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Nonequilibrium Gas Flow and Heat
Transfer in a Heated Square
Microcavity

GIORGOS TATSIOS,1 MANUEL H. VARGAS,1 STEFAN K. STEFANOV,2

and DIMITRIS VALOUGEORGIS1

1Department of Mechanical Engineering, University of Thessaly, Volos, Greece
2Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria

The flow of a rarefied gas in a square enclosure with one wall at high temperature and the other three walls at the same
low temperature is investigated. The flow, characterized by the reference Knudsen number and ratio of the cold over the
hot temperatures, is simulated both deterministically, using the nonlinear Shakhov kinetic model, and stochastically, using
the DSMC method. Excellent agreement between the two approaches is obtained. It is found that along the side walls the
gas velocity, depending on the flow parameters, may be either from cold to hot or from hot to cold regions. Furthermore,
it is confirmed that the average heat flux departing from the hot plate exhibits a nonmonotonic behavior with regard to
the temperature ratio, deducing a maximum heat flux at a temperature ratio of about 0.3. The flow and heat transfer
characteristics are explained by computing the ballistic and collision parts of the total bulk quantities and by investigating
the contribution of each part to the overall solution.

INTRODUCTION

Thermally driven rarefied gas flows in microcavities have
received a lot of attention lately due to their potential im-
plementation in the emerging field of gaseous microfluidics.
Typical examples include vacuum-packed microelectromechan-
ical systems (MEMS) where investigation of the gas flow and
heat transfer is needed to improve cooling efficiency [1, 2] as
well as actuation and sensing in microsystems based on the
enhanced Knudsen thermal forces due to the decreasing size
[3, 4]. In addition, various grooved channel configurations have
been examined in designing micropumps by optimizing ther-
mal transpiration effects and are applied in the typical Knudsen
pump [5–7]. Thermally driven rarefied gas flows in cavities are
also commonly applied in benchmarking of novel numerical
schemes [8–10] and in the investigation of nonequilibrium phe-
nomena that arise in such flows. It has been found that the flow

Address correspondence to Professor Dimitris Valougeorgis, Department of
Mechanical Engineering, University of Thessaly, Volos 38334, Greece. E-mail:
diva@uth.gr

Color versions of one or more of the figures in the article can be found online
at www.tandfonline.com/uhte.

in a square enclosure caused by a discontinuous wall temper-
ature vanishes in the continuum limit in a nonuniform man-
ner [11]. At the other end, interesting features of the macro-
scopic variables in a free molecular gas in bounded domains
are given in references 12 and 13. More recently, in cavities
with different wall temperatures an unexpected type of flow
along the cavity walls driving from the hot towards the cold
regions has been reported in a wide range of gas rarefaction
[14, 15].

The main dimensionless parameter characterizing rarefied
flows is the Knudsen number, denoted by K n, which is the
ratio of the mean free path over a characteristic length of the
flow. Flows characterized by small Knudsen numbers, which
are in the slip or early transition regimes can be modeled by
the conventional Navier–Stokes–Fourier (NSF) analysis with
the appropriate slip and jump boundary conditions [16], or with
higher order continuum models [17]. At higher values of the
Knudsen number, when the flow is in the transition and free
molecular regimes, the NSF approach fails and a kinetic ap-
proach must be applied [18, 19].

Recently the thermally driven gas flow in a microcavity with
one wall maintained at high temperature and the other three
walls at the same low temperature has been investigated in
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1086 G. TATSIOS ET AL.

reference 20 based on the NSF equations with slip and jump
boundary conditions and the regularized 13 moment (R13) equa-
tions [17]. The results have been compared with corresponding
direct simulation Monte Carlo (DSMC) results clearly indicat-
ing the limitations of the NSF and the R13 approaches. For
this specific configuration, the former one cannot capture typ-
ical flow patterns even in the slip regime, while the latter one
gives satisfying results in the transition regime but only up to
K n ≤ 0.3.

