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Abstract 

We consider a model of a two-stage serial supply chain that processes a single part type. Each 

stage has an infinite-capacity raw-parts (RP) buffer, a finite-capacity production facility (PF) 

with deterministic production lead time (PLT), and an infinite-capacity finished-parts (FP) 

buffer. Stage 2 receives orders from end customers and places orders to stage 1. Stage 1 receives 

orders from stage 2 and places orders to an initial supplier with inexhaustible supply of initial 

raw parts. Upon receipt of an order, a stage immediately ships the order quantity from its FP 

buffer to its customer. The order arrives after a deterministic order lead time (OLT). If there are 

not enough parts in the FP buffer to meet the order, an expensive external inexhaustible-supply 

subcontractor (S) immediately complements the missing parts of the order. Each stage has 

revenue from the parts it sells and incurs inventory holding costs in its RP and FP buffers, as 

well as fixed and variable production and order costs. In case it cannot meet all the demand, it 

either pays the cost of complementing the order to the subcontractor, or it passes this cost to its 

customer. For this model, we formulate several variants of a finite-horizon production-and-order 

planning problem. The variants differ with respect to the level of collaboration and information 
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sharing between the two stages. First, we distinguish between the cases where the decisions are 

made in a centralized/decentralized way. In the letter case, we further distinguish between the 

cases where the decisions are made sequentially/simultaneously and use local/global 

information. In a follow up work, we plan to numerically experiment with these variants in order 

to quantify the effect of the problem parameters, the type of collaboration, and the level of 

information sharing on order and production variability and supply chain profitability. 

 

Keywords: supply chain planning; centralized vs. decentralized decision making; local vs. global 

information. 

 

Nomenclature 

Facilities 

iR :  stage- i  raw-parts (RP) buffer, 1,2i  ; 3R : customer demand source; 

iP :  stage- i  production facility (PF), 1,2i  ; 

iF :  stage- i  finished-parts (FP) buffer, 1,2i  ; 0F : (inexhaustible-supply) initial raw-parts 

buffer; 

iS :  (inexhaustible-supply) stage- i  subcontractor, 1,2i  ; 

Indices 

i :  stage index, 1,2i  ; 

t :  period index, 1, ,t T ; 

Decision variables ( 1,2i  , 1, ,t T ); 

,i tP :  quantity produced by iP  in period t ; 

,i tX :  indicator (binary) variable of 
,i tP  equal to 0 if 

, 0i tP  , and 1 if 
, 0i tP  ; 

,i tR :  inventory in iR  at the end of period t ; 

,i tF :  inventory in iF  at the end of period t ; 

,i tD : quantity of order placed by iR  to 1iF   at the end of period t ; 

,i tY :  indicator (binary) variable of 
,i tD  equal to 0 if 

, 0i tD  , and 1 if 
, 0i tD  ; 

,i tS : quantity of order placed by iF  to iS  at the end of period t ; 
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Parameters ( 1,2i  , 1, ,t T ); 

max

,i tP : production capacity of PF iP  in period t ; 

p

iL :  production lead time (number of periods) of PF iP ; 

d

iL :  order lead time (number of periods) from 
1iF 
 to 

iR ; 

3,tD :  (external) final customer orders placed by 
3R  to 

2F  at the end of period t ; 

iI : interest rate used by stage i  to compute inventory holding cost rates; 

M : a very large number; 

Costs ( 1,2i  ) 

ip :  (variable) unit production cost at 
iP ; 

ix :  fixed setup cost at 
iP ; 

ir :  unit inventory holding cost per period in iR ; 

if :  unit inventory holding cost per period in iF ; 

iI : interest rate used by stage i  to compute inventory holding cost rates; 

id :  (variable) unit order cost from iR  to 1iF  , 1,2,3i  ; 

is :  (variable) unit order cost from iF  to iS ; 

iy :  fixed order cost from iR  to 1iF  ; 

 

1. Introduction 

 

The work presented in this paper is part of a project supported by grant MIS 379526 

