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Abstract 

In this work we consider the traveling salesman problem in a connected graph. We apply seven different formulations 
and we compare the results. We also apply Benders decomposition and we observe its behaviour regarding solution 
time. We conclude that Benders decomposition is not faster than the classical known formulations and we discuss 
possible reasons behind. 
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1.  INTRODUCTION 

Let  be a graph where  is a set of n vertices and  is a set of arcs or edges. Let  be a cost matrix 
associated with .  is the set of vertices such that  and . Note that we call the first 
vertex . Edges connect vertices such that edge  connects the vertices  and . We denote by  

 the binary variable which takes the value of 1 if the edge connecting  and  is included in the 
Hamiltonian cycle and 0 if not.  is the vector containing the values xij. Let cij be the vector of costs 
associated to the edge . The formulation of the TSP without the subtour elimination constraints (SECs) is 
equivalent to the assignment problem (AP) and is presented right below. 
 

 

subject to: 

 

 (1) 

 (2) 

 (3) 

The SECs can been represented in many various ways as it will be explained in the sequel. 
 
Solution algorithms for the TSP are divided in the literature in exact and heuristics. Heuristics can also be 
combined with exact solution methods yielding efficient hybrid schemes. Most modern algorithms able to 
tackle large instances of the TSP employ heuristics in some of the solution phases.  
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For a review of approaches to solve the TSP before 1992, the reader is referred to the comprehensive work 
of Laport (1992). A more recent review with developments and an updated set of modern areas of 
applications is included in Bektas (2006) and Saharidis (2014). Both exact and heuristics approaches have 
been employed to tackle the TSP. In the case of exact methods, the problem is formally modelled as an 
integer programming problem and related techniques are applied. In the case of heuristics, a formal 
representation using standard mathematical programming notation is not required. It is very common in 
mathematical programming to associate a problem with an easier or more popular one. There are thus two 
perspectives to consider the TSP pertaining to the associated underlying problem. 

 
The first perspective is to view it as an assignment problem where each vertex is assigned a descendent, 
coupled with a set of constraints ensuring the elimination of subtours. Taking the latter into consideration 
turns the problem from trivial to intractable. The modelling approaches focus on an elegant and economic 
formulation of the subtour elimination constraints. The work of Dantzig et al. (1954) constituted the first 
approach to model these constraints. The authors observe that if there was a subtour on a subset S of 
vertices, then this subtour would contain exactly |S| arcs and as many vertices. This observation is turned 
into a constraint where one forces every resulting subset of S to have contain no more than |S-1| arcs. 
Other such formulations emerged in the following decades inspired by the seminal work of Dantzig et al. 
(1954). In Miller et al. (1960), the number of constraints reduces significantly with the expense of additional 
variables. Other formulations called flow-based and time-staged were also mentioned presented later on in 
this paper. 

 
A second perspective of viewing the TSP is as a special case of a minimum 1-spanning tree. This analogy was 
nicely explored by Held & Karp (1969). The idea is to carefully create an objective function such that the 
result of the spanning tree which is a lower bound of the TSP closely approximates the TSP. The formulation 
of the minimization of 1-spanning trees by default excludes subtours, so there is no reason to enforce any 
subtour elimination constraints. On the other hand, in a minimum spanning tree there may be nodes with a 
degree greater to two, that is for instance, a node with two descendants nodes, which is prohibited in the 
TSP. 

2.  SOLUTIONS METHODS FOR THE TSP 

As mentioned before, one may consider the TSP as a combination of an assignment problem and a set of 
subtour elimination constraints. There are seven available formulations which are presented in Table 1; 
their difference relate to the way the SECs are represented. 
 

Table 1 Formulations and acronyms 

Acronym Description Reference 

DFJ The conventional algorithm Dantzig et al., 1954 
MTZ The sequential algorithm Miller et al., 1960 
SCF Single commodity flow Gavish & Graves, 1978 
TCF Two-commodity flow Finke et al., 1984 
MCF Multi-commodity flow Wong, 1980 
TS1 Time-staged 1 Fox et al., 1980 
TS2 Time-staged 2 Fox et al., 1980 
TS3 Time-staged 3 Vadja, 1961 

 
We tested and compared the above formulations and obtained the following results. We performed the 
experiments on a dual-core 2.2GHz processor with 3GB of usable memory. The code was on C++ (Concert 
Technology) and the solution was provided by the IBM ILOG CPLEX 12.4 suite. Table 2 presents the outcome 
of these experiments. 
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Table 2. Comparison of exact formulations (solution time in s) 

# nodes DFJ MTZ SCF TCF MCF TS1 TS2 TS3 

15 2.20 0.16 0.20 0.39 1.08 3.08 3.14 0.84 
17 15.27 0.90 0.50 0.88 0.50 6.02 5.86 5.45 
25 - 1.19 0.89 1.48 3.77 396.36 187.36 382.20 
31 - 23551.86 2.75 18.19 27.64 - 60338.47 - 
43 - 26.46 5.22 5.09 188.48 - 21326.84 3287.49 
50 - 33.91 15.28 40.81 573.27 - - - 
65 - 94.23 130.86 66.42 2582.75 - - - 
80 - 2154.37 315.22 247.86 9429.70 - - - 
93 - 357.97 316.48 285.00 - - - - 
120 - - 1345.88 12789.48 - - - - 

 
 

We observe that the conventional formulation DFJ that was historically the first one proposed quickly 
shows its limits. We cannot afford solving any problem larger than 17 cities, which is our case sounds too 
restrictive. Time-staged formulations also seem to quickly attain their limits. In the following we wish to 
seek the optimal solutions in shorter times, so we decide to test decomposition methods. The Benders 
decomposition method is the most popular and generic; next we will try to customise this solution in order 
to try it on our problem. 
 

