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The flow of a rarefied gas in a rectangular enclosure due to the non-isothermal walls
with no synergetic contributions from external force fields is investigated. The top
and bottom walls are maintained at constant but different temperatures and along
the lateral walls a linear temperature profile is assumed. Modeling is based on the
direct numerical solution of the Shakhov kinetic equation and the Direct Simula-
tion Monte Carlo (DSMC) method. Solving the problem both deterministically and
stochastically allows a systematic comparison and verification of the results as well
as the exploitation of the numerical advantages of each approach in the investigation
of the involved flow and heat transfer phenomena. The thermally induced flow is
simulated in terms of three dimensionless parameters characterizing the problem,
namely, the reference Knudsen number, the temperature ratio of the bottom over the
top plates, and the enclosure aspect ratio. Their effect on the flow configuration and
bulk quantities is thoroughly examined. Along the side walls, the gas flows at small
Knudsen numbers from cold-to-hot, while as the Knudsen number is increased the
gas flows from hot-to-cold and the thermally induced flow configuration becomes
more complex. These flow patterns with the hot-to-cold flow to be extended to the
whole length of the non-isothermal side walls may exist even at small temperature
differences and then, they are enhanced as the temperature difference between the
top and bottom plates is increased. The cavity aspect ratio also influences this flow
configuration and the hot-to-cold flow is becoming more dominant as the depth com-
pared to the width of the cavity is increased. To further analyze the flow patterns
a novel solution decomposition into ballistic and collision parts is introduced. This
is achieved by accordingly modifying the indexing process of the typical DSMC
algorithm. The contribution of each part of the solution is separately examined and a
physical interpretation of the flow configuration, including the hot-to-cold flow close
to the side walls, in the whole range of the Knudsen number is provided. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4875235]

. INTRODUCTION

Thermally induced non-equilibrium gas flows in cavities have lately received considerable
attention. At some extent this is due to the potential implementation of such flows in the emerging field
of microfluidics' and more specifically in vacuum packaged MEMS?? as well as in micropumps,*>
and microactuators/microsensors.®” In addition to that, over the years, temperature driven flows in
cavities have been commonly applied in rarefied gas dynamics as prototype problems in order to
investigate theoretically interesting physical phenomena®'? as well as to benchmark and validate
novel numerical schemes.'3~13
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The extent to which the gas flow departs from local thermodynamic equilibrium is defined by
the Knudsen number, which is the ratio of the mean free path of a gas molecule over a characteristic
length of the flow. Gas flows in the slip and early transition regimes may be treated with the
conventional Navier-Stokes-Fourier (NSF) analysis subject to slip and jump boundary conditions,'®
as well as with higher order continuum models.!” Gas flows in the transition and free molecular
regimes must be described by kinetic theory,'® ! which is certainly valid in the whole range of
the Knudsen number but in the slip regime compared to the extended hydrodynamics theory is
computationally more expensive.

The literature survey on rarefied gas flows driven by temperature differences on the basis
of kinetic theory is very extensive. A thorough description of various types of thermal flows,
including the thermal creep flow, thermal stress slip flow, and nonlinear thermal stress flow in
various configurations may be found in the recent book by Sone.?’ Here, we are focusing solely
to rarefied gas flows in enclosures driven by non-isothermal walls with no synergetic contributions
from external force fields.

The flow generated by thermal creep in a rectangular enclosure for zero-gravity conditions
was investigated by the Direct Simulation Monte Carlo (DSMC) method in Ref. 21. The top and
bottom walls were kept at different temperatures and along the side walls a linear temperature profile
was assumed. Two main counter-rotating vortices have been observed with mass flow, as expected,
from cold to hot in the vicinity of the side walls. The gas flow in a square container, where the
left and right halves of the container wall were maintained at uniform but different temperature,
has been also considered® by numerically solving the Bhatnagar-Gross-Krook (BGK) equation. In
that discontinuous wall temperature configuration, the basic flow mechanism is the same as in the
thermal creep flow but this flow in the continuum limit, contrary to the thermal creep flow, vanishes
in a non-uniform manner. A study on the importance of the imposed boundary conditions in steady
highly rarefied gas flows induced by non-uniform wall temperature has been recently carried out on
the basis of the Boltzmann equation and the DSMC method.?” It has been deduced that by applying
the Cercignani-Lampis (CL) gas-surface interaction model>® a steady flow is induced even in the
free molecular limit, while as it is known from earlier theoretical investigations in this limit and for
Maxwell-type boundary conditions the flow velocity is vanishing.!' Complimentary work with the
Lord model** has shown that no steady flow is induced as in the case of the Maxwell model.

In order to model vacuum packaged MEMS, the flow and heat transfer in an enclosure with
a hot surface in the bottom has been simulated by the DSMC method in Ref. 3. The effect of the
temperature gradient and of the temperature discontinuities is examined and it is deduced that when
the bottom temperature is partly uniform only close to the center of the bottom plate, the gas flow
is enhanced due to thermal creep and as a result the heat transfer in the hot chip bottom surface is
also enhanced. The reported rarefied flow close to the wall is according to the typical thermal creep
mechanism?” from cold to hot.

Similar studies of the heat transfer through rarefied gases confined in microcavities have been
reported in Refs. 14 and 15. In the former work'* it has been demonstrated that the regularized-13
(R13) equations® result to a numerical method which is applicable in the slip and early transition
regime capturing flow characteristics and features which are well beyond the NSF range. In the latter
work!? it has been shown that the unified gas-kinetic scheme?® is indeed a reliable and accurate flow
solver for low-speed non-equilibrium flows. Interestingly, in both works it has been observed that the
gas flow close to the wall is not necessarily going from the cold to the hot wall region. Depending on
the flow parameters the flow along the boundary may move from hot to cold regions as well. In both
works this unexpected flow pattern has been also confirmed by DSMC simulations. According to
Ref. 14 this flow behavior is due to the opposite contribution of the viscous and transpirational parts
of the tangential velocity at the side walls, which are caused by the shear stress and the tangential
heat flux, respectively.

Based on all above it is evident that thermally induced rarefied gas flows in enclosures although
geometrically are relatively simple flow configurations, they still are rich in non-equilibrium physical
phenomena. Therefore, despite the work performed and the progress achieved, it still remains a
topic of major theoretical, computational, and practical importance and further investigation will be
valuable.
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In the present work, the thermally induced flow in a two-dimensional rectangular enclosure
with constant temperature gradients along the lateral walls is investigated in a wide range of the
Knudsen number covering the slip and transitions regimes and for small, moderate, and large
temperature differences between the bottom and the top walls. Boundary conditions with purely
diffuse accommodation are considered. Various enclosure aspect ratios are simulated. Modeling
is based on the numerical solution of the Shakhov kinetic model*”-?® and the DSMC method."
Solving the problem both deterministically and stochastically allows a systematic comparison and
verification of the results and more important the exploitation of the advantages of each approach
in the numerical investigation of the flow and heat transfer patterns. The influence of the Knudsen
number, the temperature ratio, and the cavity aspect ratio on the bulk quantities is examined.
Depending on the flow in addition to the well-known thermal creep flow, the recently reported flow
pattern from hot-to-cold in the vicinity of the non-isothermal wall is observed. Furthermore, based
on the DSMC procedure, the solution is decomposed into the so-called ballistic and collision parts
and the contribution of each part to the structure of the flow is studied in order to explain the flow
behavior along the lateral walls. The methodology to achieve that, as far as the authors are aware of,
is presented for first time in the literature.

