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A novel algorithm is developed to solve steady-state isothermal vacuum gas dynamics flows

through pipe networks consisting of long tubes based on linear kinetic theory. For a pipe network

of known geometry the algorithm is capable of computing the mass flow rates (or the conductance)

through the pipes as well as the pressure heads at the nodes of the network. The pressure distribution

along each pipe element may also be found. Since a linear kinetic approach is implemented the

analysis is valid and the results are accurate in the whole range of the Knudsen number, provided that

the local pressure gradient along each tube of the network is small. This latter condition is satisfied

when the channel is sufficiently long. The involved computational effort is very small. This is achieved

by successfully integrating the linear kinetic results for the single tubes into the general solver for

designing the gas pipe network. To demonstrate the feasibility of the approach two typical piping

systems one in the range of small and a second one in the range of moderate Knudsen numbers are

simulated. The proposed algorithm simulates, in an exact manner, low-speed gas distribution systems

under any vacuum conditions based on linear kinetic modeling and constitutes a significant advance-

ment tool in vacuum technology. VC 2011 American Vacuum Society. [DOI: 10.1116/1.3645582]

I. INTRODUCTION

Steady-state isothermal rarefied gas flows in long circular

channels have been extensively investigated via linear

kinetic theory from the 1960s, implementing various semian-

alytical and numerical schemes. An extended and profound

review is given by Sharipov.1 Also, internal gas flows in

channels of various cross sections (orthogonal, ellipsoidal,

circular annulus, triangular) under any degree of gas rarefac-

tion has been studied by the integro-moment method2,3 and

more recently by the discrete velocity method.4–7 It is noted

that linear kinetic modeling is applicable, when the local

pressure gradient along the tube is small. This condition is

satisfied in the case of long tubes (e.g. the ratio of the length

over the radius to be approximately larger than 100), result-

ing to a low speed isothermal flow even if the overall differ-

ence between the inlet and outlet pressure is large.8 In

addition, in the case of long channels the end effects, i.e.,

losses in the inlet and outlet sections and connections of the

tube, are small compared to the losses through the tube and

may be neglected. Beaming effects are also not significant

when the channel is sufficiently long. These arguments are

supported by the very good agreement obtained between

kinetic and corresponding experimental results measured in

advanced vacuum and micro experimental facilities.9,10

Overall it has been demonstrated that for rarefied gas flows

in long channels, linear kinetic modeling, as described by

suitable kinetic model equations, may take advantage of all

flow characteristics and properties and yield very accurate

results in the whole range of the Knudsen number with mini-

mal computational effort.

In many applications, however, the rarefied gaseous dis-

tribution system consists not only of a single channel but of

many channels accordingly combined to form a network.

Such distribution systems are commonly found in several

technological fields including vacuum pumping, metrology,

industrial aerosol, porous media, and microfluidics. It is

pointed out that computational algorithms dedicated to the

design of gas pipe networks (e.g., compressed air, natural

gas, etc.) in the viscous regime are well developed,11–13

while corresponding tools for the design of gaseous pipe net-

works operating under any (e.g. low, medium, and high) vac-

uum conditions are very limited.

In the free molecular limit a vacuum system consisting of

many elements has been simulated by converting it first into

a vacuum circuit network and then to an analogous electric

circuit.14,15 This concept is valid when the whole system is

under very high vacuum conditions and intermolecular colli-

sions are negligible. As far as the authors are aware of, simu-

lations of complex gas distribution systems in the transition

regime have been performed only by the ITERVAC16 code.

This code has been developed within the European fusion

program in an effort to simulate the primary vacuum system

of the tokamak-type fusion reactor ITER, which is under

construction in south France. ITERVAC is an advanced

computational tool for the simulation of the mass flow

through ducts at isothermal conditions in a wide flow regime.

However, it is subject to certain theoretical simplifications,

while the implemented expressions, for estimating the con-

ductance through various pipe elements, are empirical based

on interpolation between free molecular and viscous results.

