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A structural gradient theory of torsion of thin-walled beams is developed. A non-local estimate of the
mean value of the angle of twist of the beam leads to a shear gradient that is energetically consistent with
a bi-moment, in the spirit of the averaging theory of Vardoulakis and Giannakopoulos (2006). The geo-
metric details of the cross section play the role of the microstructure of the beam, introducing a size effect
in the torsion problem. The appropriate boundary conditions are derived from the variational formulation
of the problem. The proposed gradient elasticity theory is identical to Vlasov’s torsion theory of thin
walled elastic beams. The tension of pre-twisted DNA is analyzed at high axial loads, where enthalpic
elasticity prevails. A size effect is naturally introduced, indicating that shorter DNA lengths lead to stiffer
response in torsion. It is shown also that the complete unwinding of DNA triggers the debonding of its
strands.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The averaging theories of Mechanics are based usually on the
so-called simple theories, where local field variables are identified
with mean values and the corresponding continua are described as
locally homogeneous. However, when the field variables are locally
not adequately represented by linear functions, the averaging pro-
cedures must be corrected to incorporate at least the effect of the
local curvature and the resulting field theories are called higher
gradient theories (Green and Rivlin, 1964). Vardoulakis and Gian-
nakopoulos (2006) demonstrated these ideas by revisiting the
engineering beam-bending theory. The idea of relating classical ad-
vanced theories of structures, like Timoshenko beams and Reiss-
ner–Mindlin plates (with rotary inertia and shear corrections),
has also been used by Papargyri-Beskou et al. (2009) and showed
equivalence with their corresponding reduced theories, like Ber-
noulli–Euler beams and Kirchhoff plates, but in their gradient elas-
ticity formulation. Theory of ropes and cables (e.g. Costello, 1983)
can also benefit from the present approach.

In the present work, we extend these ideas to the beam-torsion
theory and model the deformation of pretwisted DNA molecules,
employing the simplest version of Toupin–Mindlin gradient theory
that involves an isotropic linear response and only one material
constant additional to the standard elastic constants (Toupin,
1962 and Mindlin, 1964). This theory can be viewed as a first order
extension of the classical elasticity theory, which assumes a strain
energy density function that depends on the strains and the strain
gradients (Georgiadis et al., 2004 and Georgiadis and Anagnostou,
2008). As will become more evident later-on in this work, the fore
mentioned gradient elasticity theories involve complicate bound-
ary conditions (Bleustein, 1967) and allow for boundary layer ef-
fects that can capture phenomena related to fracture (e.g.
Georgiadis, 2003 and Shi et al., 2000), dislocations (e.g. Lazar and
Maugin, 2005), dispersion phenomena at high frequencies (e.g.
Vardoulakis and Georgiadis, 1997 and Papargyri-Beskou et al.,
2009), to mention but few.

The classical linear elasticity theory of torsion of beams is based
on the notion that the rotation (angle of twist) / of the cross sec-
tion varies linearly along a straight beam, and the strain energy
per unit length of the beam �U depends on the constant gradient
(or ‘‘rate’’) of twist a ¼ d/

dz, where z is the coordinate along the beam
axis (Sokolnikoff, 1956). The corresponding ‘‘structural constitutive
equation’’ is of the form
T ¼ @
�U að Þ
@a

¼ GJa; ð1Þ
where T is the applied torque, G the elastic shear modulus, and J the
torsional constant of the cross section.
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Fig. 1. Topology of the DNA molecule. Two strands of sugar-phosphate backbone
form a double helix. The strands hold together with nitrogenous bases that form
specific pairs through hydrogen bonds. (www.scq.ubc.ca/wp-content/dna.gif).
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Beams constitute parts of structural systems and are often
loaded by axial forces and bending moments, in addition to torsion
moments. Beams are often connected in ways that coupling phe-
nomena between torsion, bending and stretching take place at
their ends. A notable coupling case is the torsion-bending type of
buckling (Timoshenko and Gere, 1961). Solving such problems
can be very difficult in general.

In the present work we address the problem of inhomogeneous
torsion and assume that the gradient of twist is not constant along
the beam. We formulate a ‘‘gradient’’ (multipolar) linear elasticity
theory for beam torsion and bring in the DNA’s microstructure.

The new structural theory could be viewed as a ‘‘composite’’
averaging where non-affine ‘‘strains’’ are introduced as boundary
conditions to the ‘‘representative volume element’’, which in this
case is the cross section of the beam. Put in other words, this pro-
cedure is an averaging methodology that uses non- affine strain
distributions as proposed originally by Mindlin (1964). In order
to establish well-posed boundary value problems, the new high-
er-order theory requires the introduction of a new structural vari-
able, the ‘‘bimoment’’B, which was first introduced by Vlasov
(1969) in his theory of thin-walled beams with open cross sections.
This, in turn, introduces additional natural boundary conditions at
the ends of the beam. The strain energy density per unit length of
the beam �U depends now not only on the rate of twist a ¼ d/

dz but on
its gradient ��j ¼ d2/

dz2 as well. The corresponding structural constitu-
tive equations now become

TSV ¼
@ �U a; ��j
� �
@a

¼ GJa and B ��j
� �
¼
@ �U a; ��j
� �
@��j

¼ ‘2GJ��j ð2Þ

where TSV is the classical Saint–Venant torque and ‘ is a ‘‘structural
length’’. In this approach, ‘‘size effects’’ become evident, since the
additional constitutive Eq. (2b) introduces a length scale that unifies
the elastic energy contributions from both the classical moment
and the bimoment.

We apply the theory to the tension of a single DNA molecule
that has been initially stretched by a high tensile load. DNA is a
polymer of desoxyribonucleic acid, with high molecular weight
(106–108), which resembles a double helix (Watson–Crick helix)
of diameter 2 nm. It has a natural rate of twist of about 1.85 rad/
nm (Bao, 2002). The main backbones of the helix are two parallel
strands of phosphate sugar groups with an ester linkage, tying each
one to the next sugar group all the way along the backbone. At
right angles to the backbone are the bases, which are characteristic
organic components of a nucleic acid molecule. They are held to-
gether in the middle by hydrogen bonds, making the DNA a com-
pact and fairly rigid structure. A double-helical DNA chain has
ten base pairs per helical turn of length 3.4 nm (Bao, 2002). Many
viruses contain a DNA and can cause diseases that afflict humans,
plants, and animals. The DNA of a virus must have enough tor-
sional stiffness and strength to be able to drill through the tough
bacterial cell walls. The DNA exists in moving liquids and needs
to resist twisting due to the development of turbulent wakes of
the fluids passing around it. Marko (1997) showed a strong cou-
pling between stretching and twisting of the double helix. It is
clear that the assessment of the response of DNA under tension
is important. When DNA is in ambient tension of more than about
F0 ffi 10 pN, its material behavior changes from entropy-dominated
to elasticity (enthalpy)-dominated (Smith et al., 1992). Theoreti-
cally, this limit tensile force has been calculated to be (Odijk, 1995)