Il. FLOW CONFIGURATION AND DEFINITION OF PARAMETERS

A monatomic rarefied gas is contained in a two-dimensional enclosure with rectangular cross
section W x H. The orthogonal cross section of the enclosure and the origin of the coordinate
system are shown in Fig. 1. The bottom and top boundaries at y’ = 0 and y’ = H are kept isothermal
at temperatures Ty and T¢ with T¢ < Ty, while along the side boundaries at x’ = £W /2 a linear
temperature profile is assumed according to Ts = Ty — (Ty — T¢)y'/H. The enclosure is considered
as unbounded in the third direction and end effects in that direction are neglected, while radiation
and gravity effects are also assumed to be negligible. The gas-surface interaction is taken to be
purely diffusive to all four boundaries.

In view of the above set-up, a symmetric about x’ = 0 thermal creep type flow of the rarefied
gas is expected. In the vicinity of the two lateral walls at x’ = £W /2 there will be a mass flow in
the negative y direction from cold to hot and due to mass conservation a mass flow of comparable
magnitude does arise near the symmetry axis x' = 0. The presence of the non-isothermal side walls
forces the thermal creep driven gas into a circulatory motion creating two counter-rotating vortices.
This flow pattern, shown in Fig. 1(a), has been captured in Ref. 21 for a square enclosure and for
small Knudsen numbers. The vortices of this flow pattern are named Vortex-type 1.

Recent work? however, has revealed that in the same set-up, with the specific temperature
ratio of T¢/Ty = 0.1, when the Knudsen number is adequately large additional vortices in the two
bottom corners may appear and as the Knudsen number is increased they are further increased.
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FIG. 1. View of the non-isothermal wall enclosure and flow pattern with (a) Vortex-type I and (b) with Vortex-types I and II.
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These vortices are counter rotating to the main ones, i.e., the gas flows from hot-to-cold along the
lateral walls. Now, the flow pattern, shown in Fig. 1(b), consists of four eddies, namely, two eddies
of type I, which are squeezed towards the center and the top of the cavity and two additional vortices
named, Vortex-type II, which are rotating along the lateral walls in the cold-to-hot direction. It is
noted that we refer to these two types of vortices as I and I, instead of using the typical terminology
of primary and secondary vortices, because as it will be seen, depending upon the flow parameters
may both occupy small or large regions of the flow domain and may both become important in
the characterization of the flow pattern. As it has been pointed in Sec. I, similar observations
in enclosures with a slightly different non-isothermal wall set-up have been reported in Refs. 14
and 15.

Here, the flow configuration described above (Fig. 1) is computationally investigated in a
detailed and systematic manner based on kinetic theory principles. The macroscopic quantities
of interest include the number density distribution N(x’, y), the two component velocity vector
U= [Ux (x’ Y ) U,y (x’ , y/)], the shear stress tensor P, (x’, y'), the temperature distribution 7(x’, '),
and the two component heat flux vector Q = [Qx (x’, y/) ,Qy (x’, y’)], while the gas pressure is
given by P = NkgT.

The solution is determined by three main dimensionless parameters, namely, the reference
Knudsen number defined as

ﬁ MoVo

Kny=— ,
2 PyW

)

the temperature ratio 7¢/Ty, and the aspect ratio of the two-dimensional cavity H/W. In Eq. (1),
Py is a reference pressure, W is the width of the cavity, which is taken as the characteristic length,
Lo is the gas viscosity at reference temperature Ty, and vy = +/2kgTo/m, with kg and m denoting
the Boltzmann constant and the gas molecular mass, respectively, is the most probable molecular
velocity, which is taken as the characteristic velocity. The reference number density N is related to
the reference pressure and temperature according to Py = NokgTy. Then, it is convenient to introduce
the dimensionless quantities:

x=x'/W y=y//W,
n=N/Nyg, uy=U/vy, uy,=U,/vg, p=P/Py, 1=T/TH, 2)
qx = Qx/ (Povo), qy = Qy/(POU())-

It is noted that x € [—1/2, 1/2] and y € [0, H/ W] are the space variables, while n, (u, u,), p, 7,
with p =n x t and (g, g,) are the two-dimensional distributions of the number density, the two
components of the velocity vector, the gas pressure and temperature, and the two components of the
heat flux vector, respectively. Then, to proceed with the mathematical manipulation, the molecular
interaction must be specified. The Inverse Power Law (IPL) interaction,' is introduced yielding a
viscosity of the form u = pot®, with the parameter w € [1/2, 1]. The values of w = 1/2 and w = 1
correspond to the limiting cases of hard sphere and Maxwell molecules.

The solution of the problem described above is obtained in a deterministic manner by numerically
solving the nonlinear Shakhov model equations and in a stochastic manner by the DSMC method
presented in Secs. Il and IV, respectively.

lll. DETERMINISTIC KINETIC MODELING

In kinetic modeling the main unknown is the distribution function, which for this flow con-
figuration is a function of five independent variables: the two space variables (x', y) and the three
components of the molecular velocity vector § = (&, &,,&.), i.e., f = f (x', ', ). The flow is
simulated by the nonlinear Shakhov kinetic model,>”?® which has been proved to be a reliable
model for non-isothermal flows,’*3* subject to purely diffuse boundary conditions. In the course
of this work the deterministic solution has been proved always very reliable including the cases of
small temperature differences and large Knudsen numbers, both characterized by very low velocity
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speeds. The formulation of the governing equations and the implemented numerical scheme are
provided in Secs. III A and III B, respectively.

A. Formulation of the Shakhov kinetic model

The nonlinear Shakhov model for the steady-state two-dimensional flow under consideration
takes the form

£ f, s,% L op, 3)
y nw

where P is the local pressure, u = w(7) is the viscosity at local temperature 7, and

2
S _ M _
r=r [1+ 15—N(k 7 [0 - U0+ 0, (5 -U,)]
5
* <2k 7 e - Ux)2+(5>"Uy)2+5z2]_5>} @
with
m_ N _ UV 4 (6 —U) 4 £2
1= GrrTy” eXp[ 2kp o7 [E = U0+ (6 - U) +EZH )

being the local Maxwellian. The dimensionless distribution function g = f US /No and molecular
velocity ¢ = & /vy, along with the reference Knudsen number defined by Eq. (1) and the dimension-
less quantities defined by Eq. (2), are introduced into Egs. (3)—(5) to yield after some straightforward
manipulation the corresponding equations in dimensionless form:

1
§X_+§y8y —£l’ll’ (gS_g)’

Kl’l() 2 (6)

2
s M ii _ . ({x_ux)2+(§y_u}’) +§Zz_§
g =g (1 + 15172 [4x (6 —u0) +qy (& — uy)] |: T 21)°

x = x2+ y v2+ ’
M n p[_(C ) + (¢, —uy) §z:|. 8)

= ex
(rr)*? T

The IPL molecular interaction has been introduced in the derivation of Egs. (6)—(8).