In the present work a computational approach based on

solid theoretical principals is presented for the design of

steady-state isothermal pipe networks consisting of long

tubes in the whole range of the Knudsen number. This isa)Electronic mail: diva@mie.uth.gr
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achieved by successfully integrating the linear kinetic results

obtained for the rarefied flow through each tube of the net-

work into a typical network algorithm solving the whole dis-

tribution system. Once the geometry of the network is fixed,

the integrated algorithm may successfully handle gas pipe

networks consisting of long tubes of any complexity operat-

ing under any rarefied conditions from the free molecular,

through the transition up to the slip and hydrodynamic

regimes. It is emphasized that the range of applicability of

the proposed algorithm is the same with the range of applic-

ability of solving low-speed isothermal rarefied gas flows

through long channels based on linear kinetic theory.1–8

II. FORMULATION

A typical pipe network may be considered as a directed

linear graph consisting of a finite number of pipe sections

interconnected in a specified configuration. Each pipe is

characterized of its length L, diameter D and some rough-

ness. A point where two or more pipes are joined is known

as a junction node or simply as a node. The closed path

uniquely formed by adjacent pipes is a loop, while the open

path connecting two fixed-grade nodes is a pseudoloop. A

fixed grade node is a node where a consistent energy grade is

maintained (e.g. a constant pressure reservoir). For a well-

defined network with p pipes, n junction nodes, l loops, and f
fixed-grade nodes the following relation holds:13

p ¼ nþ lþ f � 1: (1)

Usually the geometry of the network is specified and the

objective is to compute the flow quantities, i.e., the mass

flow rate (or the conductance) through each tube and the

pressure head at each node.

Independent of the flow regime, the system of equations

describing such a network consists of the pressure drop equa-

tions along each pipe element and the mass conservation

equations at each node of the network. The pressure drop

equations may be reduced to a set of the energy balance

equations for the closed loops of the network, which along

with the mass conservation equations form a closed set to be

solved for the unknown mass flow rates. Then, the pressure

heads at the nodes are estimated through the pressure drop

equations. When the Knudsen number characterizing the

flow through the network is very small and the flow is in the

continuum (or viscous) or slip regimes, then the pressure

drop equations along each channel are given by closed form

algebraic expressions and their integration in the whole algo-

rithm is straightforward. In contrary, when the flow is in the

transition regime such expressions are not available. This is

a serious pitfall which may be circumvented if the pressure

drop will be provided by solving these channel flows under

any vacuum conditions. Here, this information is obtained

from a data base, which has been developed for this purpose

by solving a linearized kinetic equation in the whole range

of the Knudsen number and obtaining the corresponding

data.

Based on the above, in Sec II. A all necessary information

of the kinetic solution for rarefied flow through a single tube

is provided, while in Sec. II. B the integrated algorithm for

the flow solution of the whole network is described.

A. Single pipe formulation

The solution of a pressure driven isothermal rarefied gas

flow through a long circular tube based on linear kinetic

theory is a very well known problem1 and therefore here,

only information which is directly connected and needed to

the solution of the whole network is reviewed. Since D� L,

the flow is considered as fully developed and therefore the

pressure (or density) varies only in the flow direction being

constant at each cross section, while end effects at the con-

necting nodes of the channel as well as beaming effects are

ignored.

The mass flow rate at each cross section through the tube

is given by1,7–9

_M ¼ 2p
ðD=2

0

qð~zÞ~uð~rÞ~rd~r; (2)

where 0 � ~r � D/2 is the radial direction, 0 � ~z � L is the

flow direction, q(~z) is the mass density and ~u (~r) is the bulk

velocity. Also, the equation of state is given by q¼ 2P/t2
0;

where P¼P(~z) is the local pressure along the tube and

t0 ¼
ffiffiffiffiffiffiffiffiffiffi
2RT0

p
; with R denoting the gas constant and T0 a ref-

erence temperature, is the most probable molecular velocity.

