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discussed. DOI: 10.1061/(ASCE)EM.1943-7889.0000917. © 2015 American Society of Civil Engineers.

Author keywords: Coupled tension-torsion; Dipolar gradient elasticity; Textile yarns.

Introduction

Advanced textiles are used in numerous technological applications
such as airbags, seat belts, parachutes, and body armor vests. The
mechanical properties of textiles classify them as very efficient
load-carrying components and their low-cost production and easy
handling make them very competitive structural materials.

The structural architecture of textiles is characterized by
anisotropy, inhomogeneity, and nonlinear aspects, which are diffi-
cult to control simultaneously. Several attempts have been made to
develop accurate models that account for the main deformation
mechanisms of textiles; the works of Boisse et al. (2011) and King
et al. (2005) are recent contributions on the subject.

The mechanics of textile materials can be addressed at three
different scales: (1) the macroscopic scale, in which the textile
is treated as an anisotropic, nonlinear continuum; (2) the meso-
scopic scale, in which the overall mechanical behavior of the textile
is characterized by the interactions between the yarns; and (3) the
microscopic scale, in which interactions between fibers inside the
yarns are taken into account. The present study focuses on the mi-
croscopic scale, in the sense that the micromechanical parameters
of the yarns are considered.

Most yarns are formed by assembling a large number of (several
hundred) fibers, which are pretwisted together about the yarn’s lon-
gitudinal axis (Fig. 1).

Textile composites have no ability to resist bending or compres-
sive loads and are usually subjected to tensile forces, which tend to

stretch the fiber in the longitudinal direction. The mechanical
behavior of textile fibers is similar to that of a pretwisted prismatic
bar that is subjected to an axial force.

The present paper reviews a technical theory for pretwisted
beams that accounts for variable twist (nonuniform tension) and
show that it can be viewed as a one-dimensional dipolar-gradient
elasticity theory. In particular, an analogue between the aforemen-
tioned technical theory and a one-dimensional dipolar-gradient
elasticity continuum in tension is presented. The application of
the theory to textile materials is discussed.

Tension and Torsion of Pretwisted Beams

The problem of tension/torsion of pretwisted beams has been the
subject of numerous publications and is now well understood. Chu
(1951) was the first to present an engineering approach to the prob-
lem for thin-walled beams; he used the so-called helical fiber
assumption that stresses are aligned along helical fibers of the beam
and showed that the torsional rigidity of bars with elongated sec-
tions is increased by the pretwist. Rosen (1980), Hodges (1980),
and Krenk (1983b) developed improved technical theories for pre-
twisted beams by using assumed forms for the displacement fields
and the theorem of minimum potential energy (see also Washizu
1964). A review of the available publications up to 1990 on the
structural and dynamic behavior of pretwisted rods and beams
can be found in Rosen (1991). Numerical techniques for the sol-
ution of the problem of pretwisted beams were developed by Krenk
and Gunneskov (1981, 1986), Kosmatka (1992) and Jiang and
Henshall (2001). The same problem has been addressed from a
mathematical elasticity point of view (as opposed to a technical
beam theory) by Okubo (1951, 1953, 1954), Knowles and Reissner
(1960), Reissner and Wan (1968), Shield (1982), and Krenk
(1983a). Chu (1951) and Rosen (1983) presented experimental re-
sults that indicate that the engineering approach is quite adequate
for pretwisted thin cross sections at low pretwisted angles.

The current study revisits this problem and shows that it can be
formulated as a one-dimensional dipolar-gradient elasticity prob-
lem. It considers a cylindrical beam with constant and simply con-
nected cross section. The beam is homogeneous and linear, with
Young’s modulus E and shear modulus G. A Cartesian coordinate
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system Oxyz with the z-direction along the centroids of the cross
sections and parallel to its generators is introduced. The beam is
assumed to be of length L and one of its bases is taken to lie
on the xy-plane, where z ¼ 0. The beam is pretwisted about the
z-axis by a constant amount α0 per unit length, so that the rotation
about the z-axis of the cross section at z is ϕ0ðzÞ ¼ α0z. On each
cross section at z, a local coordinate system η − ζ is introduced by
rotating the global x − y axes about the z-axis by an angle
ϕ0ðzÞ ¼ α0z. Then, the analytical expression that describes the
boundary of each cross section relative to the η − ζ system is
the same for all z. On each cross section at z, the following coor-
dinates have been embedded:

ηðx; y; zÞ ¼ x cosðα0zÞ þ y sinðα0zÞ
ζðx; y; zÞ ¼ −x sinðα0zÞ þ y cosðα0zÞ ð1Þ

so that

∂η
∂z ¼ α0ζ;

∂ζ
∂z ¼ −α0η;

∂fðη; ζÞ
∂z ¼ α0

�
ζ
∂f
∂η − η

∂f
∂ζ

�
ð2Þ

where fðη; ζÞ = arbitrary function.
No restriction is placed on the amount of pretwist. The beam is

assumed to be stress-free in its pretwisted state, and the additional
strains and rotations caused by the applied loads are assumed to be
infinitesimal, so that linear kinematics are applicable.

In the following, the recent results of Giannakopoulos et al.
(2013) for a pretwisted beam in connection to the gradient theories
of elasticity are summarized The analysis is based on the formu-
lations of Rosen (1980), Hodges (1980), and Krenk (1983b) and a
technical beam theory is used in which the cross sections are as-
sumed to rotate in their own plane without deformation and to move
in the axial direction according to the Saint-Venant warping func-
tion Ψðη; ζÞ of a similar beam without pretwist. The displacement
field accounts for nonuniform twist (restrained warping) and is
written in the form [see also Krenk (1983b)]

uðy; zÞ ¼ − ϕðzÞ y vðx; zÞ ¼ ϕðzÞ x;

wðη; ζ; zÞ ¼ w1ðzÞ þ
dϕðzÞ

Ψðη; ζÞ ð3Þ

where ðu; v;wÞ = displacement components in the ðx; y; zÞ
directions; ϕðzÞ = additional infinitesimal rotation of the pre-
twisted cross section at z; and Ψðη; ζÞ is normalized so that
∫ AΨðη; ζÞdηdζ ¼ 0. This displacement field is the same as
that used by (1) Rosen (1980), if the twist is uniform
(i.e., dϕ=dz ¼ const:); (2) Hodges (1980), if ϕðzÞ assumed to be
small; and (3) Krenk (1983b), if the bending terms he introduced
are dropped. The contribution of this work, in comparison with that
of Giannakopoulos et al. (2013), is that the present formulation is in
terms of axial displacements and displacement gradients. This per-
mits the formulation of a one-dimensional continuum analogue that

Giannakopoulos et al. (2013) cannot provide, since their theory re-
lies on the rotation, and rotation gradient degrees of freedom and
provide a structural theory of torsion.