Furthermore, taking advantage of the two-dimensionality of the problem, the ¢, component of the
molecular velocity can be eliminated by introducing the reduced distribution functions ¢ = f fooo gde,
and ¢ = ffoco sz gd¢.. By operating accordingly on Egs. (6)—(8), the following two coupled integro-
differential equations for the unknown reduced distribution functions ¢ = ¢(x, y, {x, ¢,) and
Y =¥ (x,y, £, £y) are obtained:

€))

d
Gt lg s =t (Y - ). (19)
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Here,

(1)

15nt T

4 1 x = x2+ y — <2
¢S=¢M(1+——2[qx<cx—ux>+qy<cy—uy>][“ w5 = ) _2])

15nt T

I/fS — wM (1 =+ i% [qx ({x — MX) —+ qy (c‘ — uy)] |:(§x Mx) + (g} u}') _ 1j|> , (12)

with the reduced local Maxwellians

2 IRY . Y
Mo e [_(é“x o) + (& —uy) ] and wMZ%exp |:_(§x ue) + (& — uy) }

T T
13)

The macroscopic quantities in Egs. (9)—(13) are readily deduced by applying the same non-
dimensionalization and projection procedures to the moments of f and finally they are expressed, in
terms of ¢ and v, according to the following double integrals:

n(x,y)= / /wdé‘xdé‘yv (14)

—00 —00

o0

1 o0 1 o0 o0
) = / / Copdendt, ()= / f £, pdt,ds,, (15)

—00 —00 —00 —00

[ elNee)

2 2
r(x,y)=§f f [(¢3+¢§)¢+w]dgd¢y—§(u§+u§), (16)

—00 —00

Pxy (x,y)=2 / / (Cx — uy) (Cy - uy) Wdé-xdé-ya (17)

—00 —00

acn = [ [ [[&-ur+ =)o+ v] @ -udede, (18)

—00 —00

won= [ [[[©-wr+e-w)ilorv]e-u)dad. a9

—00 —00

At the boundaries, the reduced distribution functions representing outgoing particles are denoted by
¢, ¥+ and they are expressed by the Maxwell purely diffuse reflection as'®

0" = = exp[— (624 ¢)) /] and yt = TR exp[— (62 +¢7) /). (20)
where t,, is the dimensionless wall temperature and n,, is a parameter given in terms of the ingoing
distributions satisfying the impermeability wall conditions.

Equations (9) and (10), subject to the boundary conditions (20) along with the associated expres-
sions (11-19) provide a complete description of the problem and constitute the basic set of equations
to be numerically solved.
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B. The numerical scheme

The implemented deterministic algorithm has been repeatedly applied to solve nonlinear flows
and heat transfer problems with considerable success.*>’ A brief description is provided here
mainly for completeness purposes.

The problem is solved by discretizing the molecular velocity and physical spaces. In the velocity
space it is computationally efficient to present the velocity vector in polar coordinates, according to

x = ¢cos6 and ¢, = ¢sinf. Then, the continuum velocity spectrum (¢, 6) is replaced by a set of
discrete velocities (¢,,, 6,,), where ¢,, € (0, +00),m=1,2,...,Mand 6, € [0,27],n=1,2,...,
N. The magnitudes ¢, are taken to be the roots of the Legendre polynomial of order M accordingly
mapped from (—1, 1) to (0, +00), while the polar angles are 8, = 7(2n — 1)/N. The number of
discrete velocity vectors is M x N. In the physical space the flow domain is divided into I x J
rectangular elements, withi =1,2,...,landj=1, 2, ..., J. The number of points in the physical
spaceis (/[ + 1) x (J+ 1).

The integro-differential equations (9)and (10) are first discretized in the molecular velocity
space and the deduced set of partial differential equations are integrated over each space element
defined by the intervals [x;_i/, Xiy12] and [yj—1/2, yj+1/2] following a typical second order control
volume approach. The moments (14-19) are numerically integrated by applying the trapezoidal rule
and Gauss-Legendre quadrature in the polar angle 6 and the velocity magnitude ¢, respectively, of
the molecular velocity vector. The resulting discretized equations for ¢ and ¢ with the associated
discretized moments are solved in an iterative manner which is concluded when the convergence
criteria given by

"

k—1)
ij ]

5]

(k) (k—=1) (k) (k—=1)
n ‘ tly — Ui ‘ + ‘“yi,j ~ Myij ) K

Q- <10 @

k) _ (
€ - max{ n; i,j i,j

[2¥)

is fulfilled. Here, k denotes the iteration index and £® the error after k iterations. It is noted that
upon convergence all conservation principles are accordingly fulfilled. The results presented in
Sec. V have been obtained with M = 80, N = 400, I = 400, and J =400 x (H/W).

IV. STOCHASTIC MODELING

Stochastic modeling is based on the DSMC method proposed by Bird.'” In Sec. IV A the specific
issues involved in the present implementation of the DSMC method are described. Furthermore,
a novel decomposition of the solution into ballistic and collision parts is introduced in the DSMC
algorithm, in order to analyze in detail the thermal convection in the enclosure in the transition regime.
The methodology to achieve that is described in Sec. IV B, while the results of this decomposition
will be provided in Sec. V C.

A. Main characteristics of the implemented DSMC process

The typical DSMC approach is implemented. The gas is represented by a discrete number of
model particles, which are evolved in time to statistically mimic the behavior of real molecules. The
physical space and time domains are discretized and the real motion of the particles is split into
the free motion step, where all particles are traveling a distance proportional to their velocities and
the collision step, where particles are interacting, while keeping their positions unchanged. In the
first step the particle motion is purely deterministic, while in the second particle collisions are carried
out in a stochastic manner.

The collision technique that is employed here is the No Time Counter (NTC) scheme suggested
by Bird.'” A slight modification is introduced in the calculation of the maximum number of collisions
N¢ in each cell, which is estimated according to®®

_ IN(N = 1) Fy (07¢ ) At
T2 Ve ’

where N is the actual number of particles in cell, Fiy is the number of real particles represented by
a simulator, (07¢,)max 1S the maximum value of the product of the collision cross section and the

N¢

(22)
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relative velocity of the particles in the collision (this quantity is updated throughout the simulation),
At is the time step, and V¢ is the volume of the cell.

In addition to the NTC scheme, an alternative model, which allows the use of a small average
number of particles in each cell and avoids repeated collisions, the so called Simplified Bernoulli
Trails (SBT) scheme,* has been also applied. The results obtained by both collision schemes are
in excellent agreement, even when the average number of particles in cells in the SBT scheme has
been reduced to unity.

The space domain has been discretized by using squared cells (Ax = Ay), with Ax =0.01, i.e.,
100 cells have been taken in the x-direction, while the number of cells in the y-direction depends on
the aspect ratio H/W and it is equal to nc = 100 x (H/W). The number of particles per cell on
the NTC scheme is fixed to 25 and the time step is chosen to be sufficiently smaller (about 1/3) than
the cell traversal time, defined as W / (ncvg). The macroscopic quantities, defined by Eq. (2), are
volume based calculated by averaging the microscopic values of the particles at a given cell and are
given by the following summations:

s
N (t
kgl () Ny
n= o = s (23)
SVe SVe
S N) 1 S N
=— Z >t () uy =5 > D 6 (1), (24)
T =1 i=1 k=1 i=1
| SN . | S V@ 2
Taz—z (Ca,i) - <_Z {a,i) 5 O{:{x,y,z}, 7:2(7x+7y+fz)/3,
T =1 i=1 T =1 i=1
(25)
1 S Nt
Pxy = _Z (szé‘yz) Uxlty, (26)
T =1 i=1
1 S Nt S N(t)
o= D> i (84 + ) — 2w Z (e -
k=1 i=1 T =1 i=1
S N) S Nt
_Zu\ Z Z Cxilyi — ux”y Z ;x,i + Cf, + é‘zz,i)’ (27
T =1 i=1 k=1 izl
S N) S Nt
= ZZ:W Co G+ E) = 2w ZZ Ceilyi — lxity)
Nr = o T k=1 i=1
S N NG
—2uVNTZZ £ =)~y ZZ (G2 +e0,+22) (28)

k=1 i=1
In Eqgs. (23)—(28), Nr is the total number of sampled particles, S denotes the number of samples,
tr indicates the different times over which the sampling is performed, and N(#;) is the number of
particles in the cell at time #;. It is noted that the macroscopic properties are obtained by time
averaging over S = 5 x 10° time steps after the steady-state regime has been recovered.

