approximately equal to the size ra of the major semi-axis.

Figure 6a shows also the corresponding results of strain-gradient elasticity without any
flexoelectric coupling, i.e. for f1 = f2 = 0. Figure 6b shows the polarization P2 ahead of the hole
as determined by pure electrostatics as well. For the values of the parameters used in the
calculations, it appears that the flexoelectric effects have minimal influence on deformation field
along x1-axis but greater influence on the polarization field.

Figure 7 shows contour plots of the normal strain ε22 and polarization P2 in the plate. Owing
to the flexoelectric coupling, the profiles are not symmetric with respect to x1-axis, in spite
of the centrosymmetric geometry. It is also interesting to note that this effect which breaks
the symmetry of polarization field depends only on how the material is ‘poled’, not ‘material
anisotropy’, because our constitutive equations are isotropic. If we flip the electric field, then the
net polarization is rotated by 180◦. This is similar to poling of certain piezoelectrics [44]. In our
simplified material model this effect is reversible; in real materials, however, the stress and electric
fields might cause elliptical (or other) defects to move or migrate (evolution of microstructure) in
an irreversible manner and even create residual polarization.

(c) Stationary crack
We consider the plane strain problem of an edge-cracked panel (ECP) loaded with a uniformly
distributed load as shown in figure 8a or by a uniform far field electric load resulting in surface
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Figure 7. Contour plots of (a) ε22 and (b) P2 for a plate with an elliptical hole as depicted in figure 5. Loads are prescribed as:
σ∞/E = 1

200 andω∞/(
√
a−1E)= 3.2 × 10−3. (Online version in colour.)

h

h

h

h

+

– – – – – – – – – – – – – – – – – –

+ + + + + + + + + + + + + + + + +

r

T

T

w w

x2
x2

x1
x1

q

r

q

w0

–w0
(b)(a)

Figure 8. (a) Mode I insulating crack loaded by uniform distributed load at infinity. (b) Pure Mode D crack loaded by a far field
electrical load (surface charge induced by external electric field).

charge (figure 8b). The crack faces are assumed to be traction- and charge-free. This is an ideal
model of insulating crack, also called the impermeable condition [50].

In the following, we use the finite-element solution to determine the coefficients (stress
intensity factors) that enter the asymptotic solution developed by Mao & Purohit [40]. The panel
that we studied here is a block with total width w and total height of 2h. The edge crack is
placed at the left half of the specimen (starting from origin), with a length of w/2, as shown
in figure 8.

Relevant non-dimensional parameters are

q̃ =
{
ν, aε0,




w
,

h
w

, α = f1


√

aμ
, β = f



√

aμ
=

{
0.0, 0.0018,

1
20

,
1
2

, 0.56, 0.56 . (5.11)
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First, consider a Mode I insulating crack loaded by a mechanical load T. The boundary
conditions for this problem are (figure 8a)

Q̃1 = 0, Q̃2 = ±T, R̃ = 0, D2 = 0 at x2 = ±h, (5.12)

Q̃ = 0, R̃ = 0, D1 = 0 at x1 = ±w
2

(5.13)

and Q̃ = 0, R̃ = 0, D2 = 0 on x2 = ±0, x1 < 0. (5.14)

The asymptotic crack-tip fields in a flexoelectric solid were developed recently by Mao &
Purohit [40]; these crack-tip fields are different from the corresponding fields in ‘linear elastic
fracture mechanics’ (LEFM) and in ‘linear piezoelectric fracture mechanics’ (LPFM). In particular,
it was shown that the leading term in the asymptotic expansion of the crack-tip displacement field
is r3/2, r being the radial distance from the crack-tip.

Using the notation of Mao & Purohit [40], we consider the crack-tip intensities

C11 = lim
r→0

u2(r, π )

r3/

and C12 = − lim

r→0

Ω3(r, π )√
r/


. (5.15)

where Ω3(r, θ ) = (u2,1 − u1,2)/2 is the out of plane component of the infinitesimal rotation vector
Ω . We write the solution in the form (see also [51])

u = wT
E

û(q̃), Ω3 = T
E

Ω̂3(q̃), P = T√
aE

P̂(q̃) (5.16)

and

C11 = T
E

Ĉ11(q̃), C12 = T
E

Ĉ12(q̃), (5.17)

where the quantities with a caret ·̂ are dimensionless. Then

Ĉ11 = lim
r→0

u2(r, π )/(T 
/E)
(r/
)3/2 and Ĉ12 = − lim

r→0

Ω3(r, π )/(T/E)√
r/


. (5.18)

Considering the limits (5.18) of the numerical solution, we conclude that for the particular
geometry and material analysed we have

Ĉ11 = 11.20 and Ĉ12 = 14.12. (5.19)

Figure 9 shows the radial variation of the finite-element solution for (u2, Ω3) on the crack face
(θ = π ) together with the predictions of the asymptotic solution. The leading term provides an
accurate description of the displacement and rotation fields on θ = π in the range 0 < r < 
/10.