In the present work this microcavity flow configuration is
simulated in a much wider range of the Knudsen number based
on both the nonlinear Shakhov kinetic model and the DSMC
method for various temperature ratios of the high wall tem-
perature over the low temperature of the other three walls. The
implemented methodologies are the same as the ones introduced
in reference 15 for solving a slightly different thermally driven
cavity flow where low and high temperatures are imposed at two
opposite walls, while at the other two the temperature varies lin-
early between these high and low temperatures. Note, however,
that new interesting findings related to the average heat flux
removed from the hot wall in terms of the temperature ratio of
the cold over the hot wall, not observed before, are reported in
the present work for first time. Furthermore, the recently intro-
duced decomposition approach in reference 15 is implemented
to interpret this behavior.

The paper is structured as follows: The flow configuration is
defined in the second section, while the deterministic (Shakhov
model) and the stochastic (DSMC) approaches are formulated
in the third and fourth sections, respectively. The results are pre-
sented in the fifth section, and finally, some concluding remarks
are provided in the sixth section.

FLOW CONFIGURATION

A monatomic rarefied gas is contained in a two-dimensional
enclosure with square cross section of side length W . The cross
section of the enclosure and the origin of the coordinate system
(x ′, y′) are shown in Figure 1. In the z′ direction the enclosure
is considered as unbounded and end effects in that direction are
neglected. One wall, namely, the bottom one, without loss of
generality, is at temperature TH , while the other three walls are
kept at temperature TC , with TC < TH . To avoid discontinuities
at the two bottom corners, the temperature of the hot wall close to
the two corners (5 % of the total length W ) is linearly decreased
from TH to match the side-walls temperature TC .

Due to thermal creep, a flow is expected near the side walls
directed from cold to hot regions, and to ensure mass conser-
vation a flow near the symmetry axis (x ′ = 0) is expected in
the opposite direction. This would create two counterrotating
vortices in the enclosure. It turns out that in addition to these
vortices, even at small Knudsen numbers, two more vortices
appear in the upper part of the enclosure, with a flow along
the lateral walls from hot to cold regions [14, 15, 20]. All four
vortices are shown in Figure 1, with the former ones denoted by

Figure 1 View of the bottom wall heated square cavity with the flow pattern
of vortices I and II.

the symbol I and the latter unexpected ones by II. The detailed
flow pattern depends on the gas rarefaction and the temperature
ratio of the cold over the hot walls.

The two-dimensional macroscopic quantities of interest
are the number density N (x ′, y′), the two-component veloc-
ity vector U = [Ux (x ′, y′), Uy(x ′, y′)], the temperature dis-
tribution T (x ′, y′), and the two-component heat flux vector
Q = [Qx (x ′, y′), Qy(x ′, y′)], while the gas pressure is given by
the ideal gas law P = NkB T , with kB denoting the Boltzmann
constant.

The problem is characterized by the reference Knudsen num-
ber, defined as

K n0 =
√

π

2

μ0υ0

P0W
(1)

and the temperature ratio TC/TH . In Eq. (1) P0 is the refer-
ence pressure, W is the side length of the square cavity, μ0

is the gas viscosity at reference temperature T0 = TH , and
υ0 = √

2kB T0/m is the most probable molecular speed (m
denotes the molecular mass). The reference number density
N0 = ∫ W

0

∫ W/2
−W/2 Ndx ′dy′ is related to the reference pressure

and temperature according to P0 = N0kB T0.
The following dimensionless quantities are introduced:

x = x ′/W, y = y′/W, n = N/N0, ux = Ux/υ0, uy = Uy/υ0,

p = P/P0, τ = T/T0, qx = Qx/ (P0υ0) , qy = Qy/ (P0υ0) (2)

The space variables are x ∈ [−0.5, 0.5] and y ∈ [0, 1], while
n,(ux , uy),p,τ, with p = n ×τ and (qx , qy), are the distributions
of the number density, the two components of the velocity vector,
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G. TATSIOS ET AL. 1087

the gas pressure and temperature, and the two components of
the heat flux vector, respectively. The hard sphere interaction is
applied, yielding a viscosity of the form μ = μ0τ

1/2, and purely
diffuse gas–surface interaction is considered.

Another parameter of the flow field of practical interest
is the local Mach number, defined as Ma = |U/c0|, where

U =
√

U 2
x + U 2

y is the magnitude of the bulk velocity and

c0 = √
γkB T0/m, with γ = 5/3 being the ratio of the specific

heats of monatomic gases, is the speed of sound. It is readily
shown that the local Mach number in terms of the dimension-
less bulk velocity is given by Ma = |u| √6/5. The problem is
solved both in a deterministic and stochastic manner. The deter-
ministic modeling is based on the direct solution of the nonlinear
Shakhov kinetic model [21, 22] and the stochastic modeling on
the DSMC method [19].