The assumed approximate displacement field in Eq. (3) is de-
fined completely in terms of w1ðzÞ and ϕðzÞ, which are the primary
unknowns determined by minimizing the potential energy of the
beam. In this approach, the traction-free boundary conditions on
the lateral surface of the beam are satisfied only approximately.
The assumption that Ψðη; ζÞ in Eq. (3) is the Saint-Venant warping
function of the beam without pretwist is known to be accurate for
small pretwist: Krenk (1983a) used an asymptotic expansion of the
complete set of three-dimensional equations of linear elasticity and
showed that, when the pretwist α0 is small, Ψðη; ζÞ is, to leading
order, the usual Saint-Venant warping function; the accuracy of this
assumption for finite values of pretwist has been discussed in detail
by Liu et al. (2009).

The beam is loaded by axial forces and torsional moments,
and the condition of minimum potential energy is written in the
form

δðU −WÞ ¼ 0 ð4Þ

where U = elastic strain energy of the beam; variation δW of
external work

δW ¼
Z

L

0

ðpzδw1 þmzδϕÞdzþ ðNδw1ÞL0

þ ðTδϕÞL0 þ
�
−Bdδϕ

dz

�
L

0

ð5Þ

N = axial load; T = torque; B ¼ −∫ AσzzΨdA, i.e., the bimo-
ment; pz ¼ −ðdN=dzÞ = distributed axial load per unit length;
and mz ¼ −ðdT=dzÞ = distributed torsional moment per unit
length. The resulting governing equations and boundary conditions
are (Giannakopoulos et al. 2013)

d2w1ðzÞ
dz2

þ α0S
A

d2ϕðzÞ
dz2

¼ −pzðzÞ
EA

ð6Þ

−l2
d4ϕðzÞ
dz4

þ
�
1þ α2

0K
J

E
G

�
d2ϕðzÞ
dz2

þ α0S
J

E
G
d2w1ðzÞ
dz2

¼ −mzðzÞ
GJ

ð7Þ

and at the ends of the beam
1. Either the axial displacement

w1 ¼ w̄1 ¼ known ð8Þ

or the axial force
dw1

dz
þ α0S

A
dϕ
dz

¼ N̄
EA

¼ known ð9Þ

2. Either the twist

ϕ ¼ ϕ̄ ¼ known ð10Þ

or the torque − l2
d3ϕ
dz3

þ
�
1þ α2

0K
J

E
G

�
dϕ
dz

þ α0S
J

E
G
dw1

dz

¼ T̄
GJ

¼ known ð11Þ

Fig. 1. The angle of pretwist of the fiber is the angle between the fiber
axis and the yarn axis
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3. Either the rate of twist

dϕ
dz

¼ ϕ̄ 0 ¼ known ð12Þ

or the bimomentl2
d2ϕ
dz2

þ l1

dϕ
dz

¼ − B̄
GJ

¼ known ð13Þ

where

J ¼
Z
A

�
ζ2 þ η2 þ η

∂Ψ
∂ζ − ζ

∂Ψ
∂η

�
dζdη

¼
Z
A

��∂Ψ
∂ζ þ η

�
2

þ
�∂Ψ
∂η − ζ

�
2
�
dζdη > 0 ð14Þ

Jω ¼
Z
A
Ψ2ðη; ζÞdηdζ ≥ 0 l ¼

ffiffiffiffiffiffiffiffi
EJω
GJ

r
≥ 0

l1 ¼ α0

ER
GJ

ð15Þ

K ¼ 1

α2
0

Z
A

�∂Ψ
∂z

�
2

dηdζ ¼
Z
A

�
ζ
∂Ψ
∂η − η

∂Ψ
∂ζ

�
2

dηdζ ≥ 0

ð16Þ

R ¼ 1

α0

Z
A
Ψ
∂Ψ
∂z dηdζ ¼

Z
A
Ψ

��∂Ψ
∂η

�
2

þ
�∂Ψ
∂ζ

�
2
�
dηdζ

ð17Þ

S ¼ 1

α0

Z
A

∂Ψ
∂z dηdζ ¼

Z
A

��∂Ψ
∂η

�
2

þ
�∂Ψ
∂ζ

�
2
�
dηdζ ≥ 0

ð18Þ

In the definitions above, J is the usual Saint-Venant torsional
constant of the cross section and l is a length scale defined in
Eq. (15b) as the square root of the ratio of the warping rigidity
EJω to the torsional rigidity GJ, and appears naturally in Vlasov’s
(1961) theory of constrained warping of thin-walled beams. The
l-terms are associated with the stresses that develop normal to
the cross section because of nonuniform twist ðdϕ=dz ≠ const:Þ
and appear both in the torsional moment [Eq. (7)] and the boundary
condition [Eq. (13)]. Parameter l1, defined in Eq. (15c) is a length
scale proportional to the amount of pretwist α0, depends on
the shape of the cross section, and affects only the bimoment boun-
dary condition [Eq. (13)]. If the cross section has an axis of sym-
metry, then the parameter R and the length scale l1 vanish. For
example, if the η-axis is an axis of symmetry, then Ψðη;−ζÞ ¼
−Ψðη; ζÞ, so that ∂Ψ=∂zjðη;−ζÞ ¼ ∂Ψ=∂zjðη;ζÞ, where ∂Ψ=∂z is de-
fined in Eq. (2c); then, in view of the aforementioned sym-
metry, R ¼ 1=α0∫ AΨð∂Ψ=∂zÞdηdζ ¼ 0.

The l-terms in Eqs. (6)–(13) vanish in the case of uniform tor-
sion ðdϕ=dz ¼ const:Þ and the l1-terms vanish when there is no
pretwist ðα0 ¼ 0Þ.

Eqs. (6) and (7) can be integrated once to yield

dw1ðzÞ
dz

þ α0S
A

dϕðzÞ
dz

¼ NðzÞ
EA

ð19Þ

−l2
d3ϕðzÞ
dz3

þ
�
1þ α2

0K
J

E
G

�
dϕðzÞ
dz

þ α0S
J

E
G
dw1ðzÞ
dz

¼ TðzÞ
GJ

ð20Þ

Note that the classical problem of uniform twist ðdϕ=dz ¼
const:Þ is recovered by letting l → 0 in Eqs. (6)–(13) and
(19)–(20). However, since l2 multiplies the highest derivatives
of ϕðzÞ in the governing Eqs. (7) and (20) and in the boundary con-
ditions [Eqs. (11) and (13)], the case of a small nonzero l is a sin-
gular perturbation of the classical problem in which l ¼ 0, and the
limit l → 0 of the solutions should be taken with care.

