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a b s t r a c t

Flow of a rarefied gas through a cylindrical tube connecting two reservoirs maintained at a small pressure
difference is considered using the axisymmetric version of the linearised BGK kinetic model equation
subject to Maxwell diffuse–specular boundary conditions. This is a problem of five dimensions in phase
space, solved in a fully deterministic manner using a parallelised discrete velocity algorithm. Results
include flow rates as well as distributions of density and velocity perturbations, from the free molecular
up to the slip regime and for length-over-radius (L/R) ratios ranging from zero (orifice flow) up to 20.
The dependency of the results on gas rarefaction, wall accommodation and tube length is analysed and
discussed. It is found that the Knudsen minimum appears only at L/R = 20. Furthermore, in the case
of L/R = 0 it is confirmed that the results are practically independent of the accommodation coefficient.
Comparing the present linear resultswith corresponding non-linear ones, it is seen that linearised analysis
can capture the correct behaviour of the flow field not only for infinitesimally small but also for small
but finite pressure differences and that its range of applicability is wider than expected. Also, the error
introduced by the assumption of fully developed flow for channels of moderate length is estimated
through a comparison with the present corresponding results.

© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

The flow of a rarefied gas through long or short cylindrical tubes
(including orifices) due to small or large pressure differences is
of major importance in the design and optimisation of various
types of industrial equipment in several technological fields.
Some of these applications include mass flow controllers in gas
metering [1], mass spectrometric sampling [2], micropropulsion
in high altitude and space gas dynamics [3], pumps and gas
distribution in vacuum systems [4–6], membranes and porous
media in filtering [7,8], gaseous devices inmicroelectromechanical
systems [9,10] and others [11–13]. Rarefied gas flows through
tubes also have a strong theoretical interest, mainly due to the fact
that a relatively small number of geometric and flow parameters is
adequate to fully define the problem. The study of such flows has
allowed the investigation of many non-equilibrium phenomena
in the whole range of the Knudsen number. In addition, they
have been applied as prototype problems to test the validity of
proposed kinetic equations, gas-surface scattering kernels and
intermolecular collision models, as well as to benchmark the
computational efficiency of various numerical schemes.

Fully developed flows in long channels, i.e. in channels where
the ratio of the length over the hydraulic diameter is large (a safe
estimate is about 100 or more), have been considered by many
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researchers [14–16] and for various geometries [17–22], both nu-
merically and experimentally. This flow configurationmay be con-
sidered as the simplest one, since channel end effects are neglected
and the pressure varies only in the flow direction. The kinetic so-
lution is obtained only on a cross section of the channel for a wide
range of the Knudsen number and then the solution for the whole
flow field is obtained via a well-known methodology based on
mass conservation [15,23]. Both for small and large pressure drops
between the inlet and outlet pressure, the local pressure gradi-
ent is small and linearised kinetic analysis may be applied in a
computationally efficient manner, yielding very accurate results.
Experimental work in flows through long channels has also been
performed and very good agreement between measurements and
computations has been obtained [22,24–26].

The corresponding flow through short channels poses much
larger computational difficulties due to the increased dimensional-
ity of the problemandmore importantly due to the fact that end ef-
fectsmust be considered in the simulation by including adequately
large parts of theupstreamanddownstreamcontainers in the com-
putational domain. As a result, the required simulation time is sig-
nificantly increased. Early works investigate slit and orifice flows
near the free molecular regime [27–29], with particular emphasis
on flow into vacuum, but their range of applicability is small. In or-
der to obtain the behaviour of the flow for any rarefaction regime,
the most commonly implemented and successful approaches rely
on the Direct Simulation Monte Carlo (DSMC) method [30]. At
large pressure differences, DSMC has been used, due to its sim-
plicity and high accuracy, in the whole range of rarefaction for the
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Fig. 1. Geometry and coordinate systems.

solution of high speed flows through slits [31–33], orifices [3,34,35]
and short channels [33,36,37]. These works have limitations in the
small pressure difference range and the investigations closest to
the present work were conducted by Sharipov [35] for orifice flow
with values of pressure ratio up to 0.9. It is well known that DSMC,
at least in its original version, is not suitable for the simulation of
low speed flows. Non-linear kineticmodel equations tackled by the
Discrete Velocity Method (DVM) have also been applied in [38–43]
for problems of plane and axisymmetric geometry (slits, plates, ori-
fices and tubes) and this approach could alternatively be used for
any value of pressure ratio.

In the case of small pressure differences, the literature is rather
limited. Akin’shin et al. [44] have solved the linearised non-
isothermal slit problemby the integralmomentmethod employing
the Shakhov kinetic model [45,46]. Flow through a slit has also
been examined by Hasegawa and Sone [47] for small pressure
differences with the BGK model. Sharipov has applied the DVM to
solve the linearised isothermal [48] and non-isothermal [49] slit
problem, where the satisfaction of the Onsager theorem is verified.
Shakhov solved the problem of linearised isothermal flow in
channels [50,51] and also compared with the fully developed flow
in a slightly different manner [50]. This procedure significantly
reduced the difference between the two approaches but a prior
knowledge of the pressure gradient is required, which is difficult
to obtain without the complete numerical simulation.

There are several experimental investigations regarding flow
through slits and orifices [1,52]. Results include mass flow rates,
discharge coefficients and interpolating formulas. Tubes of small
length-to-radius ratios have also been studied experimentally
by Sreekanth [53], Fujimoto and Usami [54], Marino [55] and
Varoutis et al. [56] for a wide range of pressure ratios in the
transition regime. However, very fewworks dealwith lowpressure
differences [57,58].

In this work, we apply a parallelised DVM algorithm to in-
vestigate flows through circular tubes driven by small pressure

differences in a wide range of the Knudsen number. The tube ge-
ometry ranges from orifice up to a length-over-radius ratio equal
to 20 and the channel end effects are considered by including a part
of the upstream and downstream containers. Low pressure differ-
ences have not been examined extensively in the past and a de-
tailed study of this problem is important in order to obtain reliable
solutions for conditions where the computational cost of DSMC is
very high. Results are provided in dimensionless form for the flow
rates and the macroscopic distributions and their dependency on
gas rarefaction, wall accommodation and tube length is analysed
and discussed. The range of applicability of linearised theory is
examined via a comparison with non-linear BGK results. Also, the
error introduced by the assumption of fully developed flow for
channels of moderate length is estimated through a comparison
with the corresponding present results.

2. Formulation

2.1. Flow configuration

Consider two reservoirs filled with a monatomic, rarefied gas
at slightly different pressures and connected by a cylindrical tube
through which flow is induced. The pressure of the upstream and
downstream reservoirs is P1 = P0 + 1P and P2 = P0 respectively,
as seen in Fig. 1. The fields of all bulk quantities change only along
the radial and axial directions, r̂ and x̂, while remaining constant
in the azimuthal angle ϑ due to the axisymmetry. Therefore, in
order to describe the geometry, only the tube length L and radius R
are required. Even though all walls and reservoirs are maintained
at a constant temperature T0, small variations of temperature are
expected in the flow field. Due to the relatively small length of the
tube, the flow is not fully developed and therefore a portion of the
two containers is included in the simulations in order to properly
impose the boundary conditions and take into account the channel
end effects.
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The basic flow parameter is the reference rarefaction parameter
δ, defined here as

δ =
RP0

µ0υ0
(1)

whereµ0 is the gas viscosity at reference temperature T0 and υ0 =
2RgT0 is the most probable molecular velocity with Rg being the

gas constant. It is noted that δ is inversely proportional to theKnud-
sen number.

The flow configuration is defined by the geometrical ratio L/R
and the reference rarefaction parameter δ and the objective is to
obtain the solution of this flow in terms of these two parameters.

2.2. Governing kinetic equations

For sufficiently long times and due to the nearly isothermal
nature of the pressure driven flow, the steady state BGK kinetic
model equation may be used

ξr
∂ f
∂ r̂

−
ξϑ

r̂
∂ f
∂θ

+ ξx
∂ f
∂ x̂

= ν

f M − f


(2)

where ξ = (ξr , ξϑ , ξx) is the molecular velocity vector and θ ∈

[0, 2π ] is the corresponding angle in the r̂ − ϑ plane, f is the
unknown distribution function and ν = P/µ is the collision fre-
quency. The Maxwellian distribution is defined by

f M

x̂, r̂


=

n

x̂, r̂


2πRgT


x̂, r̂

3/2 exp


−


ξ − û


x̂, r̂

2
2RgT


x̂, r̂

 
. (3)

Macroscopic quantities, such as the number density n

x̂, r̂


, bulk

velocity û

x̂, r̂


and temperature T


x̂, r̂


, are obtained by tak-

ing appropriate moments of f . The coordinates in the physical
x̂, r̂


and molecular velocity spaces (ξr , ξϑ , ξx) are shown in Fig. 1

and constitute a five-dimensional phase space for the distribution
function.

Since the pressure difference between the upstream and
the downstream vessel is small (1P/P0 ≪ 1), the distribution
function can be linearised as

f = f0 (1 + h1P/P0) (4)

with f0 being a Maxwellian at the reference conditions.
All quantities are expressed in dimensionless form as follows:

r =
r̂
R
, x =

x̂
R
, c =

ξ

υ0
,

ρ (x, r) =
n (x, r) − n0

n0

P0
1P

,

τ (x, r) =
T (x, r) − T0

T0

P0
1P

,

(5)

p (x, r) =
P (x, r) − P0

P0

P0
1P

, u (x, r) =
û (x, r)

υ0

P0
1P

where ρ, τ , u, p are the perturbations of density, temperature,
velocity and pressure. The right container conditions are taken as
reference quantities.

As a final step, the molecular velocity vector c = (cr , cϑ , cx)
is transformed to cylindrical coordinates c =


cp, θ, cx


. Thus, we

obtain

cp cos θ
∂h
∂r

−
cp sin θ

r
∂h
∂θ

+ cx
∂h
∂x

+ δh

= δ


ρ + τ


c2 −

3
2


+ 2c · u


. (6)

Similarly, themacroscopic quantity perturbations are expressed in
terms of the perturbation h

ρ =
1

π3/2


∞

−∞

 2π

0


∞

0
hcp exp


−c2


dcpdθdcx (7)

ux =
1

π3/2


∞

−∞

 2π

0


∞

0
hcxcp exp


−c2


dcpdθdcx (8)

ur =
1

π3/2


∞

−∞

 2π

0


∞

0
h

cp cos θ


cp

× exp

−c2


dcpdθdcx (9)

τ =
1

π3/2


∞

−∞

 2π

0


∞

0
h

2
3
c2 − 1


cp

× exp

−c2


dcpdθdcx. (10)

The perturbation of pressure is found by p = ρ + τ . The macro-
scopic velocity vector has only two components u = (ux, ur) due
to the axisymmetry of the flow. It is also noted that the pressure
difference is not included in these expressions and is taken into
account only during the dimensionalisation of results according to
Eq. (5). This is typical in linear solutions.

The most important quantity for practical applications is the
mass flow rate through the channel, defined by

Ṁ = 2πm
 R

0
n


x̂, r̂


ûx


x̂, r̂


r̂dr̂ (11)

with m being the molecular mass. The mass flow rate is linearised
to yield

ṀLIN = 2πmn0υ0
1P
P0

 1

0
ux (x, r) rdr (12)

and then the linearised mass flow rate is non-dimensionalised by
the free molecular (δ = 0) solution for flow through an orifice (a
tube of zero length) given by ṀFM = R2√π1P/υ0 [23], which can
be easily extracted by the method of characteristics. Results are
presented in dimensionless form according to

WLIN =
ṀLIN

ṀFM
= 4

√
πG (13)

where

G =

 1

0
ux (x, r) rdr (14)

is the reduced flow rate. Even though the expression for G contains
the axial velocity which depends on x, G (and WLIN ) is practically
constant in any cross-section.

It is also noted that according to [48] the linearised analysis is
valid when

1P
P0

≪ 1 (15)

for δ < 1 and

1P
P0

δ2
≪ 1 (16)

for δ > 1.

2.3. Boundary conditions

The formulation is completed by providing the boundary con-
ditions. Molecules entering from the free surfaces (A), (B), (F), (G)
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(as shown in Fig. 1) conform to a Maxwellian distribution accord-
ing to the conditions of the corresponding vessel. Thus, for the left
vessel, we have n = n0 + 1n, T = T0 and û = 0 and therefore the
perturbation from the equilibrium distribution is

h+

A,B = ρin =
(n0 + 1n) − n0

n0 (1P/P0)
=

(P0 + 1P) − P0
P0 (1P/P0)

= 1. (17)

Similarly, it is found that in downstream free surfaces (F), (G) the
perturbation of the incoming distribution is

h+

F ,G = 0. (18)

For the walls (C), (D), (E), diffuse–specular boundary condi-
tions are imposed, i.e.

h+
= αMρw + (1 − αM) h− (19)

where αM is the Maxwell accommodation coefficient and h− is the
distribution of impinging particles. The ρw constants are found by
imposing the impermeability condition (un = 0) and the velocity
integrals (8)–(9). The final expression is

ρw = −
Iimpinging + (1 − αM) Ispecular

αM Ideparting
. (20)

The notation ‘‘impinging’’ refers to the distribution of molecules
hitting the wall, while the words ‘‘specular’’ and ‘‘departing’’
denote the distribution of particles scattered specularly and non-
specularly, respectively. The integrals of Eq. (20) are

Ideparting

a =

 cx2a

cx1a

 π−θ1a

π−θ2a


∞

0


cpφa


θ, cp, cx


× exp


−c2p − c2x


dcpdθdcx (21)

Iimpinging

a =


−cx1a

−cx2a

 θ2a

θ1a


∞

0
h−


cpφa


θ, cp, cx


× exp


−c2p − c2x


dcpdθdcx (22)

Ispecular

a =

 cx2a

cx1a

 π−θ1a

π−θ2a


∞

0
hspecular

×

cpφa


θ, cp, cx


exp


−c2p − c2x


dcpdθdcx (23)

where a = C,D, E (see Fig. 1) and

C : θ1C = 0, θ2C = π, cx1a = −∞,

cx2a = 0, φC

θ, cp, cx


= cx

D : θ1D = 0, θ2D = π/2, cx1a = −∞,

cx2a = ∞, φD

θ, cp, cx


= cp cos θ

(24)

E : θ1E = 0, θ2E = π, cx1a = 0,
cx2a = ∞, φE


θ, cp, cx


= cx.

All of the above integrals are calculated numerically for consistency
reasons.

Finally, at the axis of symmetry (r = 0), denoted in Fig. 1 as (H),
molecules are reflected specularly, i.e.

h+

H


cp, θ, cx


= h−

H


cp, π − θ, cx


(25)

where θ ∈ [0, π/2].

3. Numerical scheme

3.1. Iterative algorithm and discretisation

The numerical scheme is based on the Discrete VelocityMethod
for the treatment of the three-dimensional molecular velocity
space. The continuum spectrum of the cylindrical components cp
and cx is discretised by the Legendre polynomial roots mapped in


0, cp,max


and


0, cx,max


respectively,while themolecular velocity

angles are uniformly distributed in [0, π ] due to the axisymmetri-
cal properties of the flow. The solution is obtained by an iterative
procedure, where the main unknown is the distribution function.
Initially, the perturbation of density is set equal to unity upstream,
zero downstream and varies linearly along the tube, while the per-
turbations of velocity and temperature are zero everywhere. This
estimation is chosen in order to accelerate convergence and is used
in combination with the governing equation (6) to calculate the
value of the distribution function h. The distribution function is fur-
ther used to generate new values for the bulk quantities via the
corresponding moments (7)–(10). These quantities are re-used in
the governing equation to obtain new estimates for h and this pro-
cedure is repeated until a proper convergence criterion, imposed
on the bulk quantities, is satisfied. A second order discretisation
scheme has been applied in the two-dimensional physical space,
derived in the same way as in [59] by integrating the governing
equation in r, θ, x in an arbitrary discretisation interval, acting in
both parts of (6) with the operator

A =

 xk+1xk/2

xk−1xk/2

 θj+1θj/2

θj−1θj/2

 ri+1ri/2

ri−1ri/2
(·) drdθdx. (26)

Then, all integrations can either be carried out analytically, by
eliminating the derivatives, or numerically by the trapezoidal rule,
using the values of the distribution at the limits of the discretisa-
tion interval, e.g. at xk −1xk/2, xk +1xk/2. The trapezoidal rule is
thus causing the second-order error. The final discretised expres-
sion is
c lp cos θj

41ri


hl,m
i+,j+,k+ + hl,m

i+,j−,k+ − hl,m
i−,j+,k+ − hl,m

i−,j−,k+

+ hl,m
i+,j+,k− + hl,m

i+,j−,k− − hl,m
i−,j+,k− − hl,m

i−,j−,k−


−

c lp sin θj

41θj


1
ri+


hl,m
i+,j+,k+ − hl,m

i+,j−,k+ + hl,m
i+,j+,k−

− hl,m
i+,j−,k−


+

1
ri−


hl,m
i−,j+,k+ − hl,m

i−,j−,k+

+ hl,m
i−,j+,k− − hl,m

i−,j−,k−

 
+

cmx
41xk


hl,m
i+,j+,k+ + hl,m

i+,j−,k+ + hl,m
i−,j+,k+ + hl,m

i−,j−,k+

− hl,m
i+,j+,k− − hl,m

i+,j−,k− − hl,m
i−,j+,k− − hl,m

i−,j−,k−


+

δ

8


hl,m
i+,j+,k+ + hl,m

i+,j−,k+ + hl,m
i−,j+,k+ + hl,m

i−,j−,k+

+ hl,m
i+,j+,k− + hl,m

i+,j−,k− + hl,m
i−,j+,k− + hl,m

i−,j−,k−


=

δ

8

 
ρi+,k+ + ρi−,k+ + ρi+,k− + ρi−,k−


+


c lp

2
+


cmx

2
−

3
2


×


τi+,k+ + τi−,k+ + τi+,k− + τi−,k−


+ 2c lp cos θj


ur,i+,k+ + ur,i−,k+ + ur,i+,k− + ur,i−,k−


+ 2cmx


ux,i+,k+ + ux,i−,k+ + ux,i+,k− + ux,i−,k−

  . (27)

In this discretised form, the indices i, k refer to the physical
grid, l,m refer to the discrete velocity magnitudes cp and cx re-
spectively, while j refers to the discrete velocity angle. The sign
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Fig. 2. Schematical representation of the marching scheme. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 3. Streamlines for L/R = 0 with (a) δ = 0.1 and (b) δ = 10.

a b

Fig. 4. Streamlines for L/R = 10 with (a) δ = 0.1 and (b) δ = 10.

following some indices indicates the position of the grid point
in comparison to the discretisation point, for example hl,m

i+,j+,k+ =

h

ri +

1ri
2 , xk +

1xk
2 , c lp, θj +

1θj
2 , cmx


. It is also noted that the val-

ues of the distribution function are stored only on the limits of the
discretisation interval, (i±, j±, k±) and not on the central point
(i, j, k). This expression is applied for any interval, regardless of the
grid distances 1ri, 1xk and the angle discretisation 1θj. It is also
usable for intervals containing grid points with r = 0 after the ap-
plication of the l’Hospital rule on the indeterminate fractions.

3.2. Parallelisation and memory handling

The computational effort can be distributed in several pro-
cessors by noticing that the distribution functions of different
velocity magnitudes can be calculated independently from one
another [60]. As a result, the code can be easily parallelised in
the molecular velocity space. Each processor solves the kinetic

equation for a group of velocities and information on macroscopic
quantities and impermeability constants is exchangedbetween the
processors at the end of each iteration. In this manner, the trans-
mission of the distribution is circumvented, greatly reducing the
cost of parallel communication. The parallelisation algorithm has
been tested in other problems [41] with several processors, dis-
playing very good scaling characteristics (e.g. 94% efficiency for
64 cores). For parallelisation of even larger scale, the parallelisa-
tion may be extended in the physical space.

Memory handling techniques have also been used to reduce
storage requirements because of the five-dimensional nature of
the distribution function for this problem. Due to the velocity
magnitude independency, a temporary array can be allocated and
overwritten after treating each magnitude. Furthermore, the di-
mensionality of this array can be reduced even more by storing
the distribution only in the parts of the domain required by the
marching scheme of the discretised governing equation. For exam-
ple, as seen in Fig. 2, the distribution is stored only at positions x
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a b

c

Fig. 5. Pressure perturbation distributions at the symmetry axis with (a) L/R = 0, (b) L/R = 2 and (c) L/R = 10 (the results for δ = 0.1 and δ = 1 coincide).

(red arrows) and x − 1x (green arrows), for motion towards the
positive x direction. Blue arrows indicate the boundary conditions,
while dashed arrows denote the symmetrical parts of the distri-
bution which are also neglected. These techniques permit having
a two-dimensional array for the distribution function and greatly
reduce memory limitations. In this manner, tubes of large L/R ra-
tios can be considered, since the size of the distribution array is
only determined by the height of the entrance/exit regions and the
number of the molecular velocity angles.

3.3. Computational grid, numerical parameters and benchmarking

The computational grid was non-uniform, with particular em-
phasis on the accuracy near the wall corners. The discretisation in-
tervals vary according to

1xi = 1x0 (1 + η)i (28)

and similarly for the r-direction. The smallest intervals 1x0, 1r0
are close to the corners. It is well known [47] that the up-
stream/downstream regions must be quite large, since the mass
conservation law indicates that the macroscopic quantities con-
verge to the uniform container values at a very high distance from
the tube. Therefore, container regions of size Lcon = Rcon = 50R
were used, after verifying that results do not change for larger val-
ues by parameterisation runs.

The average residual per nodehas been chosen as a convergence
criterion

residual =
1

4Ntotal

Ntotal
i=1

ρi − ρ
pr
i

 +
τi − τ

pr
i


+

ur,i − upr
r,i

 +
ux,i − upr

x,i

 (29)
where the pr superscript denotes the corresponding quantities in
the previous iteration and Ntotal is the total number of nodes. The
discretisation parameters used are displayed in Table 1. For the re-
sults shown here, 150–200 intervals have been used in the first
unit length around the corners, with the number of total physical
nodes varying between 6 × 105 and 106. The number of discrete
velocities ranged between 38,400 and 51,200. A typical computa-
tional iteration takes approximately 140–150 s with 32 CPU cores.
The total number of iterations needed to reach convergence de-
pends strongly on δ. Indicatively, for the satisfaction of the criterion
shown in Table 1, it is around 100, 3000 and 10,000 for δ = 0.1, 1
and 10, respectively. The dependence on the tube length is weaker,
due to the fact that the initial condition of linear distributionwithin
the channel approximates better the final solution for longer tubes.

The fulfilment of the mass conservation principle

1
r

∂ (rur)

∂r
+

∂ux

∂x
= 0 (30)

which has been obtained by taking the appropriate moment of
Eq. (6) in the molecular velocity space, was examined by calculat-
ing the left hand side of Eq. (30) in the whole field. It was shown
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Fig. 6. Axial velocity distributions at the symmetry axis with (a) L/R = 0, (b) L/R = 2 and (c) L/R = 10 (the results for δ = 0.1 and δ = 1 coincide).

Table 1
Computational parameters.

Minimum physical space interval 1x0 = 1r0 6.7 × 10−3

Physical discretisation increment factor η 10−2

Discrete velocity angles Nθ in (0, π) 150–200
Discrete velocity components cp and cx 16 × 16
Maximum value of velocity components cp,max and cx,max 5
Convergence criterion (residual) 10−8–10−9

that all values are very close to zero. Furthermore, the flow rate G
given by Eq. (14) was calculated for all cases in several positions
along the tube and it was found to be constant in at least three
significant figures. Finally, the free molecular solution is retrieved
with very good accuracy.

Overall the numerical results presented in the next section are
considered accurate up to 3 significant figures within (±1) in the
last figure.

4. Results and discussion

4.1. Flow rates

Results for the dimensionless flow rate WLIN are presented in
Table 2 for various values of the reference rarefaction parame-
ter δ and the length of the tube L/R, representing flows from the
free molecular up to the slip regime through orifices and tubes

Table 2
Dimensionless flow rate WLIN for various values of δ and L/R, with purely diffuse
reflection (αM = 1).

δ L/R
0 0.5 1 2 5 10 20

0 0.999 0.801 0.672 0.514 0.311 0.191 0.110
0.01 1.00 0.805 0.675 0.516 0.311 0.191 0.109
0.1 1.04 0.833 0.696 0.530 0.316 0.192 0.108
0.5 1.19 0.947 0.786 0.589 0.341 0.201 0.111
1 1.37 1.08 0.892 0.660 0.373 0.217 0.118
2 1.72 1.35 1.10 0.799 0.440 0.251 0.136
5 2.77 2.13 1.70 1.20 0.642 0.362 0.195
10 4.35 3.32 2.63 1.86 0.988 0.554 0.296

of small and moderate length. In particular, δ = [0, 0.01, 0.1,
0.5, 1, 2, 5, 10] and L/R = [0, 0.5, 1, 2, 5, 10, 20], while purely
diffuse reflection is assumed on the wall and αM = 1. It is seen
that, at each value of δ, the flow rate WLIN is decreased as L/R is
increased. This is well expected since as the channel length is in-
creased the local pressure gradient is reduced while the wall fric-
tion is increased, leading to lower bulk velocities. However,WLIN is
not directly proportional to the inverse of L/R. With regard to δ, it
is seen that for each 0 ≤ L/R ≤ 10 the flow rate WLIN is monoton-
ically increased along with the rarefaction parameter δ, while for
L/R = 20 the Knudsen minimum phenomenon, well known in the
case of long tubes, is observed. Thus, for L/R = 20 and starting from
the free molecular limit (δ = 0), the flow rate is slightly decreased



Author's personal copy

S. Pantazis, D. Valougeorgis / European Journal of Mechanics B/Fluids 38 (2013) 114–127 121

a b

c d

Fig. 7. Axial velocity distributions at various positions for δ = 0.1 with (a) L/R = 0.5 and (b) L/R = 10 and for δ = 10 with (c) L/R = 0.5 and (d) L/R = 10.

up to δ = 0.1 and then it is increased along with δ. It is noted that
the Knudsen minimum is very shallow compared to the one ob-
served in tubes of infinite length and it appears to a smaller value of
the rarefaction parameter (somewhere in the range δ = 0.1–0.5)
than expected.

Indicative results for incomplete accommodation are presented
in Table 3, where the dimensionless flow rateWLIN is tabulated for
δ = [0, 0.1, 1, 10] and L/R = [0, 1, 10], with αM = [0.5, 0.8]. It
is seen that in the case of L/R = 0 the flow rate remains constant
for all values of the accommodation coefficient (see also the fully
accommodated results of Table 2) and therefore is practically
independent of the wall accommodation properties. This is one
of the favourable properties of orifice flow, making it an ideal
configuration for the evaluation of numerical schemes, kinetic
models and intermolecular potentials, as well as for comparison
with experimental data, since the factor of gas-surface interaction
can be neglected in this case. Similar properties have been found
for slit flow [48]. For a tube of finite length, WLIN is increased as
αM is decreased and the interaction becomes more specular. This
trend is more dominant as δ is decreased and L/R is increased,
which is expected since surface accommodation properties play a
more important role for highly rarefied atmospheres and longer
channels.

In order to estimate the introduced error when the assumption
of fully developed flow (i.e. L/R → ∞) is applied to channels of
moderate length, a comparison with corresponding results of the
present work is performed. In Table 4 the flow rate WFD, obtained

Table 3
Dimensionless flow rateWLIN for various values of δ and L/R, with diffuse-specular
reflection (αM ≠ 1).

L/R
0 1 10

αM 0.5 0.8 0.5 0.8 0.5 0.8

δ

0 1.00 0.999 0.814 0.726 0.368 0.247
0.1 1.04 1.04 0.840 0.751 0.368 0.247
1 1.37 1.37 1.07 0.955 0.402 0.271
10 4.35 4.35 3.03 2.76 0.786 0.617

by the linearised formulation for fully developed flow is shown
for the two longest tubes examined here (L/R = 10, 20) and for
the same range of the rarefaction parameter (0 ≤ δ ≤ 10). The
quantities in parenthesis refer to the relative deviation, which has
been obtained by comparing the fully developed results of Table 4
with the corresponding ones in Table 2.

It is seen that the agreement is improved as L/R and δ are
increased. This is reasonable since, as the length of the tube
is increased, the channel ends affect a relatively smaller part
of the geometry, while high values of δ result in smaller flow
development lengths and therefore faster adaptation to the fully
developed flow profile. The maximum deviation, which is 39.8%,
occurs for L/R = 10 and δ = 0 as it could be expected, while
the minimum one is 6.7% and is found for L/R = 20 and δ =

10. These results provide an estimate of the accuracy to expect
when fully developed solutions are implemented in rarefied flows
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Fig. 8. Radial velocity distributions at various positions for δ = 0.1 with (a) L/R = 0.5 and (b) L/R = 10 and for δ = 10 with (c) L/R = 0.5 and (d) L/R = 10.