DETERMINISTIC MODELING: THE SHAKHOV
KINETIC MODEL

In kinetic modeling the main unknown is the distribution
function, which for this flow configuration is a function of the
two space variables and the three components of the molecular
velocity vector, that is, f = f (x, y, ξx , ξy, ξz). The flow is simu-
lated by the nonlinear Shakhov kinetic model [21, 22]. It is noted
that for this kinetic model the H-theorem has not been proved,
and in addition to that, the positivity of the distribution function
is not ensured. In spite of these pitfalls, the Shakhov model, also
known as the S model, has been proved to be a reliable model
for nonlinear heat transfer and non-isothermal flows [23–25],
providing very good agreement with corresponding results of
the solution of the Boltzmann equation and the DSMC method
[26, 27].

The dimensionless distribution g = f υ3
0/N0 and molecular

velocities ζ = ξ/υ0 along with the quantities of Eq. (2) are
introduced into the model equation. Then the well-known pro-
jection procedure is applied to eliminate the z component of
the molecular velocity by introducing the reduced distribution
functions ϕ = ∫ ∞

−∞ gdζz and ψ = ∫ ∞
−∞ ζ2

z gdζz and operating ac-
cordingly on the Shakhov equation yields the following system
of integrodifferential equations [14]:

ζx
∂ϕ

∂x
+ ζy

∂ϕ

∂y
= 1

K n0

√
π

2
n
√

τ
(
ϕS − ϕ

)
(3)

ζx
∂ψ

∂x
+ ζy

∂ψ

∂y
= 1

K n0

√
π

2
n
√

τ
(
ψS − ψ

)
(4)

Here, the main unknowns are the reduced distribution func-
tions ϕ = ϕ(x, y, ζx , ζy) and ψ = ψ

(
x, y, ζx , ζy

)
, with ζx and

ζy denoting the dimensionless x and y components of the molec-
ular velocity vector; K n0 is defined by Eq. (1), while

ϕS = ϕM

(
1 + 4

15

1

nτ2

[
qx (ζx − ux ) + qy

(
ζy − uy

)]

×
[

(ζx − ux )2 + (
ζy − uy

)2

τ
− 2

])
(5)

and

ψS = ψM

(
1 + 4

15

1

nτ2

[
qx (ζx − ux ) + qy

(
ζy − uy

)]

×
[

(ζx − ux )2 + (
ζy − uy

)2

τ
− 1

])
(6)

with the reduced local Maxwellians given by

ϕM = n

πτ
exp

[
− (ζx − ux )2 + (

ζy − uy
)2

τ

]

ψM = n

2π
exp

[
− (ζx − ux )2 + (

ζy − uy
)2

τ

]
(7)

By applying the same nondimensionalization and projection
in the moments of the distribution function f , the macroscopic
quantities in Eqs. (5)–(7) are readily deduced, and they are
expressed in terms of ϕ and ψ according to the following double
integrals:

n (x, y) =
∞∫

−∞

∞∫
−∞

ϕdζx dζy (8)

ux (x, y) = 1

n

∞∫
−∞

∞∫
−∞

ζxϕdζx dζy (9)

uy (x, y) = 1

n

∞∫
−∞

∞∫
−∞

ζyϕdζx dζy (10)

τ (x, y) = 2

3n

∞∫
−∞

∞∫
−∞

[(
ζ2

x + ζ2
y

)
ϕ + ψ

]
dζx dζy

−2

3

(
u2

x + u2
y

)
(11)

qx (x, y) =
∞∫

−∞

∞∫
−∞

[[
(ζx − ux )2 + (

ζy − uy
)2

]
ϕ + ψ

]

× (ζx − ux ) dζx dζy (12)

qy (x, y) =
∞∫

−∞

∞∫
−∞

[[
(ζx − ux )2 + (

ζy − uy
)2

]
ϕ + ψ

]

heat transfer engineering vol. 37 no. 13–14 2016
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1088 G. TATSIOS ET AL.