F0 ¼ KBTa
pE

16KBTa

� �1=3

; ð3Þ

where KB is the Boltzmann constant, Ta is the absolute temperature,
and E is the linear elastic Young’s modulus. Regarding the elastic
modulus E, Baumann et al. (1997) found that it depends on the ionic
strength of the monovalent salt in the surrounding the DNA fluid.
They report that when the applied tensile force Fis larger than a va-
lue F0 ffi 10pN at ambient temperature, the stretch modulus for k-
DNA in a solution containing 93 mM Na+ is S ¼ 1006pN. They also
report the Poisson’s ratio to be in the range 0 < m < 0:4. Linear the-
ory applies as soon as the molecule untangles under a very low load,
as predicted by Eq. (3). Prior to that the molecule is coiled and the
deformation follows the statistical mechanics random walk models
(entropic mechanics), which also accounts for large deformations
due to untanglement. We are not, however interested in that part
of the deformation. Our concern is at higher loads when the DNA re-
sponse is ‘‘linear’’ and ‘‘elastic’’, as suggested by the tests (enthalpic
elasticity).

The topology of the DNA molecule is shown in Fig. 1; it shows a
cross section that resembles a thin-walled open cross section
rather than a circular cross section that almost all investigators
have assumed so far. The structural form of the DNA molecule
resembles that of a beam, with its cross section geometry often as-
sumed to be circular with radius of 1 nm (Bao, 2002). However, a
closer look at the shape of DNA (see for example Cluzel et al.,
1996) shows that, after some stretching of the grooves of the heli-
cal coiling, its cross section appears approximately as an
orthogonal.

The non-circular cross section of a beam produces out-of-plane
deformation of the cross section (warping). If warping is con-
strained at one end, the elastic response changes drastically due
to torsional coupling, even though no macroscopic torsional mo-
ment is applied at the ends of the beam. The analysis depends
critically on the end boundary conditions. We formulate the prob-
lem of tension of pretwisted DNA by using the proposed structural
gradient elasticity theory. Then, we solve the problem of tensile
force-induced-torsion and give approximate closed form estimates
for the overall deformation and strength of the DNA beam model.

http://www.scq.ubc.ca/wp-content/dna.gif
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2. Multipolar elasticity analogue for the torsion problem of
thin-walled beams – Uniform versus non-uniform torsion

We consider a cylindrical beam an open thin-walled cross sec-
tion, which is constant along the beam. We introduce a Cartesian
coordinate system Oxyz with the z-direction along the axis of the
cylindrical beam and parallel to its generators. The beam is as-
sumed to be of length L and one of its bases is taken to lie on the
xy-plane, where z ¼ 0. The beam is loaded in torsion by couples,
the moments of which are normal to the bases of the cylinder.
The torque T may or may not be uniform along the beam. The lat-
eral surface of the cylinder is traction free. The material of the
beam is homogeneous, isotropic, linearly elastic, with Young’s
modulus E, Poisson ratio m, and shear modulus G ¼ E

2 1þmð Þ.
On each cross section, the arc length s is measured along the

middle line C in the counterclockwise direction, starting from
one end of the section, where s ¼ 0. At each point on the middle
line C, we introduce a normal direction normal n, in such a way
that the system nsz is right-handed, with n ¼ 0 on C and
� t sð Þ

2 6 n 6 t sð Þ
2 , where t sð Þ is the thickness of the cross section nor-

mal to the middle line. The beam is thin-walled in the sense that
the maximum value of t sð Þ along C is small compared to the dimen-
sions of the cross section (see for example Fig. 2).

2.1. Uniform torsion

We consider first the case in which the applied torque T is con-
stant along the beam and all cross sections of the beam are free to
warp. In that case, we have the classical Saint–Venant solution, in
which the rotation / about the z-axis of each cross section varies
linearly along the beam, i.e., (e.g., Sokolnikoff, 1956)

/ zð Þ ¼ /0 þ az and
d/ zð Þ

dz
¼ a ¼ const ð4Þ
Fig. 2. Cross section of an I-beam.
where /0 is the rotation of the base at z ¼ 0 of the beam and a is the
constant twist per unit length of the beam. On each cross section at
z, we define the average value of twist /h iz0

as

/h iz0
¼ 1
‘

Z z0þ‘=2

z0�‘=2
/ zð Þdz; ð5Þ

where ‘ is a sampling length. Using Eq. (4) for / zð Þ, we can show
readily that

/h iz0
¼ / z0ð Þ; ð6Þ

i.e., the average value of twist /h iz0
equals the local value / z0ð Þ.

The torque T is related to a by the well-known relationship

T ¼ GJ
d/
dz
¼ GJa; ð7Þ

where J ¼ 1
3

R
C t3 sð Þds is the torsional constant that depends on the

shape of the cross section. Eq. (7) can be thought of as an elastic
constitutive equation at the structure level that relates T to a.

Each cross section rotates rigidly in its plane by an angle / zð Þ
and warps; the axial displacement w of the points along the middle
line C of the cross section is independent of z and can be written in
the form

w sð Þ ¼ w0 � ax sð Þ; ð8Þ

where w0 is a constant and x sð Þ is the ‘‘sectorial area’’ of the middle
line (e.g., Oden and Ripperger, 1981,Cook and Young, 1985). Points
off the middle line experience an additional warping displacement
wsec, known as ‘‘secondary warping’’, which can become important
in beams of ‘‘moderate’’ thickness. A detailed discussion of wsec and
the corresponding secondary stresses is given by Wagner (1936),
see also Goodier (1962, p. 36–19) and Librescu and Song (2006, p.
18).

The axial strain ezz ¼ @w
@z vanishes along the middle line C. The

only non-zero stress component is the shear stress rsz, which is
practically independent of s (except near the ‘‘ends’’ of CÞ and var-
ies linearly with n:

rsz nð Þ ¼ 2T
J

n ¼ 2Gn
d/
dz
¼ 2Gna: ð9Þ

The shear flow vanishes in this case, i.e.,Z t sð Þ=2

�t sð Þ=2
rsz nð Þdn ¼ 0: ð10Þ

The elastic strain energy per unit length of the beam �U is

�U ¼ 1
2

T
d/
dz
¼ 1

2
Ta: ð11Þ

Fig. 2 shows the cross section of an I-beam with a flange width
b, web height h, and thickness t. A schematic representation of the
distribution of rsz on the cross section of an I-beam and the corre-
sponding torque are shown in Fig. 3.