The diameter D and the molecular velocity t0 are taken as

the characteristic length and velocity, respectively. By sub-

stituting into Eq. (2) the equation of state, as well as the

dimensionless variables r¼ ~r/D, z¼ ~z/D, u¼ ~u/(t0XP) with

XP¼ (D/P)(dP/d~z) denoting the local pressure gradient,

yields

_M ¼ GðdÞ pD3

4t0

dP

d~z
: (3)

The quantity G dð Þ ¼ 16
Ð 1=2

0
u rð Þrdr is the local dimension-

less flow rate, which depends on the local rarefaction param-

eter d, and it is obtained by solving a suitably chosen

linearized kinetic model equation subject to some boundary

condition. Tabulated results of G(d) may be found in Ref. 9

(Table IV) in the whole range of d. Also, in the hydrody-

namic regime, i.e., as d!1, G(d)¼ d/16. The local rarefac-

tion parameter d is defined as

d ¼ PD

lt0

¼
ffiffiffi
p
p

2

1

Kn
; (4)

with l denoting the gas viscosity at reference temperature T0

and it is in general proportional to the inverse Knudsen num-

ber. The specific relation between d and Kn, as specified in

Eq. (4), is valid in the case of hard sphere molecules.

Following a straightforward procedure,1,8,9,17 it is found

that

_M ¼ G�
pD3

4t0

P1 � P2

L
; (5)
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where P1 and P2 denote the pressure at the two ends of the

tube and

G� ¼ 1

d1 � d2

;

ðd2

d1

GðdÞdd: (6)

The values d1, d2 correspond to Pl, P2 and denote the rare-

faction parameters at the two ends of the tube. The average

Knudsen number of the flow is defined as

Knave ¼
2ffiffiffi
p
p 1

dave

� �
¼ 2ffiffiffi

p
p 2

d1 þ d2

� �
: (7)

Once the mass flow rate is found the conductance C is easily

computed as18

C ¼
_M

m

RT0

ðP1 � P2Þ
(8)

with m denoting the molar mass of the gas. Also, the pres-

sure distribution along the tube may be computed by rear-

ranging Eq. (3) and solving the resulting ordinary

differential equation1,8,9,17 for the unknown P¼P(z).

For the purposes of the present work, the dimensionless

flow rates are estimated based on the linearized BGK equa-

tion with diffuse boundary conditions. Results of the quan-

tity G(d) are obtained from Ref. 9 or if additional estimates

in terms of d, not provided in Ref. 9 are needed, they are

computed. These results are kept in a data base and are used

in the solution of the network. In particular, in the process of

solving the whole network the pressures P1, P2 and therefore

d1, d2 are estimated and then the values of, G(d) obtained

from the data base are used in the integration according to

Eq. (6) to yield G*, which is substituted next into Eq. (5) to

deduce the mass flow rate for each pipe section of the

network.

B. Generalized network equations

As mentioned above the initial system of equations

describing the network consists of the pressure drop equa-

tions along each piping element and the mass conservation

equations at each node of the network. The pressure drop

equations are given by solving Eq. (5) for the pressure differ-

ence to yield

ðP1 � P2Þj ¼ DPj ¼ 4
_Mj

G�j

Ljt0

pD3
j

; (9)

where the index 1 � j � p denotes each of the p pipes of the

network. The mass conservation equations may be expressed

as13

X
j

ð6Þ _Mj � Q

" #
i

¼ 0; (10)

where the index 1 � i � n denotes each of the n junction

nodes of the network, while the summation index j refers

to the pipes connected to the node i, while Q¼Qi is the

external demand (if any) at node i. The plus and minus signs

are used for flow into and out of the node i respectively.

Equations (9) and (10) are coupled and may be solved for

the unknown pressure heads and mass flow rates.