× (
ζy − uy

)
dζx dζy (13)

The outgoing distributions at the boundaries are denoted by
ϕ+ and ψ+ and are expressed by the Maxwell purely diffuse
reflection as [15]

ϕ+ = nw

πτw

exp
[− (

ζ2
x + ζ2

y

)
/τw

]

ψ+ = nw

2π
exp

[− (
ζ2

x + ζ2
y

)
/τw

]
(14)

where τw is the dimensionless wall temperature and nw is a
parameter given in terms of the ingoing distributions satisfying
the impermeability wall conditions.

The preceding set of integrodifferential equations (3) and
(4) coupled with the expressions (5)–(13) subject to boundary
conditions (14) is numerically solved using the discrete velocity
method in the velocity space and a second-order control-volume
scheme in the physical space. The implemented algorithm has
been utilized to solve nonlinear non-isothermal flows and heat
transfer problems with considerable success [15, 25, 28, 29].
Thus, here only some limited information on the computational
approach is provided.

The molecular velocities ζx and ζy are transformed to po-
lar coordinates, according to ζx = ζ cos θ and ζy = ζ sin θ.
Then the continuum velocity spectrum (ζ, θ) is replaced by
a set of discrete velocities (ζm, θk), with m = 1, 2, . . . , M
and k = 1, 2, . . . , K . The magnitudes ζm are taken to be
the roots of the Legendre polynomial of order M accordingly
mapped from (−1, 1) to (0,+∞), while the polar angles are
θk = π (2k − 1) /K . In the physical space the flow domain is
divided into I × J rectangular elements, with i = 1, 2, . . . , I
and j = 1, 2, . . . , J .

Equations (3) and (4) are discretized in the molecular space
and the deduced set of partial differential equations is solved
by a typical second-order finite-volume scheme. The mo-
ments (8)–(13) are numerically integrated applying the trape-
zoidal rule in the polar angle θ and the Gauss–Legendre
quadrature in the velocity magnitude ζ. The system of equa-
tions and their associated moments are solved in an iter-
ative manner, which is terminated when the convergence
criterion

ε(t) = max
i, j

{∣∣∣n(t)
i, j − n(t−1)

i, j

∣∣∣ + ∣∣ux i, j
(t) − ux i, j

(t−1)
∣∣

+ ∣∣uyi, j
(t) − uyi, j

(t−1)
∣∣ +

∣∣∣τ(t)
i, j − τ

(t−1)
i, j

∣∣∣} ≤ 10−13 (15)

is fulfilled. Here, t denotes the iteration index and ε(t) the er-
ror after t iterations. Simulations have been performed with
I = J = 400, M = 80, and K = 400. It may be use-
ful to note that the implemented discrete velocity algorithm
suffers a breakdown of the positivity of the distribution func-
tion, which is inherent in the Shakhov model. However, in
all cases tested, the ratio of the weighted sums of the nega-
tive over the positive distributions is at least less than 10−4,
and therefore its effect on the implementation of the algorithm

and the accuracy of the results is negligible. Upon conver-
gence, all conservation principles are accordingly preserved
and the results are accurate up to at least two significant
figures.

STOCHASTIC MODELING: DSMC FORMULATION

The DSMC method [19] is based on splitting the real process
of particle motion in two consecutive steps: (a) the collision
between the particles, which is modeled in a stochastic manner
within the particles at a given cell, and (b) the ballistic motion
of the particles over a distance proportional to their velocities,
which is purely deterministic. The standard No Time Counter
(NTC) scheme [19], together with the HS molecular interaction
model, is used for computing the collision between the particles.
The interaction of the gas molecules with the solid walls is
assumed to be purely diffuse.

Furthermore, following reference 15, the solution of the ther-
mally induced flow in the enclosure is decomposed into the bal-
listic and collision parts. The ballistic part is due to particles
arriving at this point from the boundaries of the flow domain
with no collisions, while the collision part is due to particles
arriving at this point after an arbitrary number of collisions (at
least one). The decomposition of the particle distribution in a
given cell of the computational grid is implemented by tagging
with the indicator I j all model particles j = 1, . . . , NT , where
NT is the total number of simulator particles. The indicator has
the value of 0 or 1, indicating whether a particle contributes to
the ballistic or the collision part of the distribution, respectively.
A particle passes into the ballistic part when it is reflected from
a wall and goes into the collision part when it interacts with an-
other particle. The indicator is set to 0 each time that a particle
is reflected from the bounding walls of the enclosure, while in
the stage of particle free motion the indicators are not changed.
In the stage of binary collisions the indicators (I j , Ik) of any pair
of particles ( j, k) involved in a collision are set to 1. During
the simulation process the particle indicators may change their
values all the time. In the sampling stage of the macroscopic
properties at given time tk , all particles with indicators I j = 0
are considered to belong to the ballistic part of the particle dis-
tribution and all particles with indicators I j = 1 to the collision
part. As a result, the total number of all particles accumulated
in a cell is divided into two groups NT = N (b) + N (c), and the
macroscopic quantities are sampled into the two corresponding
parts.