B. Decomposition of the solution into ballistic and collision parts

In general, a kinetic solution at some point in a flow domain consists of two parts, namely, the
ballistic and the collision parts. The former one is due to particles arriving at this point from the
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boundaries with no collisions, while the latter one is due to particles arriving at this point after an
arbitrary number of collisions (at least one).

The ballistic and collision parts of the solution of the thermally induced flow in the enclosure
are computed separately and the contribution of each part to the overall solution is analyzed. The
dimensionless distribution function g = g(x, y, ) at a local point (x, y), defined in Sec. III A, is
decomposed as

g, 3,0 =870, y,0+89%x,y,0), (29)

where g and g© denote the ballistic and collision parts of the distribution function, respectively.
It is noted that particles contributing to the ballistic part of the solution at point (x, y) may collide
to other particles in their movement after that point. Therefore, the two parts of the solution are
named ballistic and collision in order to distinguish this splitting from the typical free molecular and
collisional decomposition, as well as from other decompositions of the distribution function, which
have been previously introduced to treat boundary induced discontinuities.***>

The prescribed decomposition of the particle distribution in a given cell of the computational
grid with center point (x, y) can be implemented in the basic DSMC algorithm by making some
additions in the indexing stage. More specifically, all model particles j = 1, ..., Ny taking place in
the simulation are tagged by introducing the indicator /;, which has the value of 0 or 1 indicating if
a particle contributes to the ballistic or the collision part of the distribution, respectively. A particle
passes into the ballistic part when it is reflected from a wall and goes into the collision part when
interacts with another particle. The indicator is set to 0 each time that a particle is reflected from
the bounding walls of the enclosure, while in the stage of particle free motion the indicators are not
changed. In the stage of binary collisions the indicators (I, I;) of any pair of particles (j, k) involved
in a collision are set to 1. During the simulation process the particle indicators may change their
values all the time. In the sampling stage of the macroscopic properties at given time t,, all particles
with indicators /; = 0, are considered belonging to the ballistic part of the particle distribution and
all particles with indicators /; = 1 to the collision part. As a result, the total number of all particles
accumulated in a cell is divided into two groups Ny = N, + N, and the macroscopic quantities
defined by Eqgs. (23)—(28) are sampled into the two corresponding parts.

In the present work we are mainly interested to the distributions of number density and velocity
components which are decomposed according to

n(x,y) = n®x,y) + 09y, (30)
e (x, ) = u® (x, y) +ul (x, y), (31)
uy (x, y) = u? (x, ) +ul (x, y), (32)

where the superscripts (b) and (c) denote the ballistic and collision parts of the distributions,
respectively. They are computed as follows: Taking into consideration, e.g., for u,, that

1 1 1
e (x,y) = ~ / Legds = f c.gPde + - / g9de =u? (x, ) +ul?(x,y)  (33)

the ballistic and collision parts are computed through the DSMC code by the summations

S N() S N(n)

1 1
u === M=l ees @) and = =3 % L (1) Cei (@), (34)

X
N
T =1 i=1 T =1 i=1

respectively, while the velocities g‘;{’i) and {;Cl) are related to the corresponding particles. The de-
composition of the number density and the y-component of the velocity and their computation is
performed in an analogous manner.

Based on the above description it is deduced that for the ballistic part of the particle distribution
the boundaries act as a source, while the bulk flow acts as a sink. The situation is reversed for the
collision part of the particle distribution, where the bulk flow acts as a distributed source and the



057101-10 Vargas et al. Phys. Fluids 26, 057101 (2014)

walls as a sink. Computational results of this decomposition are presented in Sec. V C providing an
insight view and a better understanding of the overall solution of the problem.

V. RESULTS AND DISCUSSION

Results are provided for all macroscopic quantities of theoretical importance and practical
interest in a wide range of the Knudsen number (0.01 < Kng < 10) covering the whole transition
regime as well as parts of the slip and free molecular regimes and for temperature ratios T¢/Ty = 0.1,
0.5, and 0.9 corresponding to large, moderate, and small temperatures differences between the top
and bottom plates, respectively. Enclosures with aspect ratios H/W = 0.5, 1, 2 are considered. Most
of the results are for hard sphere molecules (w = 1/2), while some results for Maxwell molecules
(w = 1) are provided as well.

In the case of the large temperature difference T¢/Ty = 0.1, simulations have been performed
for all Knudsen numbers and aspect ratios by both the deterministic solver of the Shakhov model
equation and the DSMC solver. The agreement between the corresponding results produced by these
two completely different approaches is always very good as it is indicatively demonstrated for some
cases in Subsections V A and V B. In the cases of T¢/Ty = 0.5 and 0.9 simulations have been
performed mainly by the deterministic solver.

The macroscopic description of the whole flow domain of the enclosure in terms of the flow
parameters is given in Sec. V A and then, in Sec. V B the discussion is focused on the behavior of
the macroscopic quantities along the enclosure walls. Finally, in Sec. V C, the solution is split into
the ballistic and collision parts, based on the methodology previously presented in Sec. IV B, and
the flow behavior along the lateral walls is explained. All results are in dimensionless form.

A. Flow domain

The effect of the degree of the gas rarefaction on the patterns of the flow field is shown in Fig. 2,
where the velocity streamlines superimposed on the temperature contours for Kny = 0.01, 0.1, 0.2,
0.5, 1, and 10 in a square enclosure with T¢/Ty = 0.1 are presented. The flow is symmetric about x
= 0. It is seen that for Kny = 0.01 only the two Vortex-type I are observed and the gas flows next
to the lateral walls from the colder towards the hotter region (from top to bottom). At Kny = 0.1, at
the two bottom corners of the enclosure, Vortex-type II start to appear counter rotating to the other
ones. As the Knudsen number is increased, they are gradually increased as well, and for Kny = 0.5,
1, and 10 these eddies of type II are well developed and cover large portions of the flow domain
with the gas flowing along the whole length of the side walls from the hotter to the colder region
(from bottom to top). The two Vortex-type I have been squeezed towards the top and the center
of the cavity. The temperature contours indicate that the flow domain is thermally stratified and as
expected, the temperature jump at the walls becomes larger as the Knudsen number is increased.
In general, as the flow becomes more rarefied the hot-to-cold motion next to the lateral walls is
enhanced and the structure of the flow pattern becomes more complex. Of course as the Knudsen
number tends to infinity the gas velocity vanishes.

It may be interesting to note that while in the classical lid driven cavity problem as we are
approaching the hydrodynamic regime (i.e., as the Knudsen number is decreased) the flow becomes
more complex with secondary vortices added to the main ones, here on the contrary the interesting
flow patterns with the Vortex-type II eddies, start to appear as we are moving into the transition
regime (i.e., as the Knudsen number is increased). Overall, the degree of gas rarefaction significantly
influences the thermally driven flow in the enclosure.