The asymptotic solution for the polarization field is [40]

Pr(r, θ )√
μ ε

= α(3C11 − 2C12)
8(1 − α2)

(
cos

θ

2
+ 3 cos

3θ

2

)√



r
. (5.20)

Figure 10a shows the variation of the polarization Pr ahead of the crack (θ = 0) together with
predictions of the asymptotic solution. The region of ‘C-dominance’ (in analogy to K-dominance
in LEFM), which is the region where the asymptotic field dominates other terms, is about 
/10.
Figure 10b shows the angular variation of Pr at radial distances from the tip r = 
/10, 
/15, 
/20 as
determined numerically and as predicted by the asymptotic solution. It appears that the leading
term of the asymptotic solution is very accurate ahead of the crack tip for values of θ in the range
of 0 and about 120◦; closer to the crack face, i.e. for 120◦ � θ ≤ 180◦ higher order terms become
important (see also [51]).

Another type of crack that uses the impermeable condition is the ‘Mode D’ crack shown in
figure 8b. In a Mode D crack, there is no mechanical loading and an electric field is applied
perpendicular to the direction of the crack faces so that charges of equal magnitude and opposite
sign are induced on the top and bottom surfaces of the specimen. The corresponding boundary
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conditions are

Q̃ = 0, R̃1 = 0, R̃2 = ± f
aε

ω0, D2 = ω0 at x2 = ±h, (5.21)

Q̃ = 0, R̃1 = 0, R̃2 = ± f1
aε

ω0, D1 = 0 at x1 = ±w
2

(5.22)

and Q̃ = 0, R̃ = 0, D2 = 0 on x2 = 0, x1 < 0. (5.23)

Again, the conditions on R̃ are consistent with a uniform far field electric field.
The electric intensity factor for this type of crack which is given by

KD = lim
r→0

√
2πrD2(r, 0), (5.24)

and the two leading terms in the asymptotic solution for the infinitesimal rotation Ω3 are [40]

Ω3(r, θ ) = D + C22
r



cos
θ

2
, C22 = KD√

2πμε

[2α(1 − ν) − β(1 − 2ν)], (5.25)
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where D is a constant. The value of the constant D is determined from the numerical solution
to be

D = 1.85
ω0√
εE

. (5.26)

Figure 11 shows the results of the finite-element solution for Ω3 ahead of the crack together with
the prediction of the two-term asymptotic solution (5.25).

We conclude this section by mentioning that the crack tip strains are non-singular, whereas the
polarization field has an r−1/2 singularity at the crack tip. The region of dominance is quite small
(
 
/10) since the gradient characteristic length scale 
 is usually in the range 10–100 nm [16].
However, the intensities of the asymptotic solution determine the energy release rate, which in
turn determines the conditions for crack growth initiation.

(d) Periodic structures
Recently, new material processing techniques have been used to produce solids with periodic
structures to create meta-materials for improved or desired functionality. For instance,
nanomeshes, a periodic array of squares with a circular hole inside can be fabricated to achieve
higher thermoelectric responses of crystal silicon [52]. An example of such a structure is sketched
in figure 12.

In order to determine the macroscopic electromechanical response of this periodic structure,
we study the behaviour of a square unit cell ABCD using appropriate periodic boundary
conditions as described in the following.

Let F̄ be the macroscopic deformation field in the periodic structure. The presence of the hole
in the unit cell perturbs the displacement field locally in the unit cell. In fact, the displacement
field u(x) in the unit cell can be written in the form

ui(x) = (F̄ij − δij)xj + u∗
i (x), (5.27)

where u∗(x) is a periodic function with zero mean deformation gradient on the unit cell.
We denote the quantities on sides AB, BC, CD and DA with superscript l, b, r and u,

respectively. Periodicity requires that

u∗u = u∗b and u∗l = u∗r. (5.28)
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x2
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A D

B C

Figure 12. Periodic structure with a repeating unit cell ABCD.

Hence, the total displacement field satisfies the conditions

uu
i − ub

i = (F̄ij − δij)(x
u
j − xb

j ) and ur
i − ul

i = (F̄ij − δij)(x
r
j − xl

j). (5.29)

Let L be the length of the sides of the square unit cell. Then

xu
j − xb

j = δj2L, xr
j − xl

j = δj1L, (5.30)

so that
uu

i − ub
i = (F̄i2 − δi2)L and ur

i − ul
i = (F̄i1 − δi1)L. (5.31)

Similarly, for the electric field, we have

φu,r − φb,l = Ēj(x
u,r
j − xb,l

j ), (5.32)

where Ē is the macroscopic electric field. The macroscopic fields F̄ and Ē are the fields that develop
in the structure when there are no microscopic holes.