However, it is convenient to reduce the number of equa-

tions by combining the pressure drop Eq. (9) along each

uniquely determined closed loop of the network to derive the

so-called energy balance equations given by13

X
j

ð6ÞðDPjÞ
" #

k

¼ 0: (11)

Here the summation index j pertains to the pipes that make

up a loop, while the index 1 � k � l, denotes each of the l
loops. The plus sign is used if the flow in the element is posi-

tive in the clockwise sense; otherwise the minus sign is

employed. By substituting Eq. (9) into Eq. (11), the energy

balance equations become

X
j

ð6Þ 4
_Mj

G�j

Ljt0

pD3
j

 !" #
k

¼ 0: (12)

Following this procedure, the pressure heads have been elim-

inated and Eqs. (10) and (12) form a well defined system

having as unknowns only the mass flow rates _Mj. Once this

system is solved for the mass flow rates then, the pressure

heads are obtained from Eq. (9). When there are fixed-grade

nodes in the network then, the system of equations for the

mass flow rates is amplified by the energy balance equation

around each pseudoloop connecting two fixed grade nodes

according to

X
j

ð6Þ 4
_Mj

G�j

Ljt0

pD3
j

 !
þ DH

" #
m

¼ 0: (13)

Here, the summation index j pertains to the pipes that make

up a pseudoloop, the index 1 � m � f �1, denotes each of

the f �1 pseudoloops ( f is the number of fixed grade nodes)

and DH is the difference in magnitude of the fixed-grade

nodes in the path ordered in a clockwise fashion across the

imaginary pipe in the pseudoloop. The plus and minus signs

follow the same arguments given for Eqs. (11) and (12).

Based on the above the final system of equations will con-

sist of n þ1þ f �1 equations to be solved for the p unknown

mass flow rates _Mj. This clearly explains why for a well

defined pipe network relation (1) must be satisfied. However,

it is important to note that since in the system consisting of

Eqs. (10), (12), and (13) the quantities G*
j are not known a

priori, an overall iterative algorithm incorporating Eq. (9) is

needed. The detailed description of this algorithm is pre-

sented in the next section.

III. NUMERICAL ALGORITHM

The developed code includes first the drawing of the net-

work in a graphical environment and then the formulation

and solution of the governing equations describing the flow
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conditions of the distribution system. The code is capable of

providing the input data and solving pipe networks of any

complexity.

The drawing of the network and the input of the data are

prepared on a graphical user interface (GUI). The develop-

ment of the graphic interface is based on available GNU

General Public License (GPL) libraries including some new

libraries written in javascript to match the needs of the appli-

cation. As a result, the user is able to draw the desired net-

work by adding nodes and pipe sections and the

corresponding data, i.e., the coordinates of the nodes in a 3D

space, the length and the diameter of the pipe elements, the

pressure heads of the fixed-grade nodes and information for

the type of the gas and its properties (viscosity, most proba-

ble molecular velocity, etc.). The demands (if any) at the

nodes are also provided. Therefore, a connectivity matrix for

each node and tube of the network is formed providing all

necessary information as input data. In addition, the code is

scanning to find all possible closed loops, keeping finally

only the l uniquely determined loops consisting of the least

number of piping elements and the f �1 pseudoloops between

the f fixed-grade nodes.

Once the network is drawn, the resulting input file is

introduced into a Fortran code. The code is based on an itera-

tive process between the pressure drop Eq. (9) and the sys-

tem of mass and energy conservation equations consisting of

Eqs. (10), (12), and (13), which may be summarized as

follows:

1. At all nodes of the network, where the pressure is

unknown it is initially assumed and the pressure differen-

ces DPj along each tube 1 � j � p are stored.

2. The rarefaction parameter at each node is estimated by

Eq. (4).

3. The quantity Gj
*, 1 � j � p, is estimated by Eq. (6) for

each tube using the available data base for the dimension-

less flow rate G (d). Cubic splines are used to interpolate

if needed between the values provided in the data base.

4. The system of mass conservation and energy balance Eqs.

(10), (12), and (13) is solved by applying Gauss elimina-

tion with full pivoting to compute the mass flow rates _Mj

through each tube 1 � j � p.

5. Equation (9) is solved to estimate the updated pressure

drops DPj.

6. The updated values of DPj are compared with the ones in

step 1, and the whole process is repeated upon

convergence.

It is noted that the iterative process will converge under

any initial conditions provided that all data characterizing

the loops and pseudoloops of the network, including Eq. (1),

are properly given. A detailed flow diagram of the developed

algorithm is shown in Fig. 1.