Figure 3 shows also streamlines and temperature contours in a square cavity for the cases of
moderate and small temperature differences, namely, T¢/Ty = 0.5 and 0.9, respectively, and for the
typical values of Kng = 0.1, 1, and 10. These results along with the corresponding ones in Fig. 2 are
helpful to describe the effect of the temperature ratio on the flow pattern. In general, for the same
Kny, as the temperature difference between the bottom and top plates, as well as the temperature
gradient along the lateral walls, are decreased, the Vortex-type II with the hot-to-cold flow in the
vicinity of the walls become thinner covering a smaller portion of the flow domain. For the small
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FIG. 2. Streamlines and temperature contours in a square enclosure for 7¢/Ty = 0.1 and various Knudsen numbers.

temperature difference of T¢/Ty = 0.9 at Kng = 1 these eddies are very thin but still cover the whole
length of the non-isothermal side walls and then as the temperature difference is increased they are
grown pushing the Vortex-type I towards the center.

A more quantitative description of the flow is provided in Fig. 4, where the x and y components
of the macroscopic velocity on vertical and horizontal planes, respectively, passing through the
centers of the Vortex-type I are plotted. The results are for a square enclosure with 7¢/Ty = 0.1 with
Kng = 0.01, 0.1, and 1. The u, profiles are plotted versus x € [—0.5, 0.5] and the u, profiles are
plotted versus y € [0, 1]. Both deterministic and stochastic results are shown and it is seen that the
agreement is always very good. The distributions of u, are symmetric about x = 0 and the points
where u, changes sign correspond to the x coordinate of the center of the two eddies of type I. The
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FIG. 3. Streamlines and temperature contours in a square enclosure for various Knudsen numbers and temperature ratios.

distributions of u, are changing sign in the case of Kny = 0.01 and 0.1 only once, which implies that
only the two Vortex-type I are present (actually for Kng = 0.1 the Vortex-type II has been created
but it is not extended up to horizontal axis passing through the centers of the Vortex-type I). In the
case of Kny = 1 the distributions of u, are changing sign several times, which indicates that both
Vortex-type I and II are present. These observations are in accordance to the flow patterns shown
in Fig. 2 for the corresponding Knudsen numbers. In all cases the maximum absolute value of the
velocities is small, approximately in the order of 1072 or even less (the local Mach is about 10%
higher than the reported velocity magnitudes), which is typical in rarefied thermally driven flows.
Comparing between the absolute values of the velocity for various Knudsen numbers it is seen that
the maximum values are at Kno = 0.1. Also, as the Knudsen number is increased the magnitude of
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FIG. 4. Distributions of the (a) y and (b) x components of the velocity on vertical and horizontal planes, respectively, passing
through the centers of the two Vortex-type I for a square enclosure with 7¢/Ty = 0.1 and various Knudsen numbers.

the velocities u, related to Vortex-type II, in Fig. 4(b), is increased and may become even larger than
that of Vortex-type I.

These latter remarks are confirmed by the dimensionless flow rates of the Vortex- type I and
II presented in Tables I and II respectively, for various temperature ratios and reference Knudsen
numbers. The former ones are computed by integrating the dimensionless flux nu, in the y direction
from the center of the Vortex-type I to the top wall and the latter ones by integrating the flux nu,
in the x direction from the center of Vortex-type II to the side wall. The tabulated results have been
obtained by the deterministic solution of the Shakhov model equation. Also, flow rates have been
obtained by the DSMC approach for the case of 7¢/Ty = 0.1 and they are in very good agreement
with the corresponding tabulated ones. It is seen in Table I that starting from Kny = 0.01 as the
Knudsen number is increased and for the same temperature ratio, the flow rate of Vortex-type I is
increased obtaining a maximum value around Kny = 0.07 and then is constantly decreased as the
Knudsen number keeps increasing. This is valid for all three temperature ratios. The corresponding
flow rates of Vortex-type II in Table II, indicate a maximum flow rate around Kny = 1.2. The exact
physical reasoning for these maximum flow rates with regard to the reference Knudsen number is
contributed to the number of collisions between particles and between particles and boundaries as
the gas rarefaction is changing. In addition, while for Kny < 0.1 the flow rate of Vortex-type II is
several orders of magnitudes smaller compared to the corresponding ones of Vortex-type I, as the
Knudsen number is increased the two flow rates become of the same order and in some cases the
former ones are even larger. Also, for the same Knudsen number as the temperature difference is
increased the flow rate, as expected, is also increased.

The effect of the lateral walls on the flow pattern may be seen in Fig. 5, where the streamlines and
temperature contours for two rectangular enclosures, namely, H/W = 0.5 and 2 for the specific case
of Te/Ty = 0.1 and Kny = 1 are plotted. Observing these flow fields along with the corresponding
one for a square cavity (H/W = 1) in Fig. 2, it is seen that as the aspect ratio is increased the
presence of the Vortex-type II becomes more dominant covering a larger part of the flow domain.
Obviously, as the aspect ratio is increased, i.e., as the depth prevails over the width of the cavity, the
importance of the non-isothermal side walls compared to the bottom and top walls is also increased.

TABLE I. Dimensionless flow rate of Vortex-type I in a square enclosure for various Kny and T¢/Ty.

Kng
TclTy 0.01 0.06 0.07 0.08 0.1 1 10
0.1 6.34(—4) 1.70(=3) 1.72(=3) 1.71(=3) 1.67(=3) 2.89(—4) 2.76(=5)
0.5 2.87(—4) 7.51(—4) 7.53(—4) 7.44(—4) 7.08(—4) 8.60(—5) 6.38(—6)

0.9 5.07(=5) 1.31(—4) 1.31(—4) 1.30(—4) 1.23(—4) 1.21(-5) 6.99(—7)
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TABLE II. Dimensionless flow rate of Vortex-type II in a square enclosure for various Kng and Tc/Ty.

Kng
TclTy 0.01 0.06 0.07 0.08 0.1 1 10
0.1 2.55(—6) 1.18(—4) 1.198(—4) 1.204(—4) 1.202(—4) 3.99(-5) 2.55(—6)
0.5 6.98(—7) 2.46(—5) 2.504(-5) 2.513(=5) 2.512(-5) 8.70(—6) 6.98(—7)
0.9 8.41(—8) 2.85(—6) 2.902(—6) 2.936(—6) 2.942(—6) 1.08(—6) 8.41(—8)

The computed dimensionless flow rates of the Vortex type I and II are also changing significantly
with the aspect ratio. It is concluded that the aspect ratio is a very important factor in this flow
configuration.

Since this is a thermally induced flow it is reasonable to investigate the effect of the intermolec-
ular collision model and this is done by including in Fig. 6, some results for Maxwell molecules
for the specific cases of T¢/Ty = 0.1, with Kng = 0.1 and 1. Comparing the plotted streamlines and
temperature contours with the corresponding ones for hard spheres in Fig. 2, it is observed that for
Kny = 0.1 there is actually no effect, while for Kny = 1 there are differences. This remark is also
confirmed by the computed dimensionless flow rates of Vortex type I and II. It may be stated that as
the intermolecular interaction becomes softer the region occupied by the Vortex-type II is reduced
and the cold-to-hot flow becomes less intensive. However, again the hot-to-cold motion appears as
the Knudsen number is increased.

B. Non-isothermal cavity walls

Here, a more thorough description of the macroscopic quantities in the vicinity of the boundaries
of the enclosure is provided. This includes the y components of the velocity and heat flux as well
as the shear stress along the lateral walls and the average heat flux from the bottom wall. Some
comments on the range of validity of the mechanism explaining the formation of Vortex-type II, as
described in Ref. 14, are included.

In Table III, the tangential velocity u, along the lateral walls of a square enclosure for small,
moderate, and large temperature differences in a wide range of the reference Knudsen number are
provided. Due to symmetry these results correspond to x = F1/2. When u, < 0, the flow is from
the top to bottom and corresponds to the expected thermal type flow as described by the Vortex-type

(b) H/W=2

0
-0.5-0.25 3 0.25 05

FIG. 5. Streamlines and temperature contours in rectangular enclosures of (a) H/W = 0.5 and (b) H/W = 2, for T¢/Ty =
0.1 and Kng = 1.
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FIG. 6. Streamlines and temperature contours in a square enclosure with (a) Knp = 0.1 and (b) Knp = 1 for Maxwell
molecules (w = 1).

I pattern, while when u, > O the flow is the other way around and corresponds to the unexpected
flow pattern as described by Vortex-type II. It is observed that when Kny = 0.01 the values of u, are
negative and only very close to y = 0 and 1 very small positive values may appear. The Vortex-type
I flow covers the whole flow domain. When Kng = 1 and 10 the values of u, are always positive,
which implies that the Vortex-type II flow covers the whole length of the lateral walls. Finally, for
Kng = 0.1 both positive and negative values of u, are observed. The positive values are close to
the two ends and the negative values in the middle part of the wall. That implies that although the
Vortex-type I flow still covers most of the whole flow field, counter rotating vortices at the bottom
and top corners have been created, which, as the Knudsen number is increased, they grow and merge
into a Vortex-type II along the whole length of the side wall. These observations qualitatively hold
for all three temperature ratios. Combining these results with the previous ones in Sec. V A it is
concluded that in small Knudsen numbers the expected thermal creep flow prevails and then for
Kny > 0.5 the importance of the unexpected hot-to-cold flow is gradually increased and its presence
significantly effects both qualitatively and quantitatively the flow configuration.

According to the R13 approach in Ref. 14, the formation of the Vortex-type Il is explained by
the opposite contribution of the two different terms of the tangential velocity at the wall, which in

TABLEIIL. Tangential velocity u, along the lateral walls of a square enclosure for various Knudsen numbers and temperature
ratios.

Yy
;—2 Kng  0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0.1 0.01 —5.1(=4) —1.5(=3) —1.9(=3) —2.0(=3) —2.0(=3) —1.9(=3) — 1.8(=3) — 1.6(—3) — 1.3(=3) — 8.4(—4)
01  17(=3) 8.8(=4) —1.5(=4) —1.1(=3) — 1.8(=3) —2.5(=3) —2.8(=3) —2.8(=3) —2.0(=3) —5.9(—5)
1 54(=3) 5.8(=3) 5.6(=3) 50(=3) 44(=3) 3.6(=3) 2.8(=3) 19(=3) 12(=3) 7.7(—4)
10 13(=3) 13(=3) 12(=3) 1.1(=3) 92(=4) 74(—4) 57(—=4) 3.9(—4) 2.5(-4) 1.3(-4)
0.5 0.01 —2.8(=4) —6.5(—4) —7.7(—4) —8.0(—4) —8.1(—4) —7.9(=4) —7.6(=4) —7.1(—4) —6.1(—4) — 3.5(—4)
0.1  5.6(—4) —2.2(=5) —5.2(—=4) —8.6(—4) — 1.1(=3) — 1.2(=3) — 1.1(=3) —9.1(=4) —4.4(—4) 3.2(—4)
1 15(=3) L1.6(=3) 15(=3) L14(=3) 12(=3) L11(=3) LO(=3) 94(=4) 92(—4) 87(—4)
10 34(—4) 3.5(=4) 3.2(=4) 29(=4) 2.6(=4) 23(—4) 22(—4) 2.0(—4) 1.9(-4) 1.8(-4)
0.9 0.01 —5.5(=5) — 1.1(=4) — 1.3(—4) — L.4(—4) — 1.4(—4) — 1.4(=4) — 1.4(—4) — 1.3(—4) — 1.1(—=4) —5.7(=5)
0.1  82(=5) —3.5(=5) —1.2(=4) — 1.7(—=4) —2.0(—4) —2.0(—4) — 1.8(=4) —1.3(=4) —4.6(=5) 7.6(—5)
1 22(=4) 23(=4) 2.1(=4) 2.0(=4) 19(—=4) 19(=4) 19(—4) 2.0(=4) 2.1(=4) 2.0(—4)
10 4.6(=5) 4.8(=5) 4.6(=5) 43(=5) 42(=5) 4.1(=5) 4.1(=5) 43(=5) 44(=5) 4.2(-5)
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TABLE IV. Shear stress p,, along the lateral wall at x = —0.5 of a square enclosure for various Knudsen numbers and
temperature ratios.

Y

TclTh Kny 0 0.2 0.4 0.6 0.8 1.0
0.1 0.01 1.4(-3) 7.7(—4) 5.1(—4) 4.1(—4) 4.3(—4) 2.1(=3)
0.1 1.0(=2) 1.2(=2) 1.3(=2) 1.3(=2) 1.5(=2) 2.1(=2)
1 3.1(=2) 3.8(=2) 4.3(-2) 4.5(=2) 4.6(—2) 4.5(-2)
10 43(-2) 4.9(-2) 5.3(-2) 5.5(-2) 5.4(-2) 5.0(-2)
0.5 0.01 9.1(—4) 3.5(—4) 2.4(—4) 2.2(—4) 2.8(—4) 1.0(-3)
0.1 7.0(=3) 7.5(=3) 7.5(=3) 7.6(=3) 8.1(=3) 8.7(=3)
1 2.2(=2) 2.6(-2) 2.8(-2) 2.8(-2) 2.8(-2) 2.5(-2)
10 2.9(-2) 3.3(-2) 3.5(-2) 3.5(-2) 3.4(-2) 3.1(-2)
0.9 0.01 1.9(—4) 6.4(=5) 4.5(=5) 4.4(-5) 6.2(=5) 2.0(—4)
0.1 1.5(=3) 1.6(=3) 1.5(=3) 1.5(-3) 1.6(-3) 1.6(=3)
1 4.7(=3) 5.4(=3) 5.7(=3) 5.7(=3) 5.4(=3) 4.8(-3)
10 6.0(—3) 6.7(—3) 7.1(=3) 7.1(=3) 6.8(—3) 6.1(—3)

the present notation, is written as

s _ ! (Jn_ L).

u - Pxy + =49y (35)

Y (tn +0.5py,) \ 2 5

The superscript R13 has been added here, in order to distinguish in our discussion the tangential
velocity obtained by Eq. (35) from the one (u,) obtained by the kinetic solution. The first term in
the parenthesis corresponds to the viscous part of the tangential wall velocity and the second one
to the transpirational part, caused by the shear stress and the tangential heat flux, respectively. The
respective magnitude of these terms determines the sign of the tangential velocity and the local
direction of the flow along the side walls. In order to examine the validity of this theory, the kinetic
results of p,, and g, are introduced to compute, according to Eq. (35), the viscous and transpirational
parts of the wall tangential velocity and the whole velocity as well.

The shear stress p,, and the tangential heat flux g, along the lateral wall at x = —1/2 of a square
enclosure for various Knudsen numbers and temperature ratios are provided in Tables IV and V,
respectively. It is seen that always p,, < 0 and g, > 0, i.e., they indeed have an opposite contribution
to the tangential velocity. Since, however, as the Knudsen number is increased, both the values of
the heat flux and the absolute values of the shear stresses are increased, it is necessary to further
compute the contribution of each part separately.

In Fig. 7, the tangential velocities obtained by kinetic theory and according to Eq. (35), denoted
by u, and u®'?, respectively, for Kng = 0.01, 0.05, 0.1, and 1, are plotted. When the velocity
distributions are negative the transpirational part of the solution dominates and the flow along the
lateral walls is from cold-to-hot (Vortex-type I), while when they are positive the viscous part
dominates and the flow is from hot-to-cold (Vortex-type II). The agreement between the kinetic and
R13 theory in small Knudsen numbers is very good and then, as the flow becomes more rarefied, the
discrepancies, as expected, are increased. In general, the good qualitative agreement for Kng < 0.1
indicates that the theory developed in Ref. 14 in order to explain the formation of the hot-to-cold flow
in the vicinity of the walls is valid in the slip regime and fails as the Knudsen number is increased.
In Sec. V C areasonable explanation for this type of flow in the whole range of the Knudsen number
is provided.

It has been pointed in Sec. V A that the aspect ratio of the enclosure effects significantly the
flow configuration and quantities. To further demonstrate the effect of the lateral walls, the tangential
velocity and heat flux along the lateral walls of enclosures with H/W = 0.5, 1, and 2 for T¢/Ty =
0.1 and Kny = 1 are plotted in Fig. 8. For the specific Knudsen number and temperature ratio the
velocities are positive for all three aspect ratios and approximately of the same magnitude resulting
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TABLE V. Tangential heat flux gy along the lateral wall at x = —0.5 of a square enclosure for various Knudsen numbers and
temperature ratios.

Y

TclTu Kny 0 0.2 0.4 0.6 0.8 1.0
0.1 0.01 5.5(=3) 7.2(-3) 6.7(—3) 5.8(=3) 4.6(—3) 2.1(=3)
0.1 3.5(=2) 4.1(-2) 4.5(-2) 4.5(=2) 4.2(=2) 3.3(=2)
1 8.9(-2) 9.9(-2) L1(=1) 1.1(=1) 1.1(=1) 1.0(=1)
10 1.2(-1) 1.3(—1) 1.3(—1) 1.3(-1) 1.3(-1) 1.2(-1)
0.5 0.01 3.2(-3) 4.4(-3) 4.2(-3) 3.9(-3) 3.7(=3) 2.4(-3)
0.1 2.5(-2) 3.0(-2) 3.2(=2) 3.2(=2) 3.0(=2) 2.4(-2)
1 7.7(=2) 8.3(=2) 8.7(=2) 8.8(=2) 8.6(—2) 8.0(=2)
10 1.0(—1) 1.I(-1) 1.1(=1) 1.1(=1) 1.1(=1) 1.0(—1)
0.9 0.01 6.5(—4) 9.2(—4) 9.1(—4) 9.1(—4) 8.9(—4) 6.2(—4)
0.1 5.7(=3) 6.9(-3) 7.3(=3) 7.3(=3) 6.9(—3) 5.6(=3)
1 1.8(=2) 2.0(-2) 2.0(-2) 2.0(-2) 2.0(-2) 1.8(=2)
10 2.3(=2) 2.5(-2) 2.6(—-2) 2.6(—2) 2.5(=2) 2.3(=2)

to stiffer velocity gradients as H/W is decreased. The tangential heat flux is significantly increased
as H/W is decreased, i.e., as the effect of the side walls is decreased.

Closing this subsection the average dimensionless heat flux directed from the bottom plate into
the enclosure is estimated by integrating the heat flux g,(x, 0) over the distance x € b[-0.5, 0.5].
In Table VI, the average dimensionless heat flux, denoted by g, is given in terms of the reference
Knudsen number Kng for T¢/Ty = 0.1, 0.5, and 0.9. The corresponding results obtained by the DSMC
method, using 400 cells in each direction and 100 particles per cell, are also included for comparison
purposes. The agreement between the corresponding Shakhov and the DSMC results is excellent.
As it is seen when the temperature difference between the top and bottom plates is increased the
average heat flux for the same Kny, as expected, is also increased. Although not shown in the table
it is noted that as H/ W is increased the average heat flux is decreased, e.g., the computed values
of q,, in the case of T¢/Ty = 0.1 for H/W = 0.5, 1, and 2 are 0.35, 0.14, and 0.057, respectively.
Concerning the effect of the collision parameter w on q,, it turns out that it is small since the values
of the computed average heat fluxes for hard sphere and Maxwell molecules are close.

—A—R13, Kn=0.01

——R13, Kn,=0.1
—@—R13,Kn =1
—@—R13,Kn =2
—/\— kinetic, Kn;=0.01
—{—kinetic, Kn=0.1
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FIG. 7. Tangential velocity u, along the lateral walls of a square enclosure for T¢/Ty = 0.1 and various Knop computed by
the present kinetic approach and by Eq. (35) based on the R13 approach.
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FIG. 8. Distributions of the tangential (a) velocity u, and (b) heat flux g, along the lateral walls of rectangular enclosures
with various aspect ratios for T¢/Ty = 0.1 and Kng = 1.

C. Ballistic and collision contributions

The decomposition of the DSMC solution into the ballistic and collision parts, as described in
Sec. IV B, is applied in a square enclosure for Kng = 0.05 and 2, with T¢/Ty = 0.1. The two values of
the reference Knudsen numbers have been chosen as representatives to demonstrate the contribution
of the ballistic and collision parts to the overall solution in the slip and transition regimes. In addition,
the corresponding results are typical for analyzing the thermal effects on the flow configuration in
small and large Knudsen numbers.

The streamlines and the contours of the vertical velocities of the ballistic and collision parts
of the solutions, denoted by u'? and u'®, respectively, as well as the overall solutions are given
for Kny = 0.05 and 2 in Fig. 9. More specifically, Figs. 9(a) and 9(b) show the ballistic parts and
Figs. 9(c) and 9(d) the collision parts, while the overall solutions which are the summation of the two
corresponding parts are shown in Figs. 9(e) and 9(f). It is seen that the streamlines of the ballistic
parts (Figs. 9(a) and 9(b)) are directed from the boundaries toward the interior of the bulk flow,
while the streamlines of the collision parts (Figs. 9(c) and 9(d)) are directed from the interior of
the bulk flow toward the walls. These qualitative observations are well expected from the physical
point of view since as it has been pointed before, in the ballistic part the walls act as source and the
bulk flow as sink, while it is the other way around in the collision part. The streamlines along with
the vertical velocities contours clearly indicate when the flow is in the positive or negative direction
corresponding to hot-to-cold and cold-to-hot flow, respectively. The summation of these flow fields
deduce the overall solutions shown in Figs. 9(e) and 9(f), which are in excellent agreement with the
corresponding deterministic ones. It is seen that for Kny = 0.05 only the Vortex-type I are present,
while for Kny = 2 the Vortex-type II are also well developed, with the gas flowing along the lateral
walls in the first case from cold-to-hot and in the second one from hot-to-cold.