We use the finite-element method to study the response of the square unit cell when subject
to mechanical and electrical loads. Since the displacement gradients αij = ui,j are treated as
independent degrees of freedom in the finite-element formulation, similar periodicity conditions
are imposed on α in the numerical solution:

αu − αb = αr − αl = F̄ − δ. (5.33)

The periodicity conditions are imposed in ABAQUS through a ‘user MPC’ subroutine.
We consider first the case in which the macroscopic loads on the unit cell are a normal strain

ε̄22 and an electric field Ē2, both in the x2-direction; the electric field is created by opposite charges
±ω̄ at on the top and bottom surfaces of the unit cell. Calculations are carried out for{

ν, aε0,



L
,



R
=

{
0.30, 0.0018,

1
12

,
1
3

(5.34)

and various values of f̃1 = f1/(R
√

aμ) and f̃2 = f2/(R
√

aμ), where R is the radius of the hole and L
the length of the sides of the unit cell. This creates a meta-material with defect volume fraction of
π/16 
 19.6%.

Figure 13 shows the variation of the normal strain ε22 and the polarization P2 along the x1-axis
ahead of the hole. The corresponding solutions of SGE and electrostatics are also included in the
same figure. The strain distribution ε22 appears to be insensitive to the values of the flexoelectric
constants, whereas the polarization changes significantly when these constants are varied.

We consider next the problem in which the macroscopic loads on the square unit cell are a
shear strain ε̄12 and an electric field Ē2 created as before.

Figure 14 shows the variation of the shear strain ε12 and the polarization P1 along the x2-axis 
above the hole. The corresponding solution of electrostatics are also included in the
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strain ε̄12 and a macroscopic electric field Ē2. (Online version in colour.)

same figure. The variation of ε12 is affected by flexoelectricity and the relative effect is related
to the magnitude of the flexoelectric constant. This effect is highly localized near the hole or
meta-defect, whereas the overall profile of ε12 is relatively flat and a small gradient develops
along the x2-axis. It is very interesting to note that a polarization is produced in the x1-direction
due to the coupling of strain gradient and polarization, i.e. flexoelectricty rotates the polarization
field towards the x1-axis. Similar polarization rotation phenomena have also been reported in the
literature [23,24]; they are realized in ferroelectric thin films and are believed to have applicability
in memory devices.

The analyses of the periodic meta-structure and the elliptical hole problems suggest an
alternative way of studying flexoelectricity. The classical solution of a circular hole in an
infinite elastic body (under uniaxial tension) predicts a stress concentration factor of 3 and that
strain/stress decays to the far field level ε̄ as (r/R)−2 [53]. A good estimate for the strain gradient
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around the hole, where r ∼ R, can be

|κ̃| 
 η
ε̄

R
, (5.35)

where η is the concentration factor. Therefore, when the radii R of the holes are small, these
periodic structures can generate considerably large strain gradients. For the same macroscopic
deformation level, a reduction of the size of the hole produces larger strain gradients.
In fact, periodic nano-scale or even atomistic scale holes have been observed to alter the
electromechanical behaviours of certain two-dimensional materials [54]. However, holes of these
scales are difficult to make. On the other hand, for meta-materials, the size of the hole can be in
the range of hundreds of nanometres [52], which, by the above analysis, can also produce large
gradients. For these structures, we can design the arrangement, size and spacing so as to meet
different needs.

Moreover, this periodic structure could provide an alternative method to measure flexoelectric
constants. So far, the most reliable means to measure them is through beam bending experiments.
These, however, cannot determine all components of the flexoelectric tensor (even for the simplest
isotropic case) [22]. For example, a recent study [30] predicted that some materials (such as,
silicon) have finite volumetric flexoelectric constant f , but vanishing or very small bending
flexoelectric constants. Beam bending experiments are not expected to be useful in determining
the flexoelectric constants for these materials. Therefore, alternative measurement techniques are
required. The truncated pyramid structure provides an alternative, but non-trivial deformation
concentration around the pyramid edges makes it difficult to use [43]. The periodic structure
studied here could be an ideal set up to overcome these difficulties. It gives a large gradient
without singular fields due to sharp edges. The magnitude of the gradients can be easily
controlled by altering loading or geometry (without exceeding the elastic limit). Both f and f1
(isotropic case) appear in the solutions, so we can determine them by appropriate measurements.

6. Conclusion
In this paper, we have formulated a variational form that is completely consistent with the
continuum theory of flexoelectricity. The form uses a mixed formulation and circumvents the
difficulties of modelling gradient effects in flexoelectric solids by introducing extra degrees of
freedom. This variational form is general and can incorporate the piezoelectric effect as well.
A new element is developed for adapting the variational form to finite-element calculation.
The known analytic solution of a pressurized tube is employed as a benchmark problem for
validation. Then the method is used to study three types of problems which are beyond current
analytic capabilities. Asymptotic theories of cracks are confirmed and a more precise description
of the fracture landscape is accomplished. Single hole in an infinite medium as well as periodic
meta-structures illustrate the non-trivial coupling of electric loading and deformation. They also
provide insights for alternative means of measuring and using flexoelectricity.
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