IV. RESULTS AND DISCUSSION

To demonstrate the feasibility and the effectiveness of the

proposed methodology the sample network shown in Fig. 2

is simulated. The network consists of p¼ 42 tubes n¼ 25

junction nodes {2,3,.,25,26}, f¼ 2 fixed-grade nodes {1,27}

and l¼ 16 loops (p¼ n þ1þ f �1). Nodes 1 and 27 refer to

two reservoirs, where the pressure is held constant. All tubes

are taken to have the same length and diameter, which are

equal to L¼ 10 m and D¼ 0.1 m, respectively. The reference

temperature is set to T0¼ 290.68 K. The conveying gas is

nitrogen (N2), with molar mass m¼ 0.0280314 kg/mol, gas

constant R¼ 296.92 J/(kg � K), most probable molecular ve-

locity t0¼ 415.47 m/s and viscosity l¼ 1.73562(�5) Pa � s.

Then, the system of governing equations includes 25

mass conservation equations at the junction nodes, 16 energy

balance equations for the closed loops, and 1 energy balance

equation for the open pseudoloop formed along the nodes

{1,2,3,4,5,6,11,16,21,26,27}. The total number of equations

of the system is 42 and its solution returns the 42 unknown

mass flow rates _M1; _M2; :::; _M42

� �
and the corresponding

conductances {Cl,C2,.,C42}. Then, from the pressure drop

equations the pressure heads {P2,., P26} are found. Finally,

the pressure distribution along each pipe element of the net-

work may also be estimated based on Eq. (3).

Two typical simulations are performed the first one in the

viscous (or hydrodynamic) regime (Sec. IV. A) and the sec-

ond one in a wide range of the Knudsen number (Sec. IV. B).

The former is used to benchmark and validate the algorithm

FIG. 1. Flow diagram of the algorithm.
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and the results and the latter one to demonstrate the applic-

ability of the whole approach in all flow regimes. This is eas-

ily adjusted by accordingly varying at the two fixed-grade

nodes the pressures P1 and P27.

A. Algorithm validation in the viscous regime

The pressure at nodes 1 and 27 is set equal P1¼ 70 Pa and

P27¼ 60 Pa. The corresponding Knudsen numbers are

9.13� 10�4 and 1.07� 10�3, which clearly indicates that

the flow in the network is in the viscous (or hydrody-

namic) regime. For generality purposes, demands (or lea-

kages) have been added at nodes 6 and 22, which are

equal to Q6¼ 1.40� 10�5 kg/s and Q22¼ 2.10� 10�5 kg/s,

respectively.

In Table I, the computed Knudsen number and pressure at

each node of the network are tabulated, while in Table II, the

mass flow rate and the conductance along each tube of

the network are presented. The negative values at some of

the mass flow rates indicate that the final direction of the

flow in this tube is opposite to the one initially assumed. The

total mass flow in tube 1 is 4.33� 10�5 kg/s, while in tube 42

is 8.32� 10�6 kg/s. The difference between these two quanti-

ties is 3.50� 10�5 kg/s, which is equal to the total demand in

nodes 6 and 22, i.e., as expected _M1 ¼ _M42 þ Q6 þ Q22:
To benchmark the present formulation and results this

network subject to exactly the same conditions has been also

solved using a typical hydrodynamic solver for gas pipe net-

works and a comparison between the results is performed. A

gaseous pipe network in the viscous (or hydrodynamic)

regime is still described by Eqs. (10), (12), and (13) and the

only difference compared to networks operating under rare-

fied conditions is that the pressure drop along each pipe ele-

ment, instead of Eq. (9) which is based on kinetic theory, is

obtained by a corresponding expression based on hydrody-

namic principals. For the purposes of the present work the

Darcy–Weisbach equation is implemented:

ðP1 � P2Þj ¼ DPj ¼ 8
_M2

j

qjp2D4
j

2 ln
P1

P2

þ fj
Lj

Dj

� �
: (14)

Here, the index 1 � j � p denotes again each of the p pipes

of the network, qj is the average value of the mass density

and fj. is the friction factor. In the present case the flow is

laminar and fj¼ 64/Rej, where Rej is the average Reynolds

number at the jth pipe. The agreement between the results

based on the hydrodynamic analysis and the ones based in

kinetic theory, shown in Tables I and II, is excellent. In

TABLE I. Pressure and Knudsen number at each node of the network in the

viscous regime.