Giannakopoulos et al. (2013) eliminated w1ðzÞ between Eqs. (6)
and (7) and formulated the problem in terms of ϕðzÞ. Here an alter-
native approach is taken and the problem is formulated in terms of
w1ðzÞ as follows. For α0S ≠ 0, ϕðzÞ can be eliminated from
Eqs. (6)–(13) and the boundary value problem defined in terms
of w1ðzÞ: �

l2

c2
d2

dz2
− 1

�
d2w1ðzÞ
dz2

¼ qðzÞ
EA

ð21Þ

and at the ends of the beam

w1 ¼ w̄1 ¼ known or − l2

c2
d3w1

dz3
þ dw1

dz
¼ P̄

EA
¼ known

ð22Þ

dw1

dz
¼ w̄ 0

1 ¼ known or
l2

c2
d2w1

dz2
þ l1

c2
dw1

dz
¼ Ȳ

EA
¼ known

ð23Þ
where

qðzÞ ¼ 1

c2

��
1 − l2

d2

dz2

�
pzðzÞ þ

E
G

�
α2
0K
J

pzðzÞ − α0S
J

mzðzÞ
��
ð24Þ

cðα0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

0

J
E
G

�
K − S2

A

�s
cð0Þ ¼ 1 ð25Þ

P̄ ¼ 1

c2

�
N̄ þ l2

dpz

dz
þ E
G

�
α2
0K
J

N̄ − α0S
J

T̄

��
;

Ȳ ¼ 1

c2

�
−l2pz þ l1N̄ þ α0S

J
E
G
B̄

�
ð26Þ

w̄ 0
1 ¼

N̄
EA

− α0S
A

ϕ̄ 0 ð27Þ

The quantities q, P̄, and Ȳ are generalized loads and are defined
in terms of the classical loads pz, mz, N̄, T̄, and B̄ in Eqs. (24) and
(26). Similarly, the boundary values w̄ 0

1 are defined in terms of N̄
and ϕ̄ 0 in Eq. (27). Note that the difference between the actual axial
load N̄ and the generalized load P̄ is due to pretwist ðα0 ≠ 0Þ and
nonuniform twist ðl ≠ 0Þ; in the classical case where α0 ¼ 0 and
l ¼ 0, P̄ ¼ N̄, q ¼ pz, and Ȳ ¼ 0.

Once w1ðzÞ is determined from Eqs. (21)–(23), the solution is
completed with the determination of ϕðzÞ from Eq. (19), i.e.,

dϕðzÞ
dz

¼ A
α0 S

�
NðzÞ
EA

− dw1ðzÞ
dz

�
ð28Þ

and the boundary conditions [Eq. (10) or Eq. (11)].
This section is concluded by emphasizing that the formulation

of the problem in terms of w1ðzÞ is possible only when α0S ≠ 0,
i.e., when pretwist is present.
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Analogy of the One-Dimensional Dipolar Gradient
Elasticity Model

Tsepoura et al. (2002) presented a one-dimensional gradient elas-
ticity theory for a bar with an elastic-strain energy-density function
of the form

Ūðε;κÞ ¼ E
2
ðε2 þ g2κ2 þ 2mεκÞ ð29Þ

where w1ðzÞ = axial displacement; ε ¼ dw1=dz = axial strain in a
bar; κ ¼ dε=dz ¼ d2w1=dz2 = strain gradient; and g, m = material
lengths. The corresponding axial stress σ and double stress μ are
determined from Ū

σ ¼ ∂Ū
∂ε ¼ EðεþmκÞ ¼ E

�
dw1

dz
þm

d2w1

dz2

�
ð30Þ

μ ¼ ∂Ū
∂κ ¼ Eðmεþ g2κÞ ¼ E

�
m
dw1

dz
þ g2

d2w1

dz2

�
ð31Þ

so that Ū can be written also in the form (Casal 1961; Vardoulakis
et al. 1996)

Ū ¼ 1

2
ðσεþ μκÞ ð32Þ

Papargyri-Beskou et al. (2009) used the same one-dimensional
dipolar-gradient elasticity model to study analytically the micro-
structural effects of wave dispersion and established analogies
with axial (Love) beams enriched with lateral inertia effects,
Timoshenko beams, and Mindlin plates enriched with microinertia
terms.

Tsepoura et al. (2002) showed that the governing equation and
boundary conditions for w1ðzÞ resulting from the variational state-
ment δU ¼ δW are �

g2
d2

dz2
− 1

�
d2w1

dz2
¼ q

EA
ð33Þ

and at the ends of the bar

w1 ¼ w̄1 ¼ known or − g2
d3w1

dz3
þ dw1

dz
¼ P̄

EA
¼ known

ð34Þ

dw1

dz
¼ w̄ 0

1 ¼ known or g2
d2w1

dz2
þm

dw1

dz
¼ Ȳ

EA
¼ known

ð35Þ

Eqs. (33)–(35) are identical to Eqs. (21)–(23), provided the fol-
lowing substitutions are made:

g2 ↔
l2

c2
¼ EJω

GJ þ α2
0EðK − S2

A Þ

m ↔
l1

c2
¼ α0ER

GJ þ α2
0EðK − S2

A Þ
ð36Þ

Therefore, the one-dimensional gradient elasticity theory can be
thought of as a homogenization theory that accounts for the effects
of constrained warping and pretwist. The terms that involve g2 and
the highest derivatives of w1 in Eqs. (33)–(35) are due to nonho-
mogeneous twist and vanish when dϕ=dz ¼ const: along the beam.
The effects of pretwist influence the solution through the constants

m and cðα0Þ. Note that the material length g decreases as the
amount of pretwist jα0j increases, and that the sign of l1 (and
m) depends on the sign (direction) of pretwist α0.

The m-term in Eq. (29) is often attributed to surface
energy (Casal 1961, 1963, 1972; Vardoulakis and Sulem 1995;
Vardoulakis et al. 1996). According to the analogue, Eq. (36),
the surface length m that enters the boundary conditions of the
gradient theory is attributed to the lack of symmetry of the cross
section; cross sections with at least one axis of symmetry have zero
surface length ðm ¼ 0Þ, because the parameter R defined in
Eq. (17) vanishes.

It can be shown that

−cðα0Þ ≤ α0ERffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðGJÞðEJωÞ
p ≤ cðα0Þ ð37Þ

which implies that −g ≤ m ≤ g, so that the strain energy density
defined in Eq. (29) is positive definite (Georgiadis et al.
2000, 2004).