2.1. Benders Decomposition on TSP 

We briefly recall the idea of the Benders algorithm (Benders, 1962) where we decompose the initial 
problem into the primal slave problem, which is a restriction of the initial problem and provides an upper 
bound in the case of minimisation; and the following relaxation of the initial problem, which is called the 
restricted master problem and provides a lower bound. At each iteration, the solution of the master is 
communicated to the slave and the slave returns feasibility and optimality cuts to the master. In our case, 
the master problem is the assignment problem and the slave problem is the SECs following each 
formulation. 
 
 We applied Benders decomposition on all the formulations above and compared them to the modelling 
and solution approach proposed in this paper. Table 3 presents the outcome of the experiments. 

 

Table 3. Benders decomposition results (solution time in s) 

Test case MTZ Benders on MTZ SCF Benders on SCF TCF Benders on TCF TS1 Benders on TS1 

15 0.16 0.52 0.2 0.7 0.39 1.24 3.08 11.06 
17 0.90 3.16 0.5 1.67 0.88 2.93 6.02 19.95 
25 1.19 4.33 0.89 2.72 1.48 5.45 396.36 1504.57 
31 23551 70912.37 2.75 10.37 18.19 67.61 - 1853.95 
43 26.46 101.26 5.22 16.49 5.09 19.57 - 2451.54 
50 33.91 110.95 15.28 52.76 40.81 128.43 - 3432.15 
93 94.23 367.19 316.48 1002.4 285 880.54 - 7705.21 

 
Benders decomposition was shown to be slower than the initial formulation it was applied to. Typically, 
solution times are 2 to 3 times greater. We discuss possible reasons in the following section.  
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2.2. Discussion 

Benders does not seem to perform well on any type of the instances considered, the reason being the large 
number of iterations to convergence which essentially  translates to bad quality cuts. In the MTZ 
formulation, the returned cuts from slave to master are low-density cuts, that is, cuts in which a low 
number of variables appears compared to the number of variables appearing in the master problem. In the 

MTZ approach the density of the feasibility cuts is in the order or magnitude . Consequently, 

when N is large, the number of variables included in the cuts is significantly low. It is known (for instance 
see: Saharidis & Ierapetritou, 2010; Saharidis et al. 2010) that in cases of low-density cuts, there is 
substantial room for improvement in the Benders decomposition. 
 
Another reason of this poor behaviour is the tightness of cuts. At every iteration of the algorithm, the 
following actions occur: 

- The master passes its optimal solution to the slave 
- If the slave is infeasible, it returns feasibility cuts to master; else the solution communicated by the 

master is optimal. 
 
In the case of Benders on theMTZ formulation, the slave problem has the following form: 
 

 (4) 

  
The feasibility cuts returned to the master have the following form: 
 

                                                (5) 

 

 

The dual value is non-zero only for those couples  and  for which was activated, i.e. . Let us 

construct a small example and observe the form this cut takes: 

Figure 1 Examples of two subtours 

 
 

In the example above, the master problem returned the solution: 
 

 
 
When solved, the slave problem assigns a non-zero dual value to those constraints containing  in 

the solution communicated by the master. The feasibility cut returned by the slave to the master is the 
following: 
 

 or  
 
Essentially, this constraint instructs the master to exclude the subtour {3-4-5} from the next solution 
proposed to the slave. In other words, the slave cuts does nothing more than informing the master about 
the subtour identified. This constraint is a simple SEC that could be manually added at each iteration, 
instead of having to solve a linear programme to obtain it. This idea need to be exploited further. 
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3.  CONCLUSIONS  

In this paper we tested the seven well known exact formulations for the TSP and we compared the results 
among them. The MTZ, SCF and TCF were proved to be the most powerful implementations.  
 
We also tested Benders decomposition on these formulations and observed that the performance was 
poor. The master problem consisted of the assignment problem while the slave problem varied across 
formulations. Regardless the formulation, the cuts returned from the slave to the master were of low 
quality. We focused on the MTZ formulation and suggested reasons of this poor behaviour. One reason was 
attributed to the density of the cuts that appear to be considerably low. The other reason related to the 
tightness of cuts that appear to be loose and at the time required to obtain a simple SEC by solving the slave 
problem. 
 
A future direction of this work will be to propose and implement ways to remedy the above two obstacles. 
The application of the cut covering bundle and generation and maximum density cuts is being consider to 
tackle the issue of low-density cuts. Appending progressively a tighter type of SECs at the master simply by 
inspecting the (master) incumbent solution is being considered to tackle both the issues of tightness and 
solution time of the whole algorithm. 
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