Node

number Kn

Pressure

[Pa]

Node

number Kn

Pressure

[Pa]

1 9.13� 10�4 70.00 15 1.03� 10�3 61.77

2 9.66� 10�4 66.12 16 1.04� 10�3 61.52

3 9.97� 10�4 64.13 17 1.04� 10�3 61.58

4 1.02� 10�3 62.90 18 1.04� 10�3 61.71

5 1.03� 10�3 61.98 19 1.04� 10�3 61.66

6 1.05� 10�3 61.05 20 1.04� 10�3 61.49

7 9.97� 10�4 64.07 21 1.04� 10�3 61.28

8 1.01� 10�3 63.32 22 1.06� 10�3 60.30

9 1.02� 10�3 62.58 23 1.05� 10�3 61.12

10 1.03� 10�3 61.96 24 1.04� 10�3 61.34

11 1.04� 10�3 61.51 25 1.04� 10�3 61.22

12 1.02� 10�3 62.72 26 1.05� 10�3 60.84

13 1.02� 10�3 62.47 27 1.07� 10�3 60.00

14 1.03� 10�3 62.12

FIG. 2. (Color online) Sample network configuration.
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particular, the corresponding results of pressure at each node

and mass flow rate in each tube, agree up to at least two sig-

nificant figures. Therefore, the hydrodynamic results are not

shown here. This result provides additional confidence in the

accuracy of the developed gas pipe algorithm based on linear

kinetic theory for simulating steady-state low-speed gas pip-

ing networks consisting of long tubes.

B. Results in a wide range of the Knudsen number

In this simulation the pressure at nodes 1 and 27 is set

equal P1¼ 1 Pa and P27¼ 0.001 Pa, respectively, while the

corresponding Knudsen numbers are 0.0639 and 63.9, which

clearly indicates that the flow in the network covers the slip,

transition, and free molecular regimes. Also, the demands at

all nodes have been set equal to zero. The results of the sim-

ulation include the computed Knudsen number and pressure

at each node of the network in Table III, as well as the mass

flow rate and the conductance along each tube of the network

in Table IV. Again, the negative values at some of the mass

flow rates indicate that the final direction of the flow in this

tube is opposite to the one initially assumed. The total mass

flow rate which is transferred from node 1 through the net-

work to node 27 is equal to 4.58� 10�8 kg/s and since there

are no demands or leakages in the network _M1 ¼ _M42. The

corresponding conductances are Cl¼ 20.4 lt/s and

C42¼ 11.4 lt/s. As expected the network solution, due to the

specific geometry and data, is symmetric about an axis

defined by nodes {2,8,14,20,26}.

The present network setup has been also simulated by

implementing the typical hydrodynamic solver resulting to

significant discrepancies compared to the corresponding ki-

netic results throughout the network (pressure heads off by

about 40% and total mass flow rate off by about 100%). It is

interesting to note that although most of the nodes are in the

slip regime with only one node (Node 27) in the free molec-

ular regime the viscous analysis is not applicable.

In order to provide an estimation of the involved compu-

tational effort it is noted that the solution of this sample net-

work requires the CPU time of about 2 s on a 3 Ghz dual

core system. It is obvious that the involved computational

effort is negligible. For more complex networks consisting

of hundreds of tubes the computational effort will be

increased but not significantly. Since the data base of the

kinetic results is available the computational effort is related

only to the number of iterations needed for the convergence

TABLE II. Mass flow rate and conductance at each tube of the network in the viscous regime.