Fig. 2 gives the complete analogy of the pretwisted problem and
the one-dimensional dipolar gradient elasticity model.

When the analogy is used, the results should be interpreted
with care. In the one-dimensional gradient elasticity model, the
axial strain εzz is uniform on every cross section and is defined
simply as

εzzðzÞ ¼
dw1ðzÞ
dz

ð38Þ

whereas in the technical theory of pretwisted beams, the axial strain
is defined using Eq. (3) for wðx; y; zÞ and takes the value

εzzðx; y; zÞ ¼
∂wðx; y; zÞ

∂z ¼ dw1ðzÞ
dz

þ d2ϕðzÞ
dz2

Ψðx; y; zÞ

þ dϕðzÞ
dz

∂Ψðx; y; zÞ
∂z ð39Þ

The additional terms in the equation above are due to the explicit
consideration of the nonuniform twist ðd2ϕ=dz2 ≠ 0Þ and the pre-
twist ð∂Ψ=∂z ≠ 0Þ. The average strain over a cross section result-
ing from Eq. (39) is

ε̄zzðzÞ ¼
1

A

Z
A
εzzðη; ζ; zÞdηdζ ¼ dw1ðzÞ

dz
þ α0S

A
dϕðzÞ
dz

ð40Þ

Taking into account Eq. (19), it can be concluded that the above
equation can be also written as

ε̄zzðzÞ ¼
NðzÞ
EA

≡ εNðzÞ ð41Þ

i.e., in the technical theory of pretwisted beams, the average axial
strain on a cross section is determined from the usual expression of
the classical theory in terms of the actual axial load N.

This section is concluded with a brief discussion of the “surface
energy” m-term in the expression for the elastic strain energy
density.

As discussed by Vardoulakis and Sulem (1995), Casal’s (1961)
proposal for the surface energy term is not consistent with Mind-
lin’s (1964) linear, isotropic gradient elasticity theory. Vardoulakis
and Sulem (1995) introduce a surface energy term together with a
constant characteristic director vector in the context of anisotropic
gradient elasticity. An alternative view, consistent with Casal’s
(1963) original proposal, is presented here. Let ε be the infinitesi-
mal strain tensor and define the third-order strain gradient tensor
κ ¼ ∇ε. If one requires that the elastic strain energy density Ū

© ASCE 04015036-4 J. Eng. Mech.
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of a linear elastic material is an isotropic function of ε and κ,
i.e., a function invariant relative to the full orthogonal group,
then Ū involves seven material constants and must be of the form
(Mindlin and Eshel 1968; dell’Isola et al. 2009)

Ūisotropicðε; κÞ ¼ 1

2
ðLijkmεijεkm þGijkmpqκkijκqmpÞ ð42Þ

where L = usual fourth-order isotropic elasticity tensor, i.e.,

Lijkl ¼ κδijδkm þGðδikδjm þ δimδjkÞ; κ ¼ GðE − 2GÞ
3G − E

ð43Þ

and

Gijkmpq ¼ c2½δijðδkmδpq þ δkpδmqÞ þ δmpðδikδjq þ δiqδjkÞ�
þ c3δijδkqδmp þ c5½δikðδjmδpq þ δjpδmqÞ
þ δjkðδimδpq þ δipδmqÞ� þ c11 δkqðδimδjp þ δipδjmÞ
þ c15½δjqðδimδkp þ δipδkmÞ þ δiqðδjmδkp þ δjpδkmÞ�

ð44Þ

ðc2; c3; c5; c11; c15Þ being material constants. In Eq. (42), there
are no ε − κ crossterms and surface energy is excluded.

However, if one requires that the elastic strain energy of the iso-
tropic material is a hemitropic function of ε and κ, i.e., a function
invariant relative to the proper orthogonal group, as suggested
originally by Casal (1963), then Ū involves eight material constants
and must be of the form (Casal 1963; Suiker and Chang 2000;
dell’Isola et al. 2009)

Ūhemitropicðε;κÞ ¼ Ūisotropicðε;κÞ þ c8ðeikmδjp þ eikpδjm

þ ejkmδip þ ejkpδimÞκkijεmp ð45Þ

where eijk = Levi–Civita alternator and c8 = additional material
length.

In the case of the pretwisted beam, the only nonzero strain com-
ponents corresponding to the displacement field [Eq. (3)] are εzx,
εzy, and εzz, and the hemitropic strain energy density takes the form

Ūhemitropic ¼ Ūisotropic þ 4c8½εzxðκzzy − κyzzÞ
þ εzyðκxzz − κzzxÞ þ εzzðκyzx − κxzyÞ�

¼ Ūisotropic þ 4c8½εzxðεzy;z − εzz;yÞ
þ εzyðεzz;x − εzx;zÞ þ εzzðεzx;y − εzy;xÞ� ð46Þ

Note that the hemitropic form of the elastic strain energy density 
does not include terms such as εzzκzzz, which are used in Eq. (29), 
but does allow for ε − κ crossterms that involve different strain 
components. A strain energy density of the form in Eq. (46) 
may be appropriate for materials that do not possess reflective sym-
metries; an example could be the textile yarns discussed in Section 
“Strength of Textile Yarns,” which are viewed as macroscopically 
isotropic but are not necessarily symmetric with respect to planes 
perpendicular to their axis.

General Solution

The general solution of the governing Eq. (21) is

w1ðzÞ ¼ A1 þ A2zþ A3 cosh
z

l=c
þ A4 sinh

z
l=c

− l=c
EA

Z
z

0

�
z − ξ
l=c

− sinh
z − ξ
l=c

�
qðξÞdξ ð47Þ

Fig. 2. Analogy between tension of a pretwisted beam and one-dimensional dipolar gradient elasticity
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where A1, A2, A3, and A4 = arbitrary constants determined from the
boundary conditions.