Based on the preceding, the sampling of the ballistic and
collision parts of the x components of the velocity and heat flux
vectors is given by (the y components are computed in the same
way by using the corresponding projections):

u(b)
x = 1

NT

S∑
k=1

N (tk )∑
i=1

[1 − Ii (tk)] ζx,i (tk),

heat transfer engineering vol. 37 no. 13–14 2016
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G. TATSIOS ET AL. 1089

u(c)
x = 1

NT

S∑
k=1

N (tk )∑
i=1

Ii (tk) ζx,i (tk). (16)

q (b)
x

2
= 1

NT

S∑
k=1

N (tk )∑
i=1

[1 − Ii (tk)] ζx,i

(
ζ2

x,i + ζ2
y,i + ζ2

z,i

)

−ux

{
1

NT

S∑
k=1

N (tk )∑
i=1

[1 − Ii (tk)]
(
ζ2

x,i + ζ2
y,i + ζ2

z,i

)}

−2ux

{
1

NT

S∑
k=1

N (tk )∑
i=1

[1 − Ii (tk)] ζ2
x,i

}

−2uy

{
1

NT

S∑
k=1

N (tk )∑
i=1

[1 − Ii (tk)] ζx,i ζy,i

}

+ (
u2

x + u2
y + u2

z

) (
u(b)

x − n(b)ux
)

+2ux (ux u(b)
x + uyu(b)

y ). (17)

q (c)
x

2
= 1

NT

S∑
k=1

N (tk )∑
i=1

Ii (tk) ζx,i

(
ζ2

x,i + ζ2
y,i + ζ2

z,i

)

−ux

{
1

NT

S∑
k=1

N (tk )∑
i=1

Ii (tk)
(
ζ2

x,i + ζ2
y,i + ζ2

z,i

)}

−2ux

{
1

NT

S∑
k=1

N (tk )∑
i=1

Ii (tk) ζ2
x,i

}

−2uy

{
1

NT

S∑
k=1

N (tk )∑
i=1

Ii (tk) ζx,i ζy,i

}

+ (
u2

x + u2
y + u2

z

) (
u(c)

x − n(c)ux
)

+2ux (ux u(c)
x + uyu(c)

y ). (18)

Here, S denotes the number of samples, tk indicates the dif-
ferent times over which the sampling is performed, and N (tk)
is the number of particles in the cell at time tk . The macroscopic
properties are obtained by time averaging over S = 5 × 105

time steps after the steady-state regime has been recovered.
Note that number density, bulk velocity, and heat flux are equal
to n = n(b) + n(c), u = u(b) + u(c), and q = q (b) + q (c), re-
spectively. This decomposition, which is described in a more
detailed manner in reference15, is applied in the Results section
of this paper to describe the behavior of the heat flux from the
hot wall in terms of the imposed temperature ratio.

The space domain is discretized into 100 × 100 squared cells

with size smaller than the mean free path, while the gas is repre-
sented by a discrete number of model particles. A total number
of 106 model particles have been used and the time step was cho-
sen to be about one-third of the cell traversal time W

/
(nCυ0),

with nC being the number of cells in the x direction. The sam-
pling of the macroscopic quantities starts once the steady-state
flow has been achieved, and is carried out by volume-based time
averaging of the corresponding microscopic values of the par-
ticles at a given cell. These moments are accumulated over 105

time steps. This gives a sample size of approximately 107 parti-
cles per cell, which is sufficiently large to reduce the statistical
scatter of the macroscopic results.