Tube

number

From node

to node

_Mj

[kg/s]

Cj

[lt/s]

Tube

number

From node

to node

_Mj

[kg/s]

Cj

[lt/s]

1 1–2 4.33� 10�5 9.06� 102 22 15–14 �3.55� 10�6 8.25� 102

2 2–3 2.13� 10�5 8.67� 102 23 16–15 �2.54� 10�6 8.21� 102

3 3–4 1.28� 10�5 8.46� 102 24 17–12 �1.16� 10�5 8.28� 102

4 4–5 9.49� 10�6 8.32� 102 25 18–13 �7.74� 10�6 8.27� 102

5 5–6 9.35� 10�6 8.20� 102 26 19–14 �4.66� 10�6 8.25� 102

6 7–2 �2.20� 10�5 8.67� 102 27 15–20 2.92� 10�6 8.21� 102

7 3–8 8.52� 10�6 8.49� 102 28 16–21 2.43� 10�6 8.18� 102

8 9–4 �3.33� 10�6 8.36� 102 29 17–18 �1.29� 10�6 8.21� 102

9 10–5 �1.47� 10�7 8.26� 102 30 19–18 �4.75� 10�7 8.22� 102

10 6–11 �4.65� 10�6 8.17� 102 31 20–17 �1.81� 10�6 8.20� 102

11 7–8 7.88� 10�6 8.48� 102 32 20–21 2.05� 10�6 8.18� 102

12 8–9 7.64� 10�6 8.38� 102 33 22–17 �1.28� 10�5 8.12� 102

13 10–9 �6.31� 10�6 8.30� 102 34 23–18 �5.98� 10�6 8.18� 102

14 11–10 �4.55� 10�6 8.23� 102 35 24–19 �3.33� 10�6 8.19� 102

15 12–7 �1.41� 10�5 8.44� 102 36 25–20 �2.68� 10�6 8.17� 102

16 8–13 8.76� 10�6 8.38� 102 37 21–26 4.48� 10�6 8.14� 102

17 9–14 4.66� 10�6 8.31� 102 38 23–22 8.15� 10�6 8.09� 102

18 10–15 1.91� 10�6 8.24� 102 39 24–23 2.17� 10�6 8.16� 102

19 11–16 �1.04� 10�7 8.20� 102 40 25–24 �1.16� 10�6 8.16� 102

20 12–13 2.54� 10�6 8.34� 102 41 26–25 �3.84� 10�6 8.13� 102

21 13–14 3.55� 10�6 8.30� 102 42 26–27 8.32� 10�6 8.05� 102

TABLE III. Pressure and Knudsen number at each node of the network in all

regimes.

Node

number Kn

Pressure

[Pa]

Node

number Kn

Pressure

[Pa]

1 6.39� 10�2 1.00 15 1.14� 10�1 5.59� 10�1

2 7.81� 10�2 8.18� 10�1 16 1.20� 10�1 5.33� 10�1

3 8.90� 10�2 7.18� 10�1 17 1.04� 10�1 6.16� 10�1

4 9.74� 10�2 6.56� 10�1 18 1.07� 10�1 5.96� 10�1

5 1.04� 10�1 6.16� 10�1 19 1.14� 10�1 5.59� 10�1

6 1.07� 10�1 5.96� 10�1 20 1.25� 10�1 5.11� 10�1

7 8.90� 10�2 7.18� 10�1 21 1.39� 10�1 4.60� 10�1

8 9.46� 10�2 6.75� 10�1 22 1.07� 10�1 5.96� 10�1

9 1.01� 10�1 6.31� 10�1 23 1. 11� 10�1 5.75� 10�1

10 1.07� 10�1 5.96� 10�1 24 1.20� 10�1 5.33� 10�1

11 1. 11� 10�1 5.75� 10�1 25 1.39� 10�1 4.60� 10�1

12 9.74� 10�2 6.56� 10�1 26 1.95� 10�1 3.27� 10�1

13 1.01� 10�1 6.31� 10�1 27 6.39� 101 1.00� 10�3

14 1.07� 10�1 5.96� 10�1
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of the iteration scheme and the solution of the algebraic

system in each iteration.