To get some insight on the nature of the above solution, consider
the special case in which pz ¼ 0 and mz ¼ 0, so that the beam is
loaded with a constant axial force NðzÞ ¼ N̄ and a constant torque
TðzÞ ¼ T̄. Then

q ¼ 0; P̄ ¼ 1

c2

�
N̄ þ E

G

�
α2
0K
J

N̄ − α0 S
J

T̄

��
;

Ȳ ¼ 1

c2

�
l1N̄ þ α0S

J
E
G
B̄

�
ð48Þ

and the general solution reduces to

w1ðzÞ ¼ A1 þ A2zþ A3 cosh
z

l=c
þ A4 sinh

z
l=c

ð49Þ

Because NðzÞ ¼ const:≡ N̄, Eq. (28) yields

ϕðzÞ ¼ A
α0S

½εNz − w1ðzÞ� þ A5; εN ≡ N̄
EA

ð50Þ

where A5 = constant.
Assume that the beam is fixed at z ¼ 0, i.e.,

w1ð0Þ ¼ 0; ϕð0Þ ¼ 0 and ϕ 0ð0Þ ¼ 0 ð51Þ
and loaded at z ¼ L with an axial force N̄, a torque T̄, and a bimo-
ment B̄. In view of Eq. (27), the boundary conditions at z ¼ 0 can
be written in the form

w1ð0Þ ¼ 0; ϕð0Þ ¼ 0; and w̄ 0
1ð0Þ ¼ εN ð52Þ

At the other end z ¼ L, the loads N̄, T̄, and B̄ define the gen-
eralized loads P̄ and Ȳ through Eq. (48) and the boundary condi-
tions become

−l2

c2
d3w1

dz3
þ dw1

dz
¼ P̄
EA

≡ εP and
l2

c2
d2w1

dz2
þl1

c2
dw1

dz
¼ Ȳ
EA

≡ εY L

ð53Þ

The boundary conditions Eqs. (52) and (53) define the constants
in the solution as follows:

A1 ¼ −A3 ¼
l
c

−εYLþ εP
l1
c2 þ ðεN − εPÞðl1

c2 cosh
L
l=c þ l

c sinh
L
l=cÞ

l
c cosh

L
l=c þ l1

c2 sinh
L
l=c

ð54Þ

A2 ¼ εP; A4 ¼
l
c
ðεN − εPÞ; A5 ¼ 0 ð55Þ

If the cross section is assumed to have an axis of symmetry, so
that R ¼ 0 and l1 ¼ 0, and that the loads are applied at z ¼ L in
such a way that B̄ ¼ 0, then Ȳ ¼ 0, εY ¼ 0, and

A1 ¼ −A3 ¼
l
c
ðεN − εPÞ tanh

L
l=c

ð56Þ

so that the solution simplifies to

w1ðzÞ
L

¼ z
L
εN þ ðεP − εNÞF

�
z
L
;
l
cL

�
;

dw1ðzÞ
dz

¼ εN þ ðεP − εNÞH
�
z
L
;
l
cL

�
ð57Þ

ϕðzÞ ¼ −AL
S

εP − εN
α0

F

�
z
L
;
l
cL

�
ð58Þ

where

F

�
z
L
;
l
cL

�
¼ z

L
− l=c

L

sinh L
l=c − sinh L−z

l=c

cosh L
l=c

;

H

�
z
L
;
l
cL

�
¼ L

∂F
∂z ¼ 1 − cosh L−z

l=c

cosh L
l=c

ð59Þ

The first terms in Eq. (57) correspond to the classical solution
(α0 ¼ 0, l ¼ 0), i.e., w1ðzÞ ¼ εNz. The effects of pretwist enter the
solution though εP and the constant cðα0Þ defined in Eq. (25); the
effects of nonuniform twist enter the solution through l in the di-
mensionless functions F and H. The functions F½ðz=LÞ; ðl=cLÞ�
and Hðz=LÞ; ðl=cLÞ take positive values for 0 < z < L and l >
0 and are decreasing with l. Therefore, Eq. (57) show that the in-
fluence of pretwist on the axial displacement w1ðzÞ and on the
derivative dw1ðzÞ=dz depend on the sign of the difference
εP − εN ¼ ðP̄ − N̄Þ=EA, which vanishes when there is no pretwist
ðα0 ¼ 0Þ. Note that εN and εP are the traditional axial strains that
correspond to the actual and generalized loads N̄ and P̄, respec-
tively. In view of Eq. (52b), the difference εP − εN can be written
in the form

εP − εN ¼ P̄ − N̄
EA

¼ 1

c2ðα0Þ
S
A

1

GJ

�
α2
0S
A

N̄ − α0T̄

�

c2ðα0Þ ¼ 1þ α2
0

J
E
G

�
K − S2

A

�
ð60Þ

Therefore, if the applied loads and the pretwist are such that

P̄ > N̄ or
α2
0S
A

N̄ > α0 T̄ ð61Þ

then the axial displacement w1ðzÞ and the derivative ½dw1ðzÞ�=dz
are higher in the pretwisted beam. The opposite is true when the
inequalities [Eq. (61)] are reversed.

Also, because F½ðz=LÞ; ðl=cLÞ� and Hðz=LÞ; ðl=cLÞ are
decreasing functions of l, the higher the material length l, the less
pronounced the effects of pretwist become. Figs. 3 and 4 show the
variation of the normalized axial displacement ½w1ðzÞ�=LεN and
the normalized axial displacement gradient ½dw1ðzÞ=dz�=εN
along the beam for various values of l=cL and ðεP − εNÞ=εN ¼
ðP̄ − N̄Þ=N̄ ¼ �0.6.

Strength of Textile Yarns

Textile materials are composites that have a microstructure in the
form of connected yarns. The yarns can be viewed as pretwisted
beams that are loaded mainly in tension. Therefore, the equations
governing their mechanical behavior have a close analogy with
those of dipolar gradient elasticity with microstructural lengths
and generalized loads that relate to their geometry, amount of pre-
twist, and elastic constants. The stiffness and strength of textiles are
known to exhibit size phenomena that can be rationalized by using
dipolar gradient elasticity.

In the following, the stiffness and strength of textile yarns in the
context of gradient elasticity are considered (Fig. 1). In a uniaxial
tension test, a yarn is fixed at one end and an axial load N̄ or a
displacement w1ðLÞ is applied at the other. The usual interpretation
of the test data is to relate the stress σ ¼ N̄=A to the macroscopic
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strain e ¼ ½w1ðLÞ�=L. If the yarn has no pretwist ðα0 ¼ 0Þ, the re-
lationship is of the form

N̄
EA

¼ w1ðLÞ
L

or
σ
E
¼ e ð62Þ

which defines experimentally the Young’s modulus E. When there
is pretwist, Eq. (57) can be used to find

w1ðLÞ
L

¼ N̄
EA

�
1þ

�
P̄
N̄
− 1

�
F

�
1;

l
cL

��
ð63Þ

which leads to

σ
Ē
¼ ε̄ with Ē ¼ E

1þ 1
c2

α2
0
S2

AJ
E
G

�
1 − l

cL tanh
l
cL

� < E ð64Þ

The last equation defines an apparent Young’s modulus Ē,
which is calculated based on the end displacement w1ðLÞ and
ignores the fact that the strain distribution is nonuniform along

the yarn. The yarn appears to be softer, in the sense that Ē < E,
because the value of w1ðLÞ increases in this case because of
untwisting. Indeed, experimental evidence suggests this apparent
response (Hearle et al. 1969). The stiffer response of short lengths
of textiles can be found in experimental studies of drape (Hearle
et al. 1969).