“ODYSSEUS: A holistic approach for managing variability in contemporary global supply chain 

networks,” which is co-financed by the EU-ESF and Greek national funds through NSRF – 

Operational Program “Education and Lifelong Learning” – “THALES: Reinforcement of the 

Interdisciplinary and/or Inter-Institutional Research and Innovation”. The main goal of 

ODYSSEUS is to study the phenomenon of supply chain demand variability, identify the 

physical points of its creation, analyze its causes, and evaluate its negative impact on supply 

chain performance. One of the requirements of ODYSSEUS is to develop quantitative models to 

support decisions related to demand variability and in particular the “bullwhip effect” (the 

phenomenon that demand variability increases as one moves upstream in the supply chain). The 
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literature on the bullwhip effect is vast. Much of it involves the development and analysis of 

stochastic dynamic models of supply chains. Representative examples are Chen et al. (2000a,b), 

Cachon and Lariviere (2001), Lee et al. (1997a,b), Alwan et al. (2003), and Zhang (2004).  

In this paper, we formulate a deterministic dynamic capacitated lot-sizing planning problem 

(Buschkühl, et al. 2010) and variants of it for a simple two-stage serial supply chain model, in 

order to study the bullwhip effect. Such problems are simple and fit the practical MRP-

framework (Tempelmeier, 1997). They are also solvable with readily available mathematical 

programming software and heuristic approaches (Tempelmeier and Destroff, 1996). In a follow 

up work, we plan to use these variants to quantify the effect of the problem parameters, the type 

of collaboration, and the level of information sharing on order and production variability and 

supply chain profitability. In this respect, our models are related to Saharidis et al. (2006, 2009).  

 

2. Basic Supply Chain Model 

 

Diagram 1 shows a graphical representation of the basic model described in the Abstract. 

Triangles represent buffers, and circles represent production facilities. Solid black arrows 

indicate the material flow and dashed grey arrows indicate the order flow. The decision variables 

of the model are shown in blue color, while its parameters are shown in red color.  

 

Diagram 1. Basic supply chain model. 

 

We make the following assumptions regarding the variable cost rates: 

1i i id d p   , 1,2i   (29) 

i i ir I d  , 1,2i   (30) 

( )i i i if I d p   , 1,2i   (31) 

1i is d  , 2,3i   (32) 

Inequalities (29) and (32) are necessary for ensuring the profitability and competitiveness of 

stage i , respectively. Expressions (30) and (31) are the usual inventory holding cost 

assumptions. 
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We consider a finite-horizon planning problem for the basic model. The horizon is divided into T 

discrete time periods, and decisions are made at the end of each period. The final customer 

orders of each period are known in advance. The PLTs and OLTs are constant.  

In each period, the order of events and decisions is as follows. For 1,2i  : 1) 
iR  receives 

, 1 d
ii t L

D
 

 parts from 
1iF 
; 2) 

iP  starts processing 
,i tP  parts which it takes from 

iR . 3) 
iF  receives 

,
p
ii t L

P


 parts from 
iP . 4) 

iF  also receives 
,i tS  parts from 

iS . 5) 
iR  orders 

,i tD  parts from 
1iF 
, 

and 
1iF 
 immediately sends these parts to 

iR . 

Next, we formulate several variants of the finite-horizon planning problem. The variants differ in 

terms of the level of collaboration and information sharing between the two stages. 

 

3. Variants of the Planning Problem 

 

A) Centralized Decision Making: The two stages maximize their total profits jointly and 

simultaneously subject to customer order requirements and other constraints. This problem can 

be formulated as the following MILP problem: 

 
2

1 1, , , , , , , ,

1 1

max
T

i i t i i t i i t i i t i i t i i t i i t i i t

t i

d D y Y d D x X p P s S rR f F 

 

           (33) 

Subject to , , 1 ,, 1 d
i

i t i t i ti t L
R R D P  

   , 1,2i 

 1, ,t T  (34) 

 , , 1 , 1,,
p
i

i t i t i t i ti t L
F F P S D 

    , 1,2i 

 1, ,t T  (35) 

 
max

, , ,i t i t i tP P X  , 1,2i 

 1, ,t T  (36) 