V. CONCLUDING REMARKS

A novel algorithm has been developed for the design of

steady-state, isothermal gaseous distribution systems consist-

ing of long tubes based on linear kinetic theory. The drawing

of the network is aided by a GUI interface, the output of

which is directly linked to the main iterative algorithm for

designing gas pipe networks. More important the main algo-

rithm successfully integrates linear kinetic results available

from a data base. The kinetic results have been obtained by

solving the linearized BGK equation with diffuse boundary

conditions in the whole range of the Knudsen number. As a

result the integrated algorithm may successfully handle gas

pipe networks consisting of long tubes of any complexity

operating under any vacuum conditions from the free molec-

ular, through the transition up to the slip and hydrodynamic

regimes yielding the mass flow rate (and the conductance)

through the pipes as well as the pressure and the Knudsen

number at the nodes of the network. The effectiveness of the

methodology has been demonstrated by solving a network of

moderate complexity (1) in the viscous regime and (2) in the

whole range of the Knudsen number in a very computation-

ally efficient manner. The developed algorithm may be

easily extended to include channels of any cross section.

It is noted that in the present analysis the pressure losses

in the inlet and outlet connections of each tube as well as

end and beaming effects have been considered as signifi-

cantly smaller than the pressure losses through the pipes and

have not been included in the algorithm. These assumptions

are justified by the fact that the network consists of suffi-

ciently long channels and the flow is low-speed and isother-

mal. The extension of the algorithm to pipe networks

consisting not only of long channels but also of channels of

finite length including piping elements such as bends and

tees is important and challenging. This extension of the code

will be reachable once the available kinetic data base is

enhanced with the corresponding results based on nonlinear

kinetic analysis.

It is hoped that the present work will constitute a signifi-

cant part of a more general algorithm which will be used as a

significant engineering tool in the design and optimization of

gaseous distribution networks operating under any rarefied

conditions.
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TABLE IV. Mass flow rate and conductance at each tube of the network in

all regimes.

Tube

number

From

node

to node

_Mj

[kg/s]

Cj

[lt/s]

Tube

number

From

node

to node

_Mj

[kg/s]

Cj

[lt/s]

1 1–2 4.58� 10�8 20.4 22 15�14 �7.28� 10�9 16.2

2 2–3 2.29� 10�8 18.6 23 16–15 �5.20� 10�9 15.8

3 3–4 1.35� 10�8 17.6 24 17–12 �8.32� 10�9 16.9

4 4–5 8.32� 10�9 16.9 25 18–13 �7.28� 10�9 16.6

5 5–6 4.16� 10�9 16.5 26 19–14 �7.28� 10�9 16.2

6 7–2 � 2.29� 10�8 18.6 27 15–20 9.36� 10�9 15.7

7 3–8 9.36� 10�9 17.7 28 16–21 1.35� 10�8 15.2

8 9–4 �5.20� 10�9 17.0 29 17–18 4.16� 10�9 16.5

9 10–5 �4.16� 10�9 16.5 30 19–18 �7.28� 10�9 16.2

10 6–11 4.16� 10�9 16.3 31 20–17 �9.36� 10�9 15.6

11 7–8 9.36� 10�9 17.7 32 20–21 9.36� 10�9 15.0

12 8–9 9.36� 10�9 17.1 33 22–17 �4.16� 10�9 16.5

13 10–9 �7.28� 10�9 16.6 34 23–18 �4.16� 10�9 16.3

14 11–10 �4.16� 10�9 16.3 35 24–19 �5.20� 10�9 15.8

15 12–7 �1.35� 10�8 17.6 36 25–20 �9.36� 10�9 15.0

16 8–13 9.36� 10�9 17.1 37 21–26 2.29� 10�8 13.9

17 9–14 7.28� 10�9 16.6 38 23–22 �4.16� 10�9 16.3

18 10–15 7.28� 10�9 16.2 39 24–23 �8.32� 10�9 15.9

19 11–16 8.32� 10�9 15.9 40 25–24 �1.35� 10�8 15.2

20 12–13 5.20� 10�9 17.0 41 26–25 �2.29� 10�8 13.9

21 13–14 7.28� 10�9 16.6 42 26–27 4.58� 10�8 11.4
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