Table 4
Dimensionless flow rate WFD for various values of δ and L/R, obtained by the
fully developed flow approximation, with purely diffuse reflection (αM = 1); the
numbers in parenthesis denote the corresponding relative error.

δ L/R
10 20

0 0.267 (39.8%) 0.133 (20.9%)
0.01 0.262 (37.2%) 0.131 (20.2%)
0.1 0.249 (29.7%) 0.124 (14.8%)
0.5 0.246 (22.4%) 0.123 (10.8%)
1 0.258 (18.9%) 0.129 (9.3%)
2 0.294 (17.1%) 0.147 (8.1%)
5 0.416 (14.9%) 0.208 (6.7%)
10 0.632 (14.1%) 0.316 (6.7%)

through circular channels ofmoderate length due to small pressure
differences.

4.2. Macroscopic distributions

Streamline plots are shown in Figs. 3 and 4 for L/R = 0, 10 and
δ = 0.1, 10. These streamlines are indicative for the other values of
L/R and δ used in thiswork. It is confirmed that the impermeability
condition is always satisfied, producing completely horizontal
lines inside the channel, even for the demanding case of the
relatively long channels. The streamlines are symmetrical around

x = L/ (2R) and structures appearing in non-linear flows, such as
vortices, are absent.

The distributions of perturbed pressure and axial velocity along
r = 0 are shown in Figs. 5 and 6 respectively for several values
of L/R and δ. The perturbed pressure far upstream is equal to
unity, then it is reduced through the tube and finally becomes
zero far downstream. It is seen that the pressure profiles for each
L/R are quite similar for all values of δ. Also, they vary nearly
linear at the centre of the channel. This is more evident in the
case of the long tube L/R = 10 and it is reasonable since in this
case the hypothesis of fully developed flow is practically fulfilled.
The differences are mostly located in the gradient of pressure,
determining the flow rate. The axial velocity far upstream is zero,
then it is increased up to x = L/ (2R) where its maximum value
is reached and finally it is decreased to zero far downstream. For
L/R = 10 the axial velocity reaches a plateau after a distance of
around one tube radius from the inlet and then maintains this
value for the rest of the tube, showing close resemblance to a
fully developed profile. The perturbed pressure and reduced axial
velocity are antisymmetric and symmetric respectively about x =

L/ (2R).
The axial and radial macroscopic velocity component distri-

butions are shown in Figs. 7 and 8 respectively at the entrance
(x = 0), middle (x = L/ (2R)) and exit (x = L/R) of the tubes
with L/R = 0.5, 10 and δ = 0.1, 10. Due to the properties of the
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Fig. 9. Pressure perturbation for δ = 1 with (a) L/R = 0, (b) L/R = 1, (c) L/R = 5.

flow, the axial velocity profile is identical at the entrance and exit of
the tube (see Fig. 7), while the radial component is antisymmetric
around the tube middle (see Fig. 8). For δ = 0.1, the axial velocity
takes small values distributed in a rather narrow range and charac-
terised by a significant jump on the walls, while for δ = 10 a more
pronounced parabolic profile is obtained. The radial velocity distri-
bution approaches a linear form for the most linear case (δ = 0.1,
L/R = 10), while it is always zero in the middle. In all cases, larger
δ and smaller L/R lead to larger velocity magnitudes.

A more complete view of the flow field is presented in Figs. 9–
12 for various values of δ and L/R. The effect of changing the tube
length is examined for a constant rarefaction parameter δ = 1,
with L/R = 0, L/R = 1 and L/R = 5 in Figs. 9 and 10, where
the corresponding pressure and axial velocity fields are shown. The
pressure distribution around the channel ends gradually becomes
closer to the container values as the length increases, i.e. the
pressure contour colouring at each container is more uniform for
L/R = 5 than for L/R = 0, 1. This happens because the area of
the reservoirs affected by the channel flow is smaller for longer

channels, due to the smaller induced gas velocities. Also, a small
region of slightly higher and lower pressure than the container
values is also observed just above the channel openings. The axial
velocity is significantly reduced for longer tubes and seems to
develop a nearly constant profile inside the channel and in a
relatively short distance from the channel ends. The end influence
on the velocity profile seems to fade away around one unit of
dimensionless length inside the channel for L/R = 5 and δ = 1.
The effect of changing the rarefaction parameter δ is shown in
Figs. 11 and 12 for a tube of L/R = 2, with δ = 0.1, 1 and 10. No
significant changes occur for the pressure perturbations, besides
a slightly larger deviation of pressure in the containers from the
equilibrium values as δ is increased. The axial velocity values are
increased along with δ.

It is noted that the non-smooth distributions of themacroscopic
quantities in Figs. 5–12 are caused by the so-called ray effects.
These are present mainly at δ = 0.1, caused by the boundary in-
duced discontinuities of the distribution functionwhich propagate
through the flow field and become more dominant at small values



Author's personal copy

124 S. Pantazis, D. Valougeorgis / European Journal of Mechanics B/Fluids 38 (2013) 114–127

5

4

3

2

1

0

r

a

5

4

3

2

1

0

r

b

5

4

3

2

1

0

r

c

-5 -4 -3 -2 -1 0 1 2 3 4 5
x

-4 -3 -2 -1 0 1 2 3 4 5
x

-5 -4 -3 -2 -1 0 1 2 3 4 6 7 8 9 105
x

ux(x,r)

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

ux(x,r)

0.32
0.28
0.24
0.2
0.16
0.12
0.08
0.04

ux(x,r)

0.14
0.12
0.1
0.08
0.06
0.04
0.02

Fig. 10. Axial velocity for δ = 1 with (a) L/R = 0, (b) L/R = 1, (c) L/R = 5.

of δ. This is a disadvantage of the discrete velocity method, which
is not easily circumvented. However, it is expected to have no sig-
nificant effect on overall quantities, such as the flow rate.

4.3. Comparison with non-linear results

In this subsection, a comparison of the present linear flow rates
with corresponding ones based on the non-linear BGK equation,
denoted by WNL, is presented. For this purpose the flow rates WNL
for P2/P1 = 0.9 (or 1P/P0 = 0.1) and L/R = 0, 1, 5 are tabulated
in Table 5. The results have been obtained by the non-linear BGK
model [61] and have been found to be in very good agreementwith
corresponding DSMC results [35].

It is seen that the agreement between the linear flow ratesWLIN
and the corresponding non-linear ones WNL is very good in gen-
eral. The differences between are reduced as δ is decreased and as
L/R is increased. This trend is explained since as the gas becomes
more rarefied and the tube longer the bulk velocity is decreased
leading to small Mach and Reynolds numbers and to a linear sym-
metric flow field. In several cases the agreement is good to all three
significant figures shown, while the worst case is for δ = 10 and

Table 5
Dimensionless flow rate WNL for various values of δ and L/R with P2/P1 = 0.9 and
αM = 1, obtained by the non-linear BGK model [61].

δ L/R
0 1 5
WLIN WNL WLIN WNL WLIN WNL

0 0.999 1.00 0.672 0.672 0.311 0.310
0.1 1.04 1.04 0.696 0.695 0.316 0.315
1 1.37 1.35 0.892 0.881 0.373 0.375
5 2.77 2.73 1.70 1.69 0.642 0.641
10 4.35 4.24 2.63 2.60 0.988 0.973

L/R = 0, where the relative error is about 2.5%. Obviously, as the
pressure difference is decreased the agreement will be also signif-
icantly improved.

Based on the above it may be stated that for pressure ratio
values up to 1P/P0 = 0.1 the present BGK linear formulation
gives satisfactory results in good agreement with the non-linear
BGK formulations in the free molecular and transition regimes.
This remark has two implications: First, linearised equations pro-
vide correct results at a wider range than expected from the
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Fig. 11. Pressure perturbation with L/R = 2 and (a) δ = 0.1, (b) δ = 1, (c) δ = 10.

mathematical derivation, i.e., the pressure differencemust be small
but finite and not infinitesimally small as specified by theory. Sec-
ondly, linearised theory can be used as a complimentary approach
for a considerable range of pressure ratios, for which other com-
putational methods, such as the DSMC method, become computa-
tionally inefficient. It is noted that the computational efficiency of
the present DVM algorithm is practically independent of the pres-
sure difference.

5. Concluding remarks

Rarefied gas flow through cylindrical tubes due to a small
pressure difference has been investigated by the linearised BGK
model subject to Maxwell diffuse-specular boundary conditions.
The kinetic equations are solved by implementing an efficiently
parallelised and memory storage handling discrete velocity
algorithm. The investigation covers flow in the free molecular up
to the slip regime through tubes of very short (including orifices)
up to moderate lengths (L/R = 20).

The quantitative behaviour of the flow rate and the macro-
scopic distributions of pressure (or density) and velocity is exam-
ined in detail in terms of the rarefaction parameter δ and the tube

length ratio L/R. The flow rate is monotonically increased for L/R
below 20, where the Knudsen minimum shows up in the range
δ = 0.1–0.5. In the case of orifice flow (L/R = 0), it is confirmed
that the results are practically independent of the accommodation
coefficient, making this flow configuration very advantageous for
benchmarking and comparison with experimental data. Compar-
ing the present linear results with corresponding non-linear ones,
it is seen that linear analysis can capture the correct behaviour
of the flow field in the free molecular and transition regimes not
only for infinitesimally small but also for small but finite pressure
differences and it is argued that its range of applicability is wider
than expected. This is very important because linear analysis has a
solid andwell known theoretical background,which is very helpful
in the robust and reliable numerical solution of the governing ki-
netic equations. Finally, the introduced errorwhen the assumption
of fully developed flow is applied to channels of moderate length
is estimated by a comparison with corresponding results is per-
formed.

It is hoped that the present work may be useful in engineering
applications as well as in comparisons with experimental results
which are very limited in rarefied flows in the transition regime
due to small pressure differences.
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