2.2. Non-uniform torsion – restrained warping – Vlasov’s theory

We consider next the case in which the applied torque varies
along the beam and/or the end cross sections are constrained so
that they cannot warp freely. This problem has been addressed
in detail by Vlasov in the 1940s in his pioneering work on thin-
walled beams with open cross sections (Vlasov, 1969). That work
is based on two main assumptions:

(i) the cross sections are rigid in their own planes, but they can
warp out of their original planes and,

(ii) the shear strain esz vanishes along the middle line.



Fig. 3. Shear stress distribution according to the Saint–Venant theory of torsion.
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There are two main differences between the non-uniform case
and the uniform case described in Section 2.1:

(i) the twist / zð Þ is a non-linear function of z and,
(ii) the axial displacement w depends on z; in fact, along the mid-

dle line of the cross section, w can be written in the form
(Vlasov 1969)
w s; zð Þ ¼ w0 �
d/ zð Þ

dz
x� sð Þ on C; ð12Þ
where w0 is a constant and x� sð Þ is the ‘‘principal sectorial area’’ of
the middle line, which is determined with a sectorial pole that is
coincident with the ‘‘shear center’’ of the open thin-walled cross
section (principal pole) and a sectorial origin on the middle line
such that the integral of x� sð Þ along the middle line vanishes (prin-
cipal origin), i.e.,

R
A x�dA ¼ 0 (Cook and Young, 1985).

Since the axial displacement w depends onz, there exist axial
strains ezz, which take the values

ezz s; zð Þ ¼ @w s; zð Þ
@z

¼ � d2/ zð Þ
dz2 x� sð Þ on C: ð13Þ

The corresponding axial stress rzz is

rzz s; zð Þ ¼ Eezz s; zð Þ ¼ �E
d2/ zð Þ

dz2 x� sð Þ on C: ð14Þ

In view of the small thickness t sð Þ, the axial strain ezz and the corre-
sponding bending stress rzz are assumed to be constant through the
thickness of the cross section. Note that the following area integrals
vanish:Z

A
rzzdA ¼ 0;

Z
A

xrzzdA ¼
Z

A
yrzzdA ¼ 0; ð15Þ

Z
A

@rzz

@z
dA ¼ 0;

Z
A

x
@rzz

@z
dA ¼

Z
A

y
@rzz

@z
dA ¼ 0; ð16Þ

where A is the area of the cross section. According to the above
equations, the stress field rzz and the partial derivative @rzz

@z are
self-equilibrated, in the sense that the corresponding axial force N
and bending moments Mx and My on the cross section vanish.

Since the quantity @rzz
@z does vanish, there is a non-zero shear

flow qx s; zð Þ on the cross section, and the total shear stress rsz is

rsz n; s; zð Þ ¼ rSV
sz n; zð Þ þ rx

sz s; zð Þ ¼ 2TSV zð Þ
J

nþ qx s; zð Þ
t sð Þ ; ð17Þ

where the superscript SV indicates that the corresponding quantity
is calculated by using the Saint–Venant theory and the superscript
x denotes quantities that appear due to the non-uniformity of d/ zð Þ

dz .
We also have that (e.g., see Vlasov, 1969; Oden and Ripperger,
1981; Cook and Young, 1985; Chen and Atsuta, 2007)

T ¼ TSV zð ÞþTx zð Þ; TSV zð Þ¼GJ
d/ zð Þ

dz
; Tx zð Þ¼�EJx

d3/ zð Þ
dz3 ; ð18Þ

where

Jx ¼
Z

A
x�2dA ð19Þ

is the sectorial moment of the cross section with dimensions length
raised to the sixth power.

Eq. (18) are a generalization of Eq. (7) and, again, can be thought
of as elastic constitutive equations at the structure level.

The elastic strain energy per unit length of the beam �U is

�U zð Þ ¼
Z

A

rSV
sz

� �2

2G
þ r2

zz

2E

" #
dA ¼ GJ

2
d/ zð Þ

dz

� �2

þ EJx
2

d2/ zð Þ
dz2

" #2

: ð20Þ

The ‘‘bimoment’’ (or ‘‘warping moment’’) B is also defined as (Vla-
sov, 1969)

B zð Þ ¼
Z

A
rzz s; zð Þx� sð ÞdA sð Þ ¼ �EJx

d2/ zð Þ
dz2 ð21Þ

and has dimensions of moment�length raised to the power two. A
bimoment consists of equal and opposite moments acting about the
same axis and separated from one another; its value is the product
of the moment and the separation distance. The effect of a bimo-
ment is to warp cross sections and twist the beam. The notion of
the bimoment will become clear in the example of the I-beam that
follows.

In view of Eq. (21) that defines the bimoment B, the torque Eq.
(18) and the expression (20) for the elastic strain energy per unit
length of the beam �U zð Þ can be written in the form

T zð Þ ¼ GJ
d/ zð Þ

dz
þ dB zð Þ

dz
ð22Þ

and

�U zð Þ ¼ 1
2

TSV zð Þd/ zð Þ
dz
� 1

2
B zð Þd

2/ zð Þ
dz2 : ð23Þ

Note that the pairs T; d/
dz

� 	
and B;� d2/

dz2

� 	
are ‘‘work conjugate’’.

For the special case of an I-beam with a flange widthb, web
height h, and thickness t (Fig. 2), we have that

x� x; yð Þ ¼

h
2 x for y ¼ � h

2 ;

0 for � h
2 < y < h

2 ;

� h
2 x for y ¼ h

2 ;

8><
>:

rzz x; y; zð Þ ¼ E
d2/ zð Þ

dz2

� h
2 x for y ¼ � h

2 ;

0 for � h
2 < y < h

2 ;

h
2 x for y ¼ h

2 ;

8><
>:

ð24Þ

where the x-y axes are as shown in Fig. 2.
A schematic representation of the stresses that develop on the

cross section is shown in Fig. 4.
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The sectorial moment of the cross section and the bimoment for
the I-beam are

Jx¼
Z

A
x�2dA¼ 1

24
b3h2t; and B¼

Z
A
rzzx�dA¼�Eb3h2t

24
d2/

dz2 : ð25Þ

Fig. 5 shows the corresponding cross section resultant moments
TSV ; Tx and Mf for the I-beam. The bending moments shown on the
flanges of the cross section are

Mupper ¼ �Mlower ¼ Mf ey; Mf ¼ �
Z b=2

�b=2
xrzzjy¼�h

2
dx

¼ Eb3ht
24

d2/

dz2 ; ð26Þ

where ey is the unit vector along the y�axis. The bending moments
Mf correspond to the axial stresses rzz shown in Fig. 5 that develop
on the flanges due to the non-uniformity of d/

dz. The equal and oppo-
site bending moments Mf cause additional warping of the cross sec-
tion and create the bimoment B:

B ¼ �Mf h ¼ � Eb3h2t
24

d2/

dz2 : ð27Þ
2.3. A gradient elasticity formulation for restrained torsion and its
connection to Vlasov’s theory – The case of an I-beam

Here, we follow Vardoulakis and Giannakopoulos (2006), who
considered the bending problem of a T-beam, and present an alter-
native formulation for the problem of restrained torsion in the con-
text of a structural strain gradient elasticity theory. At the end of
this section, we consider the example of an I-beam.