RESULTS AND DISCUSSION

The flow in the square cavity was simulated in a wide range
of the Knudsen number, namely, for 0.1 ≤ K n0 ≤ 102, and
various temperature ratios 0.05 ≤ TC/TH ≤ 0.9. Simulations
have been conducted both by the deterministic and stochastic
methods, and a very good agreement between corresponding
results has been obtained.

In Figure 2 a view of the flow field in terms of the in-
volved parameters is provided. The streamlines and the tem-
perature contours are plotted for K n0 = [0.1, 1, 10] and
TC/TH = [0.1, 0.9]. At K n0 = 0.1 and for both tempera-
ture ratios the largest part of the cavity is covered by the typical
thermal creep type vortices I, and vortices II are restricted near
the side walls of the cavity. As the gas rarefaction is increased,
vortices II start to expand squeezing the vortices I toward the
bottom part of the cavity. As seen at K n0 = 1, vortices II are al-
ready well developed, covering large areas of the square cavity.
The flow configuration is similar at K n0 = 10, with vortices I
further squeezed toward the bottom of the cavity. These obser-
vations are valid for both temperature ratios TC/TH = 0.1 and
0.9, corresponding to large and small temperature differences,
respectively, while in general at the same K n0 the dependency
of the flow pattern on the temperature ratio TC/TH is qualita-
tively weak. In all the cases tested, the vertical velocity along the
lateral walls is positive for the biggest part of the wall, leading
to a flow directed from hot to cold regions.

The agreement between the Shakhov and corresponding
DSMC results is very good, and this is demonstrated in
Figures 3 and 4. In Figure 3, DSMC streamlines and temper-
ature contours are plotted for K n0 = 1 and TC/TH = 0.1. In
addition, in Figure 4 the computed temperatures based on the
DSMC method and the Shakhov kinetic model along the axis
x = 0 are plotted for various values of K n0 and TC/TH . It is
seen that in all cases very good agreement is achieved.

The y component of the velocity distribution along the lat-
eral walls uy (∓1/2, y) is shown in Figure 5. Due to symmetry,
these results correspond to x = ∓1/2. Results are provided
with TC/TH = [0.1, 0.5, 0.9] corresponding to large, moder-
ate, and small temperature differences and in each case for
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1090 G. TATSIOS ET AL.

Figure 2 Streamlines and temperature contours for TC/TH = 0.1 (left) and TC/TH = 0.9 (right) for and various Knudsen numbers.

K n0 = [0.1, 1, 10]. The negative values of the velocity are re-
lated to the well-known thermal creep flow from cold to hot,
whereas the positive ones relate to a nonequilibrium flow from
hot to cold. We observe that even for small Knudsen numbers,
and for all temperature ratios, in the biggest part of the two
vertical walls the velocity is positive, leading to a mass flow rate
from hot to cold. This type of flow has been explained when
the flow is in the slip regime in [14, 20] and more recently
in the whole range of the Knudsen number in reference 15,
where the physical explanation is provided by splitting the flow

into a ballistic and collision part, as described in the DSMC
section. It has been found in reference 15 that at very small
Knudsen numbers the collision part is dominating and the clas-
sic thermal creep theory works well predicting the cold-to-hot
flow along the vertical walls. As the Knudsen number increases,
the impact of the ballistic part also increases and the convec-
tive vortices start to rotate in the hot-to-cold direction along
the lateral walls. At these moderate Knudsen numbers there
is interplay between the ballistic and collision parts, and the
behavior of the overall solution is very subtle, particularly in
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G. TATSIOS ET AL. 1091

Figure 3 Streamlines and temperature contours for K n0 = 1 and TC/TH =
0.1 obtained by the DSMC method.

the transition regime. At large Knudsen numbers, the ballistic
part and thus the hot-to-cold flow dominates, while of course
as the Knudsen number tends to infinity the gas velocity van-
ishes. Exactly the same physical description explains the direc-
tion of the velocity streamlines in the present configuration.
The decomposition methodology is extended in the present
work to compute the ballistic and collision parts of the heat
flux.

The local Mach number may be calculated based on the
relation Ma = |u| √6/5, defined in the second section. To have
some information for the velocity field, the maximum Mach
number is tabulated in Table 1. It is seen that it is increased as
the reference Knudsen number is decreased and the temperature
difference between the hot and cold plates is increased. Also, in

Figure 4 Temperature distribution along the axis x = 0 for various values
of Kn0 and TC/TH obtained by the DSMC method (open symbols) and the
Shakhov kinetic model (filled symbols).

