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Abstract 
We study a variant of the Stochastic Economic Lot Scheduling Problem 
(SELSP) in which a single production facility must produce several 
grades to meet random stationary demand for each grade from a common 
finished-goods (FG) inventory buffer with limited storage capacity. 
Demand that can not be satisfied directly from inventory is lost. Raw 
material is always available, and the production facility produces at 
a constant rate. When the facility is set up to produce a particular 
grade, the only allowable changeovers are from that grade to next 
lower or higher grade. All changeover times are deterministic and 
equal to each other. There is a changeover cost per changeover 
occasion, a spill-over cