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ABSTRACT 

The flow configuration in a 2D cavity where the three walls of the cavity are maintained at some constant temperature, 

while the fourth one is heated by a given heat flux distribution is considered. The problem is solved in a deterministic 

manner by the nonlinear Shakhov kinetic model and in a stochastic manner by the DSMC method in the whole range of 

the Knudsen number and for various heat fluxes resulting to small, moderate and large temperature differences between 

the cold and hot walls. Results include all macroscopic distributions of practical interest and very good agreement 

between kinetic modeling and DSMC results is obtained. Specific attention is given to the heat flux streamlines and 

contours and to further analyze the flow and thermal configuration in the cavity a recently introduced decomposition of 

the solution into ballistic and collision parts is applied. It is found that the heat flux provided in one wall is not a 

monotonic function of the ratio of the temperature of the three cold walls and the resulting temperature of the hot wall. 

1. INTRODUCTION 

Thermally induced rarefied gas flows in cavities have lately received considerable attention, due to their 

implementation in several technological fields including cooling processes of vacuum packed MEMS [1], 

micropumps/microactuators [2,3] and vacuum sensors [4]. They also serve as prototype flow/thermal 

configurations to study novel non-equilibrium phenomena. Recently, in addition to the typical cold-to-hot 

thermal creep type flow, an unexpected hot-to-cold flow along the walls has been observed [5,6]. This latter 

type of flow has been thoroughly investigated and theoretically explained in [7] by decomposing the 

distribution function and the deduced macroscopic quantities into ballistic and collision segments. In all 

works presented so far the temperature of the cold and hot cavity walls are given to form the proper set of 

boundary conditions to close the problem. 

 

 Within this framework, here, the thermally induced flow in a square cavity, where the three walls are 

maintained at some constant temperature, while the fourth one is heated (or cooled) by a given heat flux 

distribution is considered. The temperature of the heated wall is part of the solution. Thus, this work with the 

modified boundary condition may be considered as a continuation of the previous works [6,7] and it may be 

useful in occasions where instead of the wall temperature is easier for practical purposes to measure the heat 

flux heating or cooling the wall. Modelling is based on the non-linear Shakhov model [8], while the DSMC 

approach [9] is used to benchmark the solution as well as to apply the distribution function decomposition 

methodology and to split the heat flux into ballistic and collision parts in an effort to have a more thorough 

view of the heat flow field. 
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2. FLOW CONFIGURATION 

A rarefied monatomic gas is contained in a 2D square enclosure of side length W . The space variables are 

denoted by  ,x y   with / 2 / 2W x W    and 0 y W  . The three walls of the cavity are kept at a 

constant temperature 
CT , while the fourth wall is heated by a constant heat flux of given magnitude 

HQ . The 

temperature distribution along the heated wall is denoted by 
HT  and is part of the solution. Thus, there is a 

steady-state heat flow through the enclosed gas defined by the heat flux vector    , , ,x yQ x y Q x y      Q . 

Also, due to non-equilibrium phenomena, a flow field, defined by the two component velocity vector 

   , , ,x yU x y U x y      U , is deduced, as well. It is noted that gravitational forces are not considered. The 

gas temperature and density distributions are denoted by  ,T x y   and  ,N x y   respectively, while the 

pressure is given by the equation of state 
BP Nk T , where 

Bk  is the Boltzmann constant.  

 

 It is convenient to solve the problem in terms of the following dimensionless quantities: 

 
0 0 0 0 0 0 0 0 0

, , , , , , ,
y yx x

x y x y

U QU Qx y N T P
x    y   n  ,   p    u    u   q    q

W W N T P P P


   

   
         . (1)  

The quantities n ,  , p ,  ,x yu u  and  ,qx yq  are the two dimensional distributions of number density, 

temperature, pressure and the two components of the velocity and heat flux vectors respectively, while the 

space variables are  1 2,1 2x   and  0,1y . The quantities with zero subscript are the corresponding 

reference quantities with 0 0 0BP N k T  and 0 02 /Bk T m  , with m  denoting the molecular mass, denoting 

the most probable molecular velocity. The hard sphere model is used to simulate intermolecular collisions. 

The problem is characterized by two parameters, namely the reference Knudsen number, defined as  

 0 0
0

02

u
Kn

PW


 .   (2) 

where 0  is the viscosity at reference temperature 0T  and the dimensionless magnitude of the heat flux 

departing from the heated denoted by  0 0/H Hq Q P . In the results section the effect of these parameters 

on the flow is investigated. As noted before the problem is modeled by the nonlinear Shakhov kinetic 

equation and the DSMC method both described in the next section. 

3. DETERMINISTIC AND STOCHASTIC MODELING 

3.1 Deterministic modeling based on the Shakhov kinetic model  

The dimensionless steady-state 2D Shakhov kinetic model equation, following the well-known projection 

procedure is written as [7] 
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 
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with  ,x y   denoting the two components of the molecular velocity vector and 
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while the reduced local Maxwellians are 
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. (6) 

The macroscopic quantities are given as moments of the reduced distribution functions   and  : 
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The purely diffuse Maxwell boundary conditions have been implemented. The outgoing distribution at the 

boundaries denoted by    and   , are expressed as [7] 

  2 2exp /w
x y w

w

n
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where 
wn  is a parameter calculated in terms of the ingoing distributions, satisfying the impermeability wall 

conditions and 
w  is the dimensionless wall temperature. This latter parameter is known for the three walls 

kept at temperature 
CT  and unknown at the wall which is heated by the heat flux 

Hq . To close the problem 

an additional expression is obtained for 
w  at the heated wall by satisfying the relation that the normal heat 

flux at the heated wall must be equal to Hq . In the present work, without loss of generality, the heated wall is 

at 0y   and therefore 

  ,0y Hq x q . (11) 

Equation (11) along with the no penetration condition yields 
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where 
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with    and    denoting the ingoing distributions. 

 

 The above set of integro-differential equations (3) coupled with the expressions (4-9) subject to 

boundary conditions (10) are solved numerically discretizing by the control volume approach in the physical 

space and the discrete velocity method in the molecular velocity space. The implemented algorithm has been 

utilized the solve nonlinear flows and heat transfer problems with considerable success [7,10,11]. In the 

present work the iterative process of the algorithm is terminated when the imposed termination criteria 

  ( ) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1) 10

, , , , , , , ,
,

max 10k k k k k k k k k

i j i j xi j xi j yi j yi j i j i j
i j

n n u u u u               . (14) 

where k  denotes the iteration index and ( )k  the error after k  iterations, is fulfilled. It is noted that upon 

convergence all conservation principles are accordingly preserved. 

3.2 Stochastic modeling based on the DSMC method 

The DSMC method is based on splitting the real process of particle motion in two consecutive steps: a) the 

collision between the particles which is modeled in a stochastic manner within the particles at a given cell, 

and b) the ballistic motion of the particles over a distance proportional to their velocities, which is purely 

deterministic. The traditional No Time Counter (NTC) scheme [9] together with the HS molecular 

interaction model, are used for computing the collision between two particles. The implementation of the 

given heat flux boundary condition is according to the methodology described in [12]. The interaction of the 

gas molecules with the solid walls is assumed to be purely diffuse. Here, the space domain is discretized into 

100x100 squared cells with size smaller than the mean free path, while the gas is represented by a discrete 

number of 10
5 

- 10
6
 model particles, depending upon the parameters and the time step is chosen to be about 

1/3 of the cell traversal time. The sampling of the macroscopic quantities starts once the steady state flow has 

been achieved and is carried out by volume based time averaging of the corresponding microscopic values of 

the particles in larger sampling cells that represent groups of 4 x 4 neighboring collision cells. These 

moments are accumulated over (5-15).10
5
 time steps. This gives a sample size of approximately 10

9
 -10

10
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samples per sampling cell which is sufficiently large to reduce the statistical scatter of the macroscopic 

results. 

 

 In general, a kinetic solution at some point in a flow domain consists of two parts, namely the ballistic 

and the collision parts. The former one is due to particles arriving at this point from the boundaries of the 

flow domain with no collisions, while the latter one is due to particles arriving at this point after an arbitrary 

number of collisions (at least one). The decomposition of the particle distribution in a given cell of the 

computational grid can be implemented in the basic DSMC algorithm by making some additions in the 

indexing stage. More specifically, all model particles 1, , Tj N  taking place in the simulation are tagged 

by introducing the indicator jI , which has the value of 0 or 1 indicating if a particle contributes to the 

ballistic or the collision part of the distribution respectively. A particle passes into the ballistic part when it is 

reflected from a wall and goes into the collision part when it interacts with another particle. The indicator is 

set to 0 each time that a particle is reflected from the bounding walls of the enclosure, while in the stage of 

particle free motion the indicators are not changed. In the stage of binary collisions the indicators  j k
I ,I  of 

any pair of particles  ,j k  involved in a collision are set to 1. During the simulation process the particle 

indicators may change their values all the time. In the sampling stage of the macroscopic properties at given 

time 
k

t  all particles with indicators 0
j

I  , are considered belonging to the ballistic part of the particle 

distribution and all particles with indicators 1
j

I   to the collision part. As a result, the total number of all 

particles accumulated in a cell is divided into two groups ( ) ( )

T

b c
N N N   and the macroscopic quantities are 

sampled into the two corresponding parts. Here, we are interested mainly in the bulk velocity and heat flux 

components. For brevity, we illustrate the sampling by giving the ballistic and collision parts of x - 

components of velocity and heat flux: 
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Here, S  denoted the number of samples, 
k

t  indicates the different times over which the sampling is 

performed and  k
N t  is the number of particles in the cell at time 

k
t . It is noted that the macroscopic 

properties are obtained by time averaging over 5
5 10S    time steps after the steady-state regime has been 

recovered. The y - components of velocity and heat flux are computed in the same way, by using the 

corresponding projections. Note that number density, bulk velocity and heat flux are equal to 
( ) ( )b cn n n  , (b) (c)

u = u + u  and (b) (c)
q = q + q , respectively. For more details on the decomposition of the 

solution into ballistic and collision parts, see Ref. [7]. 

4. RESULTS AND DISCUSSION 

Results are provided in a wide range of the reference Knudsen number 0Kn  and for various heat fluxes Hq , 

resulting to small, moderate and large temperature differences between the constant temperature CT  of the 

three walls and the deduced average temperature of the wall where the heat flux is defined as 
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 
/2

/2

W

H H
W

T T x dx


    once the unknown wall temperature  HT x  is computed. A comparison between kinetic 

results obtained by the Shakhov model and corresponding DSMC results is also performed, while the latter 

method is used to compute the ballistic and collision segments of the heat flow field. 

 

 A view of the flow configuration may be observed in Fig.1, where the streamlines and the temperature 

contours are provided for  0 0.1,1,10Kn   and various 
Hq . It is noted that the given heat fluxes result to 

temperature ratios / 0.1C HT T   in Figs.1a-1c and 0.9 Figs.1d-1f respectively. As expected the flow is 

symmetric about 0x  . It is seen that in all cases, along the walls, in addition to the two thermal creep type 

vortices, characterized by cold-to-hot flow, there are two additional counter rotating vortices with the gas 

flowing from hot-to-cold regions. These latter vortices as the reference Knudsen number is increased occupy 

larger areas of the cavity flow domain. The temperature variation along the bottom (heated) plate may be 

also seen. In most cases, particularly for  0 1,10Kn  , the temperature remains almost constant along the 

wall with some variations at the two edges of the wall. The gas velocity along the lateral wall, maintained at 

CT , is shown in Fig.2. In most cases the distributions are positive indicating a flow motion from the hot to 

the cold region along the walls as it is also seen in Fig.1. Only very close to the two bottom edges there is 

motion in the opposite direction. 

 

 
Figure 1: Streamlines and temperature contours for various values of the reference Knudsen number 

0Kn  and heat 

fluxes 
Hq . The deduced ratios /C HT T  are 0.1 (up) and 0.9 (down). 

 

 In Fig.3 the computed /C HT T  are shown in terms of Hq  for various 0Kn  from the slip through the 

transition down to the free molecular regimes. It is interesting to note that for a given Hq  two different 

values of /C HT T  may be obtained. This is in agreement with previous results reported in [6]. More 

specifically, initially as /C HT T  is increased, Hq  is also increased reaching its maximum value at some 

temperature ratio, which is around / 0.3C HT T   and then as /C HT T  is further increased, Hq  is decreased. 

This nonmonotonic behavior of Hq  in terms of /C HT T  occurs for all Knudsen numbers studied and it is 

more evident as 0Kn  is increased. 
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 All above results have been obtained based on the direct solution of the Shakhov kinetic model. A 

detailed comparison with corresponding DSMC results presented in Tab.1 has been performed. As it is seen 

there is very good agreement between the two approaches. 

 

Table 1: Comparison between kinetic and DSMC results in terms of Hq  for various 
0Kn  and /C HT T  

 

 
0Kn  

/C HT T  

0.05 0.1 0.3 0.5 0.9 

Kinetic DSMC Kinetic DSMC Kinetic DSMC Kinetic DSMC Kinetic DSMC 

0.1 0.109 0.109 0.121 0.120 0.133 0.132 0.113 0.113 0.0270 0.0274 

1 0.154 0.154 0.188 0.188 0.221 0.221 0.192 0.191 0.0459 0.0459 

10 0.150 0.150 0.193 0.193 0.239 0.239 0.210 0.210 0.0506 0.0504 

 

 Furthermore, the DSMC method is used, to compute, as described in Section 3.2, the ballistic and 

collision segments of the heat flow field. In Fig.4 the heat flux lines of the ballistic and collision parts as well 

as of the overall solution obtained by adding the two parts are plotted for 0 1Kn   and for several 

 / 0.05,0.1,0.3,0.5,0.9C HT T  . The corresponding contours of the vertical heat flux component yq  are also 

plotted. It is clearly seen that as /C HT T  is increased, i.e., as the temperature difference between the hot and 

cold walls is decreased, the curvature and concentration of the ballistic and collision heat flux lines are 

becoming similar. This is evident for / 0.5C HT T   and 0.9. Of course their direction is opposite, i.e., the 

ballistic heat flux lines are starting from the walls and moving towards a focal point, while the collision heat 

flux lines are starting from a focal point and are moving towards the walls following however similar paths. 

Also, as /C HT T  is increased the focal regions (points) of the ballistic and collision heat flux lines are moving 

from top and bottom respectively to the center of the cavity. In the limiting case of / 1C HT T   the focal 

points are at the cavity center and the two fields counter balanced each other deducing an overall solution (as 

it should) equal to zero. This symmetry is gradually lost as the temperature ratio is decreased. Thus, for 

/ 0.05C HT T   and 0.1 both ballistic and collision parts have almost everywhere, except a small area of the 

collision part at the bottom, 0yq  , while for / 0.1C HT T  , yq  may be positive or negative. 

 

Figure 2: The vertical component of the 

macroscopic velocity along the lateral walls 

for various heat fluxes 
Hq  and various 

reference Knudsen numbers 
0Kn . 

Figure 3: Temperature ratio /C HT T  in terms 

of the dimensionless heat flux 
Hq  for various 

reference Knudsen numbers 
0Kn . 
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Figure 4: Heat flux lines and vertical component of the heat flux contours of the ballistic (left), collision (middle) parts 

as well as of the overall solution (right) for 0 1Kn   and various temperature ratios. 
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It is noted that although /C HT T  has a significant effect on the two parts of the solution, it has a 

relatively small effect in the overall solution, where as it is seen in Fig.4, there is a strong qualitative 

resemblance between the overall heat flux lines for all temperature ratios. In all cases the heat flux lines are 

departing from the bottom heated plate and they are directed mainly towards the upper plate, while some of 

the them are reaching the side walls. 

 

In Fig.5, the heat flux lines and the yq  contours are shown for 
0 0.1Kn   and / 0.5C HT T  . By 

comparing these results with the corresponding ones in Fig.4 it is seen that the effect of the gas rarefaction is 

important altering the structure of the ballistic and collision heat flux streamlines. 

 

 
Figure 5: Heat flux lines and vertical component of the heat flux contours of the ballistic (left), collision (middle) parts 

as well as of the overall solution (right) for 
0 0.1Kn   and / 0.5C HT T  . 

 

The rarefied gas flow and thermal configuration in a square cavity with the three walls maintained at 

some constant temperature and the fourth wall heated by a known heat flux has been solved via kinetic 

modeling in a wide range of the Knudsen number. It is believed that the present research work has both 

scientific interest and technological impact and it may support the design and optimization of MEMS devices 

operating far from local equilibrium.   
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