The twist of the cross sections in the neighbor of z ¼ z0 is
approximated by a two-term Taylor series expansion:

/ zð Þ ffi / z0ð Þ þ
d/
dz

� �
z¼z0

z� z0ð Þ þ 1
2

d2/

dz2

 !
z¼z0

z� z0ð Þ2: ð28Þ

The average twist of the cross sections in the region
z0 � �‘

2 6 z 6 z0 þ �‘
2 is

/h i0 ¼
1
�‘

Z z0þ�‘=2

z0��‘=2
/ zð Þdzffi/ z0ð Þþ

�‘2

24
d2/

dz2

 !
z¼z0

so that / z0ð Þffi /h i0�
�‘2

24
d2/

dz2

 !
z¼z0

; ð29Þ
Fig. 4. Shear and normal stresses on an I-beam. The direct
where �‘ is a ‘‘structural length’’ to be defined later. The above equa-
tion shows that the local value / z0ð Þ can differ substantially from
the corresponding local average value /h i0, when the term
�‘2

24
d2/

dz2

� 	
z¼z0

is not negligible compared to /h i0. In classical ‘‘simple

theories’’, local field variables are identified with mean values and
the corresponding continua are described as locally homogeneous.
However, when the local variation of variables is significant (so that

terms such as �‘2

24
d2/

dz2

� 	
z¼z0

are comparable to /h i0Þ, higher order the-

ories are more appropriate. In that context, we propose to replace

the twist / in the structural constitutive Eq. (7) by /� ‘2 d2/

dz2 with

‘ ¼ �‘ffiffiffiffi
24
p , so that

T zð Þ ¼ GJ
d
dz

/ zð Þ � ‘2 d2/ zð Þ
dz2

" #
¼ GJ

d/ zð Þ
dz
� ‘2 d3/ zð Þ

dz3

" #
: ð30Þ

The above relationship can be viewed as an elastic structural consti-
tutive equation of the ‘‘strain gradient type’’. Eq. (30) is identical to
Eq. (18) of Vlasov’s theory, provided that we identify ‘2GJ with the
‘‘warping rigidity’’ EJx, i.e.,

‘ ¼

ffiffiffiffiffiffiffiffiffiffi
E
G

Jx
J

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ mð Þ Jx

J

s
or Jx ¼ ‘2 G

E
J ¼ ‘2 J

2 1þ mð Þ : ð31Þ

The results of the previous section can be recast now in the context
of a linearly elastic strain gradient formulation. The strain energy
per unit length of the beam that corresponds to the axial stress
rzz is (see Eq. (20))

�Urzz �
Z

A

r2
zz

2E
dA ¼ EJx

2
d2/

dz2

 !2

¼ �1
2

B
d2/

dz2 �
1
2

B��j; ð32Þ

where

��j � �d2/

dz2 : ð33Þ

Then, the structural ‘‘gradient elasticity’’ equations for the re-
strained torsion problem of the I-beam can be written as follows

equilibrium : T ¼ TSV þ dB
dz
;

dT
dz
¼ �mz; ð34Þ
ion of rzz corresponds to the case where d2/=dz2
> 0.



Fig. 5. Resultant moments on the cross section of an I-beam. Note that TSV and Tx correspond to couples acting on the plane of the cross section (torsion about the z-axis),
whereas Mf corresponds to a couple acting on the plane of the web (bending about the y-axis).
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compatibility : a ¼ d/ zð Þ
dz

; ��j ¼ �da zð Þ
dz

; ð35Þ

constitutive : TSV að Þ ¼ GJa; B ��j
� �
¼ ‘2GJ��j; ð36Þ

elastic strain energy density : �U a; ��j
� �

¼ GJ
2

a2 þ ‘2 ��j2
� �

; ð37Þ

so that

TSV ¼ @
�U
@a

; B ¼ @
�U

@��j
and �U ¼ 1

2
TSVaþ 1

2
B��j: ð38Þ

In Eq. (34b), mz is the distributed torsion per unit length of the
beam.

Combining the above equations, we conclude that the govern-
ing differential equation for / zð Þ is

d2/

dz2 � ‘
2 d4/

dz4 ¼ �
mz

GJ
: ð39Þ

In order to derive the appropriate boundary conditions for the
above differential equation, we present in the following section a
variational formulation of the problem.

For the special case of an I-beam with a flange width b, web
height h, and thickness t (Fig. 2), we have that

J¼1
3

2bþhð Þt3; Jx¼
1

24
b3h2t; ‘¼

ffiffiffiffiffiffiffiffiffi
E
G

Jx
J

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=G

2 2þ h
b

� �
s

bh
2t
; ð40Þ

ezz x; y; zð Þ ¼ d2/ zð Þ
dz2

� h
2 x for y ¼ � h

2 ;

0 for � h
2 < y < h

2 ;

h
2 x for y ¼ h

2 :

8><
>: ð41Þ

jzzx y; zð Þ � @ezz

@x
¼

� h
2

d2/ zð Þ
dz2 for y ¼ � h

2 ;

0 for � h
2 < y < h

2 ;

h
2

d2/ zð Þ
dz2 for y ¼ h

2

8>>><
>>>:

ð42Þ

and

��j ¼ � d2/

dz2 ¼ �
1
h

jzzxjy¼h
2
� jzzxjy¼�h

2

� 	
: ð43Þ
Following Vardoulakis and Giannakopoulos (2006), who considered
‘‘double forces’’, we give a geometric picture of the ‘‘double mo-
ments’’ introduced by Mindlin (1964). Referring to Fig. 4, where
the cross section moments are shown for an I-beam, we note that
the self-equilibrated bending moments Mf on the flanges are essen-
tially ‘‘double moments’’ which are responsible for the bimoment
B ¼ �Mf h and contribute to the elastic strain energy of the beam
U (see eqn (38b)).
3. Variational formulation, boundary conditions and general
solution – The pretwist

Having the DNA problem in mind, we include the effects of
‘‘pretwist’’ in the variational formulation of the problem. In partic-
ular, we consider the problem of torsion in an initially twisted
thin-walled beam of the type described in Section 2. The initial
twist is described by a rotation /0 zð Þ of each cross section about
the z�axis. The function /0 zð Þ is linear in z:

/0 zð Þ ¼ a0z; ð44Þ

where a0 is the constant rate of pretwist. The initial pretwisted
state is stress free.