For assessing the strength of textile yarns, it is reasonable to
assume that the yarn fails at a critical intrinsic strain level in the
axial direction. The solution developed in Section “General Solu-
tion” for a pretwisted yarn fixed at z ¼ 0 and loaded by an axial
force N̄ and a torque T̄ at z ¼ L shows that the axial displacement
field is such that

w1ðzÞ ¼
N̄
EA

zþ L
P̄ − N̄
EA

F

�
z
L
;
l
cL

�
and

dw1ðzÞ
dz

¼ N̄
EA

þ P̄ − N̄
EA

H

�
z
L
;
l
cL

�
ð65Þ

where the dimensionless functions F and H are defined in Eq. (59)
and take positive values for 0 < z < L and ðl=cLÞ > 0.

According to the technical theory of pretwisted beams, the aver-
age strain on every cross section is constant along the yarn [see
Eq. (41)], i.e.,

ε̄zz ¼
N̄
EA

¼ εN ð66Þ

On the other hand, the homogenization scheme of section
“Analogy of the One-Dimensional Dipolar Gradient 221 Elasticity
Model” predicts an axial strain distribution of the form

εðzÞ ¼ dw1ðzÞ
dz

¼ N̄
EA

þ P̄ − N̄
EA

H

�
z
L
;
l
cL

�
ð67Þ

where

P̄ − N̄
EA

¼ 1

c2ðα0Þ
S
A

1

GJ

�
α2
0S
A

N̄ − α0T̄

�
ð68Þ

According to Eq. (67), the strain distribution along the yarn dif-
fers from the classical strain N̄=EA ¼ εN , and the difference de-
pends on the sign of P̄ − N̄. In particular, the axial strains are
higher in a pretwisted beam when (see also Fig. 4)

P̄ > N̄ or
α2
0S
A

N̄ > α0 T̄ ð69Þ

In the case of uniaxial tension (N̄ > 0, T̄ ¼ 0), the inequalities
[Eq. (69)] are satisfied and the axial strains are predicted to be
higher than εN in a pretwisted yarn. This implies, in turn, that,
as N̄ increases, the axial strain will reach the intrinsic strength ear-
lier in a pretwisted yarn. This is in accord with experimental ob-
servations (Hearle et al. 1969).

In the more general case where the loading includes both an
axial load N̄ and a torque T̄, the behavior of the yarn depends on
the sign of P̄ − N̄ or, equivalently, on the sign of ðα2

0S=AÞN̄ − α0T̄,
as depicted in Eq. (69).

Applications

This section will examine the classical problem of tension–torsion
coupling with uniform twist ðdϕ=dz ¼ const:Þ and present closed-
form solutions for cross sections of various shapes, including the
special case of thin-walled open cross sections.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

l/cL=0
l/cL=0.25

l/cL=0.50

l/cL=1.0

classical
l/cL=0

l/cL=0.25

l/cL=0.50
l/cL=1.0

Fig. 3. Normalized axial displacement w1ðzÞ=LεN along the beam for
various values of l=cL, for ðεP − εNÞ=εN ¼ ðP̄ − N̄Þ=N̄ ¼ þ0.6
(above the classical solution) and −0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
l/cL=0

l/cL=0.25
l/cL=0.50

l/cL=1.0

classical

l/cL=0

l/cL=0.25
l/cL=0.50

l/cL=1.0

Fig. 4.Normalized axial displacement ½dw1ðzÞ=dz�=εN along the beam
for various values of l=cL, for ðεP − εNÞ=εN ¼ ðP̄ − N̄Þ=N̄ ¼ þ0.6
and −0.6
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In the case of uniform twist, Eqs. (19) and (20) define dϕ=dz
and dw1=dz as follows:

dϕðzÞ
dz

¼ 1

GJc2

�
TðzÞ − α0S

A
NðzÞ

�
and

dw1ðzÞ
dz

¼ 1

c2

��
1þ α2

0K
J

E
G

�
NðzÞ
EA

− α0S
A

TðzÞ
GJ

�
ð70Þ

so that

dϕ=dz
dw=dz

¼ −
α0S
A NðzÞ − TðzÞ

GJð1þ α2
0
K
J

E
GÞ NðzÞ

EA − α0S
A TðzÞ

ð71Þ

The last equation shows that, in the case of uniform twist,

T ¼ 0 ⇒
dϕ
dw1

¼ −
α0 S
J

G
E þ

α2
0
K
J

< 0 ð72Þ

and

N ¼ 0 ⇒
dϕ
dw1

¼ − A
α0S

< 0 ð73Þ

The negative values on the right-hand-sides of Eqs. (72) and
(73) verify the well-known result that tension–torsion coupling
of a free-to-warp pretwisted beam is negative, i.e., the beam un-
twists in extension and contracts when a torque in the direction
of the pretwist is applied (see also Biot 1939). Note that in all
of the aforementioned results, one can model approximately trans-
versely anisotropic fibers with longitudinal modulus E and shear
modulus G, as suggested by Hodges (1980).

Solid Cross Sections

Elliptical Cross Section

An elliptical cross section with semi-axes a and b < a is consid-
ered (Fig. 5).

In this case (Sokolnikoff 1956)

Ψ ¼ − a2 − b2

a2 þ b2
ηζ; J ¼ πa3b3

a2 þ b2
; Jω ¼ πa3b3

24

�
a2 − b2

a2 þ b2

�
2

ð74Þ

K ¼ πab
24

�
a2 − b2

a2 þ b2

�
2

ð3a4 − 2a2b2 þ 3b4Þ;

R ¼ 0; S ¼ πab
4

ða2 − b2Þ2
a2 þ b2

ð75Þ

l ¼
ffiffiffi
6

p

12

ffiffiffiffi
E
G

r
a2 − b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ;

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

0

48

E
G

�
a2 − b2

a b

�
2 3 a4 þ 2 a2 b2 þ 3 b4

a2 þ b2

s
ð76Þ

In this example and the others to follow, the isotropic relation
E=G ¼ 2ð1þ vÞ has been used, where v = Poisson’s ratio. In the
case of uniaxial tension (N̄ > 0, T̄ ¼ 0) and for uniform twist,
Eq. (72) implies that

a
dϕ
dw1

¼ − 6ðaα0Þ
12
1þν

ρ
ð1−ρÞ2 þ 3−2ρþ3ρ2

1þρ ðaα0Þ2
; ρ ¼

�
b
a

�
2

ð77Þ

The quantity α0a above is the spiral angle θspiral0 , i.e., the angle
formed between the longitudinal fibers of the beam at the major
axes (x ¼ �a, y ¼ 0) of the ellipse and the beam axis, due to
pretwist. For example, aα0 ¼ 1 corresponds to a spiral angle of
approximately 57.3°. Fig. 6 shows the variation of the tension–
torsion coupling adϕ=dw1 with the spiral angle due to pretwist
aα0, for a pretwisted beam of elliptical cross section with
b=a ¼ 0.1, ν ¼ 0.3, and for the case of uniform twist.