The streamlines in Fig. 9 may be further analyzed. Starting with Kny = 2, where the flow
patterns are simpler, the streamlines of the ballistic and collision parts are directed to and originated

TABLE VI. Average heat flux g,, departing from the bottom plate of a square enclosure for various Knudsen numbers and
various temperature ratios.

TclTyg =0.1 Tc/Tyg =0.5 Tc/Ty =0.9
Kny Shakhov DSMC Shakhov DSMC Shakhov DSMC
0.01 1.33(=2) 1.38(—2) 8.55(-3) 8.60(—3) 1.87(-3) 1.80(—3)
0.1 7.20(=2) 7.16(-2) 5.18(=2) 5.32(-2) 1.19(=2) 1.22(-2)
1 1.48(—1) 1.49(—1) 1.23(—1) 1.27(-1) 2.88(—2) 2.94(-2)
10 1.78(—1) 1.79(—1) 1.50(—1) 1.51(—1) 347(-2) 3.50(—2)
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FIG. 9. Streamlines and vertical velocity contours of the ballistic and collision parts as well as of the overall solution in a
square enclosure for Kng = 0.05 and 2, with T¢/Tyg = 0.1.

from single points, with total velocity equal to zero. The slight displacement between the two focal
points and the small differences in the velocity magnitudes of the collision and ballistic parts, lead
to the creation of Vortex-type II, shown in Fig. 9(b). Continuing with Kny = 0.05 it is seen that the
streamline patterns of the ballistic and collision parts are quite different. The ballistic part has some
resemblance with the corresponding one for Kny = 2, showing one single point towards which the
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FIG. 10. Tangential velocity and density of the ballistic and collision parts as well as of the overall solution along the lateral
walls of a square enclosure for Kng = 0.05 and 2, with T¢/Ty = 0.1.

streamlines are directed. The collision part however is different indicating two single points from
which the streamlines are originated. These points are symmetrically located about x = 0 and are
centers of two symmetric spiral swirls caused by flow vorticity at this low Knudsen number. Also,
at some extent streamlines are concentrated along a curve where the vertical velocities are zero. In
addition, there is one point along x = 0 where the total velocity is zero and this point is transformed
to a saddle point separating the streamline patterns into two branches directed to the hot and cold
walls. The slope of the streamlines with respect to the vertical walls is another important element
in the present analysis. It is seen that at Knp = 0.05 the negative slope of the streamlines of the
collision part is larger than the positive slope of the streamlines of the ballistic part and this is a
clear sign for a cold-to-hot gas motion along the vertical walls. At Kny = 2 the two slopes are about
the same with the ballistic one appearing to be larger, which is an indication for a hot-to-cold gas
motion.

A more detailed view of the flow along the lateral walls is presented in Fig. 10, where the
tangential velocities and number densities are presented. In Fig. 10(a) the tangential velocities of
the ballistic and collision parts, #* and u'®), respectively, are plotted along y € [0, 1] for Kny =
0.05 and 2, while the correspondmg overall tangentlal velocities u, are given in Fig. 10(b). It is seen
in Fig. 10(a), that for Kny = 0.05, the tangential velocities u(b) and u(c) are positive and negative,
respectively, along almost the whole length of the side walls and only very close to the top corners
(y = 1) their signs are interchanged. In parallel, the overall tangential velocity u,, in Fig. 10(b), is
negative.

In the case of Kng = 2, the tangential velocities u{” and u{” in Fig. 10(a), are positive and
negative, respectively, up to about y = 0.65 and then thelr 51gns are interchanged. The overall
velocity uy, in Fig. 10(b), is positive up to about y = 0.7 and then its value becomes negative taking
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very small values close to zero. From the above it is deduced that the negative or positive values of
uy, corresponding to cold-to-hot or hot-to-cold flow along the walls depends on which part of the
solution, either the ballistic or the collision part prevails with respect to the other. At Kny = 0.05
the contribution of the collision part is more significant and only the Vortex-type I flow is observed,
while at Kny = 2 the magnitude of the ballistic part has been increased and becomes respectively
more significant and therefore the Vortex-type II flow shows up.

These arguments are also supported by the ballistic and collision number density profiles denoted
by n® and n(©, in Fig. 10(c). It is seen that along the walls for Kng = 0.05, n®) < n‘© and for Kn,
=2, n® > n9 which also indicate that in the overall solution the contribution of the collision
part dominates at small Knudsen numbers, while at large Knudsen numbers the contribution of the
ballistic part becomes more significant. In Fig. 10(d) the overall density profiles n, computed as the
summations of the two parts are provided for Kny = 0.05 and 2.

Based on both Figs. 9 and 10 and the previous discussion some more general comments on
the ballistic and collision contributions in the overall solution may be stated. In the free molecular
limit, the flow is perfectly balanced by pressure and temperature distributions and both collision
and ballistic velocities are equal to zero. Increasing the gas density and respectively decreasing
the Knudsen number, collisions between molecules destroy this balance and from thermodynamic
viewpoint, the gas reaction is a weak motion in the enclosure with streamline patterns depending on
the Knudsen number, the wall temperature distribution, and the enclosure geometry. At very large
Knudsen numbers, the ballistic part is dominating. At moderate values there is interplay between the
ballistic and collision parts and the behavior of the overall solution is very subtle particularly in the
transition regime. Finally, at very small Knudsen numbers the collision part is dominating. In this
latter case, the classic thermal creep theory works and predicts correctly the cold-to-hot direction of
the streamlines along the vertical walls. As the Knudsen number increases the impact of the ballistic
part also increases and the convective vortices start to rotate in the hot-to-cold direction along the
lateral walls.

VI. CONCLUDING REMARKS

The thermally induced rarefied gas flow in a rectangular enclosure with non-isothermal walls is
investigated in terms of the three parameters characterizing the flow, namely, the reference Knudsen
number, the temperature ratio of the top over the bottom plates, and the aspect ratio of the enclosure.
Both deterministic and stochastic simulations have been performed based on the numerical solution
of the Shakhov kinetic equation and the DSMC method, respectively. Results have been obtained
for enclosures with various aspect ratios in the whole range of the Knudsen number and for small,
moderate, and large temperature differences.

Confirming previous results in similar non-isothermal set-ups, it has been found that in the
vicinity of the lateral walls the gas is not necessarily going from cold-to-hot. Actually, even for
relatively small Knudsen numbers in the slip or early transition regime a hot-to-cold flow along
the non-isothermal side walls is observed, which is enhanced as the Knudsen number and the
temperature difference are increased. The cavity aspect ratio is also an important factor and the
hot-to-cold flow is becoming more dominant as the depth compared to the width of the cavity is
increased. The effect of these parameters on the flow configuration and bulk quantities has been
thoroughly examined. Furthermore, the introduced novel decomposition of the DSMC solution into
the ballistic and collision parts illuminates, at the particle level, important details of the flow. It has
been found that at small Knudsen numbers the collision part dominates and the classic thermal creep
theory works, while at large Knudsen numbers the ballistic part prevails and then the gas along the
wall flows from hot-to-cold.

It is believed that the present research work has both scientific interest and technological impact
and it is hoped to support the design and optimization of devices operating far from local equilibrium.
Also, the introduced solution decomposition is rather universal and can be applied to any rarefied
gas flow in the transition regime. The theoretical background of the decomposition and its detailed
implementation in the DSMC algorithm will be described in a future work.
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