A thorough review of the structural and dynamic behavior of
pretwisted rods and beams has been given by Rosen (1991). Fol-
lowing Rosen (1978, 1980), we introduce on each cross section at
z, a local coordinate system g� f by rotating the global x-y axes
about the z-axis by an angle /0 zð Þ. Then the analytical expression
that describes the boundary of each cross section relative to the
g� f system is the same for z. On each cross section at z, we have
the embedded coordinates

g x; y; zð Þ ¼ x cos /0 zð Þ þ y sin /0 zð Þ;
f x; y; zð Þ ¼ �x sin /0 zð Þ þ y cos /0 zð Þ; ð45Þ

so that

@g
@z
¼ a0f and

@f
@z
¼ �a0g: ð46Þ

The axial displacement w is written in the form Rosen (1978) and
Rosen (1980)
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w x; y; zð Þ ¼ w1 zð Þ þ d/ zð Þ
dz

W g x; y; zð Þ; f x; y; zð Þð Þ; ð47Þ

where W g; fð Þ is the usual Saint–Venant warping function, w1 zð Þ and
/ zð Þ are the basic kinematic unknowns, s is the arc length measured
along the middle line as before. The classical problem with no pre-
twist is recovered if we set w1 zð Þ ¼ w0 ¼constant and /0 zð Þ ¼ 0, so
that g ¼ x and f ¼ y.

In thin-walled cross sections, the warping function W can be
identified (to first order) with the negative of the principal sectorial
area x�, i.e., W ¼ �x�; when the thickness is moderate, additional
terms that account for the through the thickness variation of W can
be included (secondary warping) as discussed in Section 4.

On a thin-walled cross section, the only non-zero strain compo-
nents are

ezs n;zð Þ¼n
d/ zð Þ

dz
and ezz n;s;zð Þ¼ @w

@z
¼ d2/

dz2 Wþdw1

dz
þd/

dz
@W
@z

; ð48Þ

where n is again the coordinate normal to the middle line and

@W
@z
¼ @W
@g

@g
@z
þ @W
@f

@f
@z
¼ a0 f

@W
@g
� g

@W
@f

� �
: ð49Þ

The last two terms in the expression (48b) for the axial strain are
due to pretwist (compare to Eq. (13)).

The elastic stain energy per unit length of the beam is

�U zð Þ ¼
Z

A

E
2
e2

zz þ 2Ge2
zs

� �
dA ¼ �U0 þ �Upretwist; ð50Þ

where

�U0 / zð Þð Þ ¼ GJ
2

d/
dz

� �2

þ ‘2 d2/

dz2

 !2
2
4

3
5; ð51Þ

�Upretwist / zð Þ;w1 zð Þð Þ ¼ EA
2

dw1

dz

� �2

þ a2
0K
A

d/
dz

� �2
"

þ2
a0S
A

dw1

dz
d/
dz
þ 2

a0R
A

d/
dz

d2/

dz2

#
; ð52Þ

with

a2
0K ¼

Z
A

@W
@z

� �2

dA; a0R ¼
Z

A
W
@W
@z

dA; a0S ¼
Z

A

@W
@z

dA: ð53Þ

Non-zero values of K;R, and S are due to pretwist and are associated
with the z�dependence of the warping function W.

Remarks:

(1) If we use Schwartz’s inequality (e.g., Hardy et al., 1952, p.
133)
Z

A
fgdA

� �2

6

Z
A

f 2dA
� � Z

A
g2dA

� �
ð54Þ
with f ¼ @W
@z and g ¼ 1, we conclude that
Z

A

@W
@z

dA
� �2

6 A
Z

A

@W
@z

� �2

dA: ð55Þ
The last equality implies that
S2
6 AK: ð56Þ
(2) If we take into account that the warping function W is har-
monic r2W ¼ 0

� 	
and satisfies the condition

@W
@n ¼ fng � gnf on the boundary @A of the cross section,
where n is the outward unit normal and @W

@n ¼ rW � n, we
can show that S P 0. The proof is as follows (see also Corradi
Dell’Acqua, 1992, p. 301):
S ¼ 1
a0

Z
A

@W
@z

dA ¼
Z

A
f
@W
@g
� g

@W
@f

� �
dA

¼
Z

A

@

@g
fWð Þ � @

@f
gWð Þ

� �
dA ¼

I
@A

W fng � gnf

� �
ds

¼
I
@A

W
@W
@n

ds ¼
I
@A

W
@W
@g

ng þW
@W
@f

nf

� �
ds

¼
Z

A

@

@g
W
@W
@g

� �
þ @

@f
W
@W
@f

� �� �
dA

¼
Z

A

@W
@g

� �2

þ @W
@f

� �2

þr2W

" #
dA

¼
Z

A

@W
@g

� �2

þ @W
@f

� �2
" #

dA P 0;
where the boundary condition @W
@n ¼ fng � gnf and the divergence

theorem have been used. h

The total elastic strain energy U of the beam is

U ¼
Z L

0

�U zð Þdz: ð57Þ

We will obtain the governing equations and the corresponding
boundary conditions by minimizing the total potential U �W:

d U �Wð Þ ¼ 0; ð58Þ

where the external work W includes the total torque T, the axial
load N, the bimoment B, the distributed axial loads per unit length
pz ¼ � dN

dz , and the distributed torsional moments per unit length
mz ¼ � dT

dz, so that

dW ¼
Z L

0
pzdw1 þmzd/ð Þdzþ Ndw1ð ÞL0 þ Td/ð ÞL0

þ �B
dd/
dz

� �L

0
: ð59Þ

Taking the variation of U from (57) and using (59), we obtain:
d U�Wð Þ¼
Z L

0
�E A

d2w1

dz2 þa0S
d2/

dz2

!
�pz

" #
dw1

( )
dz

þ
Z L

0
GJ ‘2 d4/

dz4 �
d2/

dz2

!
�E a2

0K
d2/

dz2 þa0S
d2w1

dz2

!
�mz

" #
d/

( )
dz

þ E A
dw1

dz
þa0S

d/
dz

� �
�N

� �
dw1

� �L

0

þ GJ �‘2 d3/

dz3 þ
d/
dz

!
þE a2

0K
d/
dz
þa0S

dw1

dz

� �
�T

" #
d/

( )L

0

þ ‘2GJ
d2/

dz2 þa0ER
d/
dz
þB

!
dd/
dz

" #L

0

:

ð60Þ

In view of (58), we conclude that the governing equations for / zð Þ
and w1 zð Þ are

d2w1

dz2 þ
a0S
A

d2/

dz2 ¼ �
pz

EA
; ð61Þ

‘2 d4/

dz4 � 1þ E
G

a2
0K
J

� �
d2/

dz2 �
E
G

a0S
J

d2w1

dz2 ¼
mz

GJ
: ð62Þ

The boundary conditions resulting from (58) are that at the two
ends of the beam we can describe
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Highlight
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Highlight
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(i) either the twist / ¼ �/ ¼ known or

the torque 1þa2
0

E
G

K
J

� �
d/
dz
�‘2 d3/

dz3 þa0
E
G

S
J

dw1

dz
¼

�T
GJ
¼known;

ð63Þ
(ii) either the rate of twist d/
dz ¼ �/0 ¼ known or
the bimoment ‘2 d2/

dz2 þ a0
E
G

R
J

d/
dz
¼ �

�B
GJ
¼ known; ð64Þ
(iii)

either the axial displacement w1 ¼ �w1 ¼ known or

the axial force
dw1

dz
þ a0

S
A

d/
dz
¼

�N
EA
¼ known: ð65Þ
Remark: The pretwist a0 modifies the equations for the axial force,
the torque, and the bimoment. In fact, (61) and (62) imply that

N zð Þ ¼ E A
dw1 zð Þ

dz
þ a0S

d/ zð Þ
dz

� �
and T zð Þ

¼ TSV zð Þ þ Tx zð Þ þ Tpretwist zð Þ; ð66Þ

where

TSV zð Þ ¼ GJ
d/ zð Þ

dz
; Tx zð Þ ¼ �‘2GJ

d3/ zð Þ
dz3 ; Tpretwist zð Þ

¼ a0E a0K
d/ zð Þ

dz
þ S

dw1 zð Þ
dz

� �
: ð67Þ

The bimoment is now defined by Eq. (64):

B zð Þ ¼ � ‘2GJ
d2/ zð Þ

dz2 þ a0RE
d/ zð Þ

dz

" #
: ð68Þ

The terms that involve a0 in (66)–(68) are due to pretwist. h

We can combine (61) and (62) to eliminate w1 zð Þ. The resulting
differential equation for / zð Þ is

‘2

c2

d2

dz2 � 1

 !
d2/ zð Þ

dz2 ¼ f zð Þ
GJeff

; where f zð Þ

¼ mz zð Þ � a0
S
A

pz zð Þ ð69Þ

and

c2 ¼ 1þ a2
0

E
G

KA� S2

AJ
� Jeff

J
: ð70Þ

The constant c is dimensionless and accounts for the effects of pre-
twist; in the case of no pretwist a0 ¼ 0ð Þ; c ¼ 1 and Jeff ¼ J.

Note that a Schrödinger-like operator appears in (69a); this is
typical in strain-gradient beam problems (Vardoulakis and Gian-
nakopoulos, 2006; Papargyri-Beskou et al., 2003). It should be
noted also that the characteristic length ‘ multiplies the highest
derivative in the differential Eq. (69). Therefore, the problem with
a small ‘ – 0 is a ‘‘singular perturbation’’ to the classical case ‘ ¼ 0.
Boundary layers are known to develop at the ends of the beam for
‘ – 0 and the limit of the solution as ‘! 0 should be considered
with care (Van Dyke, 1975).

The corresponding boundary conditions at the ends of the beam
are
(i) either the twist / ¼ �/ ¼ known or

�‘2 d3/

dz3 þ c2 d/
dz
¼

�T
GJ
� a0

S
GJ

�N
A
¼ known; ð71Þ
(ii) either the rate of twist d/
dz ¼ �/0 ¼ known or
Fig. 6. Typical cross section of DNA. The strands are located at x ¼ �b=2 and in-

betwee
the bimoment ‘2 d2/

dz2 þ a0
E
G

R
J

d/
dz
¼ �

�B
GJ
¼ known: ð72Þ
In deriving (71), we made the assumption that w1 is not prescribed
at either end of the beam.
The corresponding torque Eqs. (67c) and (66b) take the form

Tpretwist zð Þ ¼ a2
0E

AK � S2

A
d/ zð Þ

dz
þ a0S

A
N zð Þ ð73Þ

and

T zð Þ ¼ GJeff
d/ zð Þ

dz
� ‘2GJ

d3/ zð Þ
dz3 þ a0S

A
N zð Þ: ð74Þ

Remark: In the classical theory ‘ ¼ 0ð Þ with no axial forces N ¼ 0ð Þ,
the last equation becomes

T zð Þ ¼ GJeff
d/ zð Þ

dz
; ð75Þ

where Jeff ¼ 1þ a2
0

E
G

AK�S2

A

� 	
J � c2J is the ‘‘effective torsional con-

stant’’, as determined by Rosen (1980). In view of (56), we have that
Jeff > J, i.e., pretwisting increases the torsional stiffness. h

The general solution of Eq. (69)a is

/ðzÞ¼A1þA2
cz
‘
þA3 cosh

cz
‘
þA4 sinh

cz
‘
� ‘

cGJeff

Z z

0

c z�nð Þ
‘
� sinh

c z�nð Þ
‘

� �
f nð Þdn: ð76Þ

The four dimensionless constants A1;A2;A3 and A4 are determined
by the boundary conditions.

4. Tension of DNA

The structural form of the DNA molecule resembles that of a
beam, with its shown schematically in Fig. 6. At the ends of the
cross section ðx ¼ þ� b=2Þ are the ‘‘strands’’, which are the sugar
phosphate backbone lines shown in Fig. 1. In-between are the
nitrogenous bases, namely the A–T, T–A, C–G and G–C pairs
between adenine (A), cytosine (C), thimine (T) and guanine (G).
Referring to Fig. 6, we note that the corresponding dimensions
are b ffi 2 nm and t ffi 0:5 nm, giving an approximate cross sec-
tional area A ¼ bt ffi1 nm2 (Bao, 2002). The reason for this
slender shape is that the bases that connect the two strands
are thin and, although they are from different matter than the
strands, we have no data to distinguish them elastically. There-
fore, a ‘‘homogenized’’ thin-walled cross section emerges in the
modeling.

For this cross section, the ratio t
b ffi 0:25, i.e., the thickness of the

cross section is ‘‘moderate’’. The torsional constant in this case can
be approximated by

J ffi bt3

3
1� 192

p5

t
b
þ 16

p5

t
b

� �5
" #

: ð77Þ
n are the base pairs (see also Fig. 1).



Fig. 7. Controlled stretch and twist using a magnetic device to pull DNA without
exerting a torque.
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We note that, in thin-walled beams t
b	 1
� �

, the sectorial area x�

vanishes along the middle line of the cross section shown in
Fig. 6; hence, the axial displacement w vanishes along the middle
line, no warping torque Tx can be developed and no longitudinal
stresses are produced by torsional loads, if a thin-wall theory is
used. However, when the thickness t is not extremely small com-
pared to b, a secondary stress system can develop perpendicular
to the middle line (see Oden and Ripperger, 1981, pp. 229–231).
This secondary state of stress is associated with the axial displace-
ment of points that are off the middle line on the cross section. Sec-
ondary axial stresses rsec

zz that vary linearly in the direction of the
plane of bending on the cross section and shearing stress rx

nz (nor-
mal to the middle line) can no longer be neglected, and a secondary
warping torque Tx

sec develops. In such cases the cross section under-
goes secondary warping and, consequently, possesses a secondary
warping rigidity EJsec

x . For sections such as this in Fig. 6, the only
warping stresses developed due to twisting are the secondary stres-
ses. A brief discussion of quantities associated to secondary warping
is given in the Appendix.

Returning to the DNA problem, we note that the torsional mo-
ment of inertia in this case is secondary and is approximated by
(e.g., Oden and Ripperger, 1981 and Rees, 2000)

Jx ¼ Jsec
x ffi

b3t3

144
: ð78Þ

A rigorous derivation of (78) has been given by Rodríguez and Viaño
(1993) and dell’Isola and Rosa (1994), who used asymptotic meth-
ods to determine a formal series expansion of the solution of the
torsion problem in terms of a small parameter (the thickness tÞ.

For the dimensions listed above, the corresponding values of J
and Jx are

J ¼ 70:27� 10�3 nm4 and Jx ¼ 6:944� 10�3 nm6: ð79Þ

Based on the discussion of the Introduction, we conclude that a typ-
ical value for elastic modulus of DNA can calculated as

E ¼ S
A
¼ 1006 pN

1 nm2 ¼ 1006 MPa ðfor F > F0Þ; ð80Þ

a value that we will adopt in the present analysis. Assuming that
the Poisson ratio takes the value m ¼ 0:25, we find that the internal
length in this case is

‘ ¼

ffiffiffiffiffiffiffiffiffiffi
E
G

Jx
J

s
¼ 0:497 nm: ð81Þ

The constants K;R; Sð Þ, defined in Eq. (53), are associated with
pretwisting and take the values (see Appendix)

K ¼ b5t
80

1� 10
9

t
b

� �2

þ t
b

� �4
" #

¼ 0:1869 nm6; R ¼ 0; S

¼ b3t
12

1� t
b

� �2
" #

¼ 0:3125 nm4: ð82Þ

Also, the constant c that defines the effective torsional stiffness in
Eq. (75) is

c ¼

ffiffiffiffiffiffi
Jeff

J

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0
E
G

AK � S2

AJ

s
¼ 1:0025: ð83Þ

We consider an almost straight DNA molecule of length L. A typical
test of stretching of DNA by a magnetic device is shown schemati-
cally in Fig. 7. The two ends of the DNA are attached on a flat glass
surface and on a magnetic bead respectively (Bao, 2002). In line
with the actual experiments, we assume that at one end z ¼ 0ð Þ
the molecule is fixed. At the other end z ¼ L, a known rate of twist
/0L is applied due to an axial tensile force F are applied. The F � /0L
relation and the value of F required to unwind the DNA are dis-
cussed in this section.

In this problem pz zð Þ ¼ 0 and mz zð Þ ¼ 0; the axial force is con-
stant and the torque vanishes, i.e., N zð Þ ¼ F and T zð Þ ¼ 0. The corre-
sponding boundary conditions for Eq. (69) are

/ ¼ 0 and
d/
dz
¼ 0 at z ¼ 0; ð84Þ

and

�‘2 d3/

dz3 þ c2 d/
dz
¼ �a0S

J
F

GA
and

d/
dz
¼ /0L at z ¼ L: ð85Þ

Such boundary conditions apply to actual experiments of combined
stretching and torsion of DNA molecules, as shown in Fig. 7.

The general solution of the governing differential Eq. (69) is

/ðzÞ ¼ A1 þ A2
cz
‘
þ A3 cosh

cz
‘
þ A4 sinh

cz
‘
: ð86Þ

The total torque vanishes, i.e., T ¼ TSV þ Tx þ Tpretwist ¼ 0, and the
individual components take the values

TSV ¼ cGJ
‘

A2 þ A3 sinh
cz
‘
þ A4 cosh

cz
‘

� 	
; ð87Þ

Tx ¼ � c3GJ
‘

A3 sinh
cz
‘
þ A4 cosh

cz
‘

� 	
ð88Þ

and

Tprerwist ¼ �a0S
F
A
þ a2

0cE
‘

� AK � S2

A
A2 þ A3 sinh

cz
‘
þ A4 cosh

cz
‘

� 	
: ð89Þ

the corresponding bimoment is

B zð Þ¼�c A2
a2

0RE
‘
þ A3cGJþA4

a2
0RE
‘

� �
cosh

cz
‘
þ A3

a2
0RE
‘
þA4cGJ

� �
sinh

cz
‘

� �
:

ð90Þ

The boundary conditions (84) and (85) define the constant
A1;A2;A3;A4ð Þ:
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Fig. 8. Normalized torque distribution along the DNA. Note that
TSV þ Tx þ Tpretwist ¼ 0 everywhere along the beam.
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A2 ¼ �A4 ¼ �
‘a0

c3

S
J

F
GA

; A1 ¼ �A3

¼ � 1
sinh cL

‘

cosh
cL
‘
� 1

� �
A2 þ

‘/0L
c

� �
: ð91Þ

Eqs. (87)–(90) become

TSV zð Þ
FL

¼ Z � a0S
c2AL

;
Tx zð Þ

FL
¼ �c2Z;

Tpretwist zð Þ
FL

¼ � 1� c2
� �

Z þ a0S
c2AL

; ð92Þ

where

Z ¼ 1
sinh cL

‘

GJ/0L
FL

sinh
cz
‘
þ a0S

c2AL
sinh

c L� zð Þ
‘

þ sinh
cz
‘

� �� �

and

B zð Þ
FL2 ¼ 1

sinhcL
‘

1
c

S
AL2 ‘a0 coshc L�zð Þ

‘
�a3

0R
cJ

E
G sinhc L�zð Þ

‘

h in
� 1

c2

S

AL2þ‘/
0
L

GJ

FL2

� �
cosh

cz
‘
þa2

0R
‘J

E
G

sinh
cz
‘

� �
þa3

0R
c2J

E
G

S

AL2 sinh
cL
‘

�
:

ð93Þ

The rotation of the cross section at the end z ¼ L is

/L � / Lð Þ ¼ ‘/
0
L

c
tanh

cL
2‘
� a0SL

Jeff

F
GA

1� 2‘
cL

tanh
cL
2‘

� �

ffi ‘/
0
L

c
� a0SL

Jeff

F
GA

1� 2‘
cL

� �
; ð94Þ

where we took into account that ‘=L	 1 and c ¼ O 1ð Þ. The above
equation can written also in the form

F
GA
¼ Jeff

S

‘
cL

/0L
a0

tanh cL
2‘�

/L
a0L

1� 2‘
cL tanh cL

2‘

ffi c2J
S
� /L

a0L
þ /0L

a0
� 2

/L

a0L

� �
‘

cL

� �
: ð95Þ

Define complete unwinding as: /L ¼ �/0 Lð Þ ¼ �a0L and /0L ¼ �a0.
The required force Fun results from (95):

Fun

GA
¼ Jeff

S
1� ‘

cL tanh cL
2‘

1� 2 ‘
cL tanh cL

2‘

ffi c2J
S

1þ ‘

cL

� �
: ð96Þ

We observe that Fun increases with increasing ‘, i.e., the largest the
characteristic length ‘ of the DNA beam, the stiffer the response.
This is a new result and differs from the classic prediction of con-
stant torsion stiffness of DNA that is based on the assumption of cir-
cular cross section.

As ‘! 0, the unwinding force Fun approaches the limiting value
of c2 J

S GA. Eq. (96) shows that

Fun P
c2J
S

GA; ð97Þ

i.e., the unwinding force has a definite lower limit that depends on
the geometry of the cross section and the shear modulus of the
material.

Typical values for the DNA are L ¼ 35 nm;a0 ¼ 0:04 rad=nm ¼
2:29
=nm (Bao, 2002). As mentioned in the introduction, a double-
helical DNA chain has ten base pairs per helical turn of length
3.4 nm, i.e., 10a ¼ 3:4 nm, where a is the length of one base pair
(Bao, 2002). Therefore, the initial twist rate of a0 ¼ 0:04 nm�1 ¼
2:29
 nm�1 corresponds to an ‘‘excess linking number’’ of
a0 � 10a ¼ 0:04 nm�1

� �
� 3:4 nmð Þ ¼ 0:136. The resulting value

from (96) for the unwinding force is

Fun ffi 92 pN: ð98Þ

This estimate for Fun is higher than the transition value of
F0 ffi 10 pN mentioned in the Introduction, consistent with the
assumption of entropic elasticity.
We conclude this section with a brief discussion of the effects of
the material length ‘ on the solution. In the case of the DNA con-
sider above the characteristic length of ‘ ’ 0:5 nm is small com-
pared to its length of L ¼ 35 nm and the effect of pretwist on
torsional constant is negligible:

‘

L
ffi 1

70
; c ffi 1; Jeff ffi J: ð99Þ

This may not always be the case. For example, experiments with
much smaller DNA lengths could be designed so that ‘

L ffi 1
10 (Lee

et al., 1994).
The size of ‘ controls the magnitude of the bimoment B and the

part of the torque Tx (both B and Tx vanish in the classical case
with ‘ ¼ 0Þ. In the problem under consideration the total torque
T vanishes; however, the individual components TSV ; Tx, and
Tpretwist are different from zero and satisfy the condition

TSV þ Tx þ Tpretwist ¼ 0 ð100Þ

everywhere along the DNA. The variation of the normalized compo-
nents of the torsional moment and the normalized bimoment along
the beam are shown in Figs. 8 and 9.

Figs. 8 and 9 show that the effects of ‘‘constrained warping’’ (or
the ‘‘length scale effects’’) are limited to a region of about
0:05L ffi 3:5‘ at the fixed end of the DNA, i.e., the region over which
Tx and B take substantial values is about 3:5‘. Along the rest of the
beam, Tx and B essentially vanish and the Saint–Venant torque
counteracts the pretwist TSV ffi �Tpretwist

� 	
.

5. Strength consideration for locally denatured DNA

Experiments indicate that the DNA strands can sustain very
high stresses and that the DNA could fail due to excessive shearing
of the weakest hydrogen bonds that hold the DNA strands together
(Smith et al., 1992). Lee et al. (1994) used the atomic force micro-
scope in order to measure the tensile rupture force of DNA mole-
cules. In particular, 10 active DNA molecules were immobilized
within the probe contact area of the microscope and the corre-
sponding rupture force was measured. The reported values are in
the range of 0:83� 1:52 nN, with most of the values being between
0.83 and 1:3 nN (Lee et al., 1994). We can distribute this force to
the average area of 10 molecules and calculate the average critical
shear stress scr that ruptures the bonding of the strands as
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Fig. 9. Normalized bimoment distribution along the DNA.
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scr ¼
1
2

F
10bt

¼ 1
2

0:83 to 1:3 nN
10� 2 nmð Þ � 0:5 nmð Þ

¼ 41:5 to 65 MPa: ð101Þ

At the full unwinding load of Fun ffi 92 pN the axial stress is

run
zz ¼

Fun

bt
ffi 92 nN

2 nmð Þ � 0:5 nmð Þ ¼ 92 MPa: ð102Þ

The maximum shear stress at the critical load is

smax ¼
run

zz

2
ffi 46 MPa; ð103Þ

which is close to the calculated shear strength. These results sug-
gest that as complete unwinding of the DNA is approached, damage
will commence, in good accord with experiments.
6. Conclusions

We have shown that the general problem of non-uniform tor-
sion of thin-walled open cross section beams can be modeled with
a strain gradient elasticity model. The general solution of the prob-
lem depends on classic boundary conditions and on non-classic
conditions like the axial variation of the twist and the warping
double torsion moment. Moreover, additional shear stresses devel-
op due to the warping constrain which can have a pronounced ef-
fect on the strength of the beam. Self-equilibrated axial stresses
develop in the beam and consequently an applied axial force can
give rise to torsion of the beam due to the axial variation of the
twist that develops in the structure. Thus, the analysis provides a
coupling effect between the twist rate and the average axial strain
of the cross section.

We have examined the tension of DNA at the stage that it un-
winds completely and is almost straight. At tensile axial loads that
are high enough, enthalpic elasticity becomes dominant. A key as-
pect of the analysis lies in the assumed shape of the DNA that
resembles to a thin strip rather than a cylindrical rod.

A characteristic length appears in the problem formulation and
is a fraction of the size of the cross section. As a result, a size effect
appears naturally in the context of the present analysis and implies
that shorter beams are stiffer in torsion than longer beams. Inter-
estingly, Vlasov’s theory of thin-walled, open cross section beams
is identical to the presented gradient type of elasticity theory, with
a characteristic length that depends inversely to the thickness of
the section walls. The internal length that is predicted from the
gradient elastic torsion model of DNA is about 0:5 nm. This leads
to a stiffer response of DNA in torsion than what has been previ-
ously considered. The torsion response can be sensitive to the
boundary conditions applied at the ends of the DNA molecule,
especially when a short part of it is in tension.

Due to the initial pre-twist, the axial force that is required to
straighten the DNA molecule gives high shear stresses that disrupt
the bonding of the base pairs and separates the DNA strands. This
critical shear stress is of order 46 MPa and can be produced by an
axial force of the order of 92 pN. This load is of the same magnitude
as the load that produces complete unwinding of the DNA, in good
accord with available experimental measurements. An important
conclusion of this work is that the complete unwinding of the
DNA triggers its denature and debonding.
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