On the same plot the numerical results of Kosmatka (1992) are
shown; Kosmatka solved the problem by using a finite-element
scheme. It is interesting that the analytical solution [Eq. (77)]
agrees very well with the numerical solution, even for large values
of pretwist. In his numerical formulation, Kosmatka (1992) used a
displacement field that accounted for possible deformations on the
plane of the cross section and determined the warping function Ψ
independently, i.e., without the assumption that Ψ is the Saint-
Venant warping function of a similar beam without pretwist.
The agreement of the present analytical solution with Kosmatka’s
(1992) solution suggests that the deformation of the cross section
on its plane is indeed insignificant, and the Saint-Venant warping
function can be used even for large pretwist α0a.

Equilateral Triangle

Consider the case of a cross section with a shape of an equilateral
triangle of height a, as shown in Fig. 7.

Fig. 5. Elliptical cross section of the fiber: (a) with no initial twist; (b) with initial twist
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In this case

Ψ ¼ − 1

2 a
ðζ3 − 3η2ζÞ; J ¼

ffiffiffi
3

p

45
a4; Jω ¼

ffiffiffi
3

p

1701
a6 ð78Þ

K ¼ 7
ffiffiffi
3

p

2430
a6; R ¼ 0; S ¼ 2

ffiffiffi
3

p

135
a4 ð79Þ

l ¼
ffiffiffiffiffi
42

p

126

ffiffiffiffi
E
G

r
a; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

10
ðα0aÞ2

E
G

r
ð80Þ

In the case of uniaxial tension (N̄ > 0, T̄ ¼ 0), and for uniform
twist, Eq. (72) implies that

2a
3

dϕ
dw1

¼ − 16 × ð2a
3
α0Þ

12
1þν þ 7 × ð2a

3
α0Þ2

ð81Þ

The quantity α0ð2a=3Þ above is the spiral angle θspiral0 , i.e., the
angle formed between the longitudinal fibers of the beam at the
apex [x ¼ ð2a=3Þ, y ¼ 0] and the beam axis, due to pretwist. Fig. 8
shows the variation of ð2a=3Þðdϕ=dw1Þ with α0ð2a=3Þ for the case
of uniaxial tension (N̄ > 0, T̄ ¼ 0) for uniform twist and ν ¼ 0.3.

Open Thin-Walled Cross Sections

Consider the special case of a uniform cylindrical beam with an
open thin-walled cross section that is constant along the beam.
For such cross sections, the evaluation of quantities such as K,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-12

-10

-8

-6

-4

-2

0

present analysis

Kosmatka (1992)

Fig. 6. Variation of the normalized rotational displacement increment
adϕ to axial displacement increment dw1 with the spiral angle due to
pretwist aa0, when an axial force is applied to a pretwisted beam of
elliptical cross section with b=a ¼ 0.1, ν ¼ 0.3, and l ¼ 0

Fig. 7. Equilateral triangle cross section: (a) with no initial twist; (b) with initial twist

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

Fig. 8. Variation of ð2a=3Þ=ðdϕ=dw1Þ with ð2a=3Þa0 for a cross sec-
tion with a shape of an equilateral triangle in the case of uniaxial ten-
sion ðN̄ > 0; T̄ ¼ 0Þ for l ¼ 0 and ν ¼ 0.3
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R, and S introduced in section “Tension and Torsion of Pretwisted
Beams” requires consideration of the so-called secondary warping
of the cross section, as discussed in the following.

On each cross section, the arc length s is measured along
the middle line C in the counterclockwise direction, starting
from one end of the section, where s ¼ 0. At each point on the
middle line C, a normal direction n is introduced in such a way
that the system n − s − z is right-handed, with n ¼ 0 on C and
−½tðsÞ=2� ≤ n ≤ ½tðsÞ=2�, where tðsÞ = thickness of the cross sec-
tion normal to the middle line. The beam is thin-walled in the sense
that the maximum value of tðsÞ along C is small compared with the
dimensions of the cross section.

Wagner (1936) showed that the warping of a thin-walled
cross section (with no pretwist) can be written in the form [see also
Goodier (1962, pp. 36–19); Librescu and Song (2006, p. 18)]

wðn; s; zÞ ¼ w1ðzÞ þ
dϕðzÞ
dz

Ψðn; sÞ;
Ψðn; sÞ ¼ −ω�ðsÞ þ rsðsÞn ð82Þ

where ω�ðsÞ = so-called principal sectorial area of the middle line
(Vlasov 1961); rsðsÞ ¼ rðsÞ · pðsÞ = distance between the shear
center and the normal to the middle line at s; rðsÞ = position vector
of a point on the cross section; and pðsÞ = unit vector tangent to the
middle line and in the direction of increasing s. The term
−½dϕðzÞ=dz�ω�ðsÞ in Eq. (82) defines the out-of-plane displace-
ment of the points on the middle line ðn ¼ 0Þ, and the term
½dϕðzÞ�=dzrsðsÞn is the secondary warping of the points off the
middle line, where n ≠ 0. The principal sectorial area is defined
so that ∫ Cω

�ðsÞds ¼ 0.
The torsional constant J and the sectorial moment Jω can be

written in the form

J ¼ 1

3

Z
C
t3ðsÞds ð83Þ

and

Jω ¼
Z
A
Ψ2dA ¼

Z
C
½ω�2ðsÞtðsÞ þ 1

12
r2sðsÞt3ðsÞ�ds ð84Þ

When the cross section is such that ω�ðsÞ ≠ 0 and has constant
thickness t, the material length l is inversely proportional to t:

l ¼
ffiffiffiffiffiffiffiffiffiffi
E
G
Jω
J

r
¼

ffiffiffiffi
E
G

r
H2

t
; H2 ≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

LC

Z
C
ω�2ds

s
ð85Þ

where LC ¼ ∫ Cds = length of the middle line ½ðt=LCÞ << 1�; H =
dimensions of length; and the contribution of secondary warping
has been ignored.