Figure 5 Distribution of the tangential velocity uy (∓1/2, y) along the lateral
walls of the cavity for various temperature ratios and Knudsen numbers.

Figure 6, typical contours of the Mach number are plotted for
K n0 = 1 and TC/TH = [0.1, 0.9]. In general, as expected for
flows induced by temperature differences, the Mach number is
very small.

heat transfer engineering vol. 37 no. 13–14 2016

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

he
ss

al
y]

 a
t 0

5:
11

 2
0 

A
pr

il 
20

16
 



1092 G. TATSIOS ET AL.

Table 1 Maximum value of the Mach number in the field for various K n0

and TC/TH

K n0

TC
TH

0.1 1 10

0.1 9.19 (–3) 3.99 (–3) 9.21 (–4)
0.5 3.69 (–3) 2.45 (–3) 4.62 (–4)
0.9 7.21 (–4) 4.83 (–4) 9.54 (–5)

An overall quantity of great practical interest for this specific
heat flow configuration is the average dimensionless heat flux
qave departing from the hot plate, which is estimated by integrat-
ing the heat flux qy (x, 0) over x ∈ [−0.5, 0.5]. This quantity
is plotted in Figure 7 in terms of K n0 for various temperature
ratios TC/TH = [0.05, 0.1, 0.3, 0.5, 0.9]. Results obtained both
by the kinetic modeling and the DSMC approaches are provided
for comparison purposes. As seen, the agreement is excellent in
all cases. For all temperature ratios the average dimensionless
heat flux increases as K n0 increases from 0.1 to 1 and then
for TC/TH = [0.3, 0.5, 0.9] keeps slowly increasing, while for
TC/TH = [0.05, 0.1] it is slightly decreasing. In all cases as
K n0 → ∞, qave tends to an asymptotic value. A very interesting
result is the variation of qave in terms of TC/TH at a given K n0. It
is clearly seen that qave is not steadily increased as the tempera-
ture difference between the hot and cold plates becomes greater,
that is, as TC/TH is decreased. For example, at K n0 = 1, as the
temperature ratio TC/TH is decreased from 0.9 to 0.3 the average
heat flux is, as expected, increased, while as TC/TH is further de-
creased from 0.3 to 0.05 the average heat flux is decreased. This
observation is valid in a whole range of the reference Knudsen
number tested, and it is found that the maximum average heat
flux emitted from the hot wall occurs at about TC/TH = 0.3.
This behavior has been captured individually by both modeling
approaches.

To further investigate this finding, in Figure 8, the ballis-

Figure 7 Average heat flux qave departing from the hot plate of the cavity in
terms of the Knudsen number for various temperature ratios.

tic and collision parts of the average heat flux at the hot wall,
denoted as q (b)

ave and q (c)
ave, respectively, are plotted in terms of

the temperature ratio TC/TH for K n0 = 1. They have been
computed according to Eqs. (17) and (18). The total average
heat flux qave = q (b)

ave + q (c)
ave is plotted as well. The ballistic

and collision parts of the heat flux are opposed with q (b)
ave > 0

and q (c)
ave < 0, while their summation, that is, the total average

heat flux, is always, as expected, larger than zero (qave > 0).
It is seen that as TC/TH is increasing, initially q (b)

ave is increas-
ing at a pace that is faster than the one with which q (c)

ave is
decreasing, and therefore the total heat flux qave is initially in-
creasing with TC/TH . Then, as TC/TH is further increasing, q (b)

ave
is increasing at a slower pace, and finally, for large values of
TC/TH it is even decreasing, while in parallel q (c)

ave always keeps
increasing, and therefore after some critical value of TC/TH

the total heat flux qave is decreasing. Consequently, the non-

Figure 6 Typical contours of the Mach number in the flow field.
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G. TATSIOS ET AL. 1093

Figure 8 Average heat flux qave along with its ballistic and collision parts q(b)
ave

and q(c)
ave , respectively, departing from the hot plate of the cavity in terms of the

temperature ratio for Kn0 = 1.

monotonic behavior and the maximum qave at TC/TH = 0.3
may be explained by analyzing the overall solution to its bal-
listic and collision parts. Also, as TC/TH → 1 the ballis-
tic and collision parts have the same magnitude, and due to
their opposite sign the total heat flux qave vanishes. The re-
sults are typical also for other values of the reference Knudsen
number.