 
, ,i t i tD M Y  , 1,2i 

 1, ,t T  (37) 

 
, , , , ,, , , , 0i t i t i t i t i tR F P S D  , 1,2i 

 1, ,t T  (38) 

 , ,, {0,1}i t i tX Y  , 1,2i 

 1, ,t T  (39) 

B) Decentralized Sequential Decision Making: Stage 2: Leader; Stage 1: Follower. The stages 

maximize their individual profits separately and sequentially, starting with stage 2. 
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B.1) Local Information: Stage 1 pays the cost of S1. Stage 2 solves a local-information self-profit 

maximization problem and decides, among others, the values of D2,t. Stage 1 takes these values 

as given and solves its own local-information self-profit maximization problem. 

Stage-2 problem: 

 3 3, 2 2, 2 2, 2 2, 2 2, 2 2, 2 2, 2 2,

1

max
T

t t t t t t t t

t

d D y Y d D x X p P s S r R f F


        (40) 

Subject to (34)-(39) for 2i   only. 

Stage 1 problem: 

 2 2, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1,

1

max
T

t t t t t t t t

t

d D y Y d D x X p P s S r R f F


        (41) 

Subject to (34)-(39) for 1i   only. 

B1.2) Global information: Stage 2 pays the cost of S1. It solves a global-information self-profit 

maximization problem and decides, among others, the values of D2,t and S1,t. Stage 1 takes these 

values as given and solves its own local-information self-profit maximization problem. 

Stage-2 problem: 

 3 3, 2 2, 2 2, 1 2 1, 2 2, 2 2, 2 2, 2 2, 2 2,

1

max ( )
T

t t t t t t t t t

t

d D y Y d D s d S x X p P s S r R f F


          (42) 

Subject to (34)-(39). 

Stage-1 problem: 

 2 2, 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1,

1

max ( )
T

t t t t t t t t

t

d D S y Y d D x X p P r R f F


        (43) 

Subject to (34)-(39) for 1i   only. 

C) Decentralized Sequential Decision Making: Stage 1: Leader; Stage 2: Follower. The stages 

maximize their individual profits separately and sequentially, starting with stage 1. Stage 1 

decides Y2,t, D2,t, and ΣS2,t and pays y2,tY2,t. Stage 2 plans only its production and detailed supply 

from S2, given that ΣS2,t has been decided by stage 1. 

Stage-1 problem: 

 2 2, 1 1, 1 1, 2 2, 1 1, 1 1, 1 1, 1 1, 1 1,

1

max
T

t t t t t t t t t

t

d D y Y d D y Y x X p P s S r R f F


         (44) 

Subject to (34)-(39) and  

 
2, 3, 2,

1 1

T T

t t t

t t

D D S
 

     

 (45) 
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Stage-2 problem: 

 3 3, 2 2, 2 2, 2 2, 2 2, 2 2, 2 2,

1

max
T

t t t t t t t

t

d D d D x X p P s S r R f F


        (46) 

Subject to (34)-(36) and (38)-(39) 

D) Decentralized simultaneous Decision Making: The stages maximize their individual profits 

separately and simultaneously. Stage 2 solves the same problem as in variant B.1 and decides, 

among others, the values of D2,t. Stage 1 solves a local-information self-profit maximization 

problem and decides the selling price 
2d  that allows it to achieve a desired profit margin β. The 

two problems comprise the components of an equilibrium problem. 

Stage-2 problem: 

 3 3, 2 2, 2 2, 2 2, 2 2, 2 2, 2 2, 2 2,

1

max
T

t t t t t t t t

t

d D y Y d D x X p P s S r R f F


        (47) 

Subject to (34)-(39) for 2i   only 

Stage-1 problem: 

2min d    

 (48) 

Subject to (34)-(39) for 1i   only, and 

  2 2, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1,

1

(1 )
T

t t t t t t t t

t

d D y Y d D x X p P s S r R f F


         (49) 

 2 0d    

 (50) 
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