In the special case where ω�ðsÞ ¼ 0 (e.g., for a thin-walled rec-
tangular cross section), l is independent of the thickness t:

l ¼
ffiffiffiffiffiffiffiffiffiffi
E
G
Jω
J

r
¼

ffiffiffiffi
E
G

r
B; B ≅ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LC

Z
C
r2sds

s
ð86Þ

Thin Rectangular Cross Section

Consider first a thin rectangular cross section with dimensions
b × t, where t=b << 1 (Fig. 9).

In this case, ω� ¼ 0 and the warping is secondary so that

Ψ ≅ −ηζ; J ≅ 1

3
bt3; Jω ≅ 1

144
b3t3 ð87Þ

K ≅ 1

80
tb5; R ¼ 0; S ≅ 1

12
tb3 ð88Þ

l ≅
ffiffiffi
3

p

12

ffiffiffiffi
E
G

r
b; c ≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

15

�
α0

b
2

�
2
�
b
t

�
2 E
G

s
ð89Þ

Note that the material length is proportional to the width b of the
cross section and independent of the thickness t.

In the case of uniaxial tension (N̄ > 0, T̄ ¼ 0) and for uniform
twist, Eq. (72) implies that

b
2

dϕ
dw1

¼ − 15ðb
2
α0Þ

30
1þν

δ
1−δ þ 9−10δþ9δ2

1−δ ðb
2
α0Þ2

; δ ¼
�
t
b

�
2

ð90Þ

(a)

(b)

(c)

(d)

Fig. 9. Stereoscopic view of the thin-wall cross section of the fiber:
(a) with initial twist; (b) with no initial twist; front view of the cross
section: (c) with no initial twist; (d) with initial twist
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The quantity α0ðb=2Þ above is the spiral angle θspiral0 , i.e., the
angle formed between the longitudinal fibers of the untwisted beam
at (x ¼ �b=2, y ¼ 0) and the beam axis, due to pretwist. Fig. 10
shows the variation of ðb=2Þðdϕ=dw1Þ with a0ðb=2Þ for t=b ¼ 0.1
and ν ¼ 0.3 for the case of uniform twist.

Thin-Walled Z -Section

Finally, consider the case of the thin-walled Z-section shown in
Fig. 11 with t=a << 1.

In this case the warping function has the form

Ψ ¼

8>><
>>:

−a	a
4
þ η


 − ηðζ þ aÞ alongAB

− a2
4
þ ζ η along BC

−a	a
4
− η


 − ηðζ − aÞ alongCD

ð91Þ

The underlined terms in the above expression for Ψ correspond
to secondary warping and account for the variation of Ψ in the
thickness direction. The contribution of these terms to the value
of Ψ is insignificant; however, these terms affect significantly
the derivatives of Ψ that are required for the evaluation of K, R,
and S. Also, since the cross section does not have an axis of sym-
metry, parameter R and the surface length l1 do not vanish. In this
case, the following is true:

J ≅ 4

3
t3a; Jω ≅ 5

12
ta5 ð92Þ

K ≅ 62

15
ta5; R ≅ 2

3
ta5; S ≅ 10

3
ta3 ð93Þ

l ≅
ffiffiffi
5

p

4

ffiffiffiffi
E
G

r
a2

t
; c ≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 61

60
ðα0aÞ2

�
a
t

�
2 E
G

s
ð94Þ

Note that the material length l is now inversely proportional
to the thickness t.

In the case of uniaxial tension (N̄ > 0, T̄ ¼ 0) and for uniform
twist, Eq. (72) implies that

a
dϕ=dz
dw1=dz

¼ − 5ðaα0Þ
1

1þν ð taÞ2 þ 31
5
ðaα0Þ2

ð95Þ

The quantity α0a above is the spiral angle θspiral0 , i.e., the angle
formed between the longitudinal fibers of the beam at the corners
(x ¼ 0, y ¼ �a) and the beam axis, due to pretwist. Fig. 12 shows
the variation of aðdϕ=dw1Þ with α0a for the case of uniaxial ten-
sion (N̄ > 0, T̄ ¼ 0) for uniform twist, t=b ¼ 0.1, and ν ¼ 0.3.

Conclusions

An interesting analogy between the technical theory of a pretwisted
beam loaded by tension and torsion and a one-dimensional dipolar-
gradient elasticity model is presented. The microstructural lengths g
and m required by the gradient theory can be quantified directly
from the geometric properties of the cross section, the amount
of pretwist, and the elastic properties of the beam. A high value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-5

-4

-3

-2

-1

0

Fig. 10. Variation of ðb=2Þ½ðdϕ=dzÞ=ðdw1=dzÞ� with ðb=2Þa0 for
beam of a thin rectangular cross section in the case of uniaxial tension
ðN̄ > 0; T̄ ¼ 0Þ for l ¼ 0, t=b ¼ 1=10, and ν ¼ 0.3

Fig. 11. Thin-walled Z-section
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Fig. 12. Variation of aðdϕ=dw1Þ with aa0 for the Z-shaped cross sec-
tion in the case of uniaxial tension (N̄ > 0, T̄ ¼ 0) for l ¼ 0,
t=b ¼ 1=10, and ν ¼ 0.3
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of E=G could attenuate size phenomena by enhancing the internal
length g. The generalized loads of the gradient elasticity are also
well explained in terms of classical axial loads and torsional
moments.

The classical solution of the technical theory provides the mi-
crostresses that are implied by the gradient elasticity theory, which
acts as a homogenization theory that averages the details of the
classical solution. The average tensile microstrain appears to be
controlled by the classical axial stress; therefore, any damage evo-
lution calculations should be based on the Cauchy stresses of the
classical solution rather than the total stresses of the gradient theory,
which includes the coupled stresses as well.

The surface type of lengthm that enters the boundary conditions
of the gradient theory is attributed to the lack of symmetry of the
cross section; cross sections with at least one axis of symmetry have
zero surface length ðm ¼ 0Þ.

The results presented herein provide a novel micromechanical
approach for tensile yarns that are manufactured as pretwisted
fibers. The advantage of the present formulation is that one can
formulate a system of beams, such as the presented ones, in a very
compact way, constructing two- or three-dimensional trusses
or other patterns of woven textiles. This approach is also applicable
to smart textiles, which are magnetostrictive fibers that are
pretwisted deliberately by external electromagnetic fields, taking
advantage of the Wiedemann effect [e.g., see Malyugin (1991);
Wajchman et al. (2008)].
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