Some indicative dimensional results are shown in Figure 9,
where the dimensional average heat flux Qave (W/m2) is plot-
ted in terms of the reference pressure P0 (Pa) for various val-
ues of TC/TH = [0.05, 0.1, 0.3, 0.5, 0.9]. The results are for
a square cavity with a side length of W = 50 μm and the
hot wall temperature equal to TH = 103 K filled with argon

Figure 9 Average heat flux Qave(W/m2) departing from the hot plate of the
cavity in terms of reference pressure for various temperature ratios.

(m = 39.95 kg/kmol). The dimensional Qave is easily deduced
from the corresponding dimensionless one via Eq. (2). The cor-
responding K n0 is also shown in Figure 9. It is seen that Qave is
steadily increased as P0 is increased, that is, as the gas becomes
less rarefied. It is also seen that for the same P0, as TC/TH

is decreased from 0.9 to 0.3, Qave is increased, and then as
TC/TH is further decreased to 0.1, Qave is decreased. Thus, as
in the dimensionless results, there is a maximum value of Qave

at TC/TH = 0.3. It may be stated that in order to maximize
cooling a temperature ratio close to 0.3 is to be used, while
to optimize operation stability (and probably efficiency) a tem-
perature ratio close to 0.1 − 0.4, depending on K n0, can be
used.

CONCLUDING REMARKS

The nonequilibrium gas flow and heat transfer in a two-
dimensional square cavity with one wall maintained at high
temperature TH and the other three at low temperature TC

has been numerically investigated. Simulations have been con-
ducted for the two parameters characterizing the problem,
namely, the temperature ratio TC/TH and the reference Knud-
sen number K n0, based on the Shakhov kinetic model and the
DSMC method, deducing excellent agreement between the two
methodologies.

It has been found that the flow along the lateral walls is
directed form hot to cold even for small temperature differences
and small Knudsen numbers, confirming previous findings in
similar setups [14, 15, 20]. As the temperature difference and the
Knudsen number are increased, this nonequilibrium flow pattern
becomes more dominant. Also, the average heat flux departing
from the hot plate exhibits a nonmonotonic dependency with
regard to the temperature ratio TC/TH over a wide range of K n0.
More specifically, a maximum heat flux occurs at TC/TH =
0.3. This behavior is explained by computing the ballistic and
collision parts of the total heat flux and by investigating the
contribution of each part to the overall solution. Overall, it is
believed that this work has both scientific and technological
interest since such flows are very common in various gaseous
microdevices.
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NOMENCLATURE

c0 speed of sound (m/s)
f distribution function (particles/m6 s−3)
g dimensionless distribution function
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1094 G. TATSIOS ET AL.

kB Boltzmann’s constant (J/K)
Kn Knudsen number
m molecular mass (kg/kmol)
Ma Mach number
N number density (particles/m3)
n dimensionless number density
NT total number of simulator particles for the DSMC

method
nw parameter
P pressure (Pa)
p dimensionless pressure
Q heat flux vector (W/m2)
q dimensionless heat flux vector
Qave average heat flux departing from the bottom plate

(W/m2)
qave average dimensionless heat flux departing from the bot-

tom plate
S number of samples for the DSMC method
T temperature (K)
U velocity vector (m/s)
u dimensionless velocity vector
W side length (m)
x′,y,′z′ coordinates (m)
x,y,z dimensionless coordinates

Greek Symbols

γ specific heat of monatomic gases
ζ dimensionless molecular velocity vector
ζ dimensionless molecular velocity magnitude
θ polar angle of molecular velocity
μ viscosity (Pa-s)
ξ molecular velocity vector (m/s)
τ dimensionless temperature
υ0 most probable molecular speed (m/s)
ϕ reduced distribution function
ϕ M reduced Maxwellian
ϕ S reduced equilibrium distribution function
ϕ + outgoing reduced distribution function
ψ reduced distribution function
ψM reduced Maxwellian
ψS reduced equilibrium distribution function
ψ+ outgoing reduced distribution function

Superscripts

(b) ballistic part of macroscopic property
(c) collision part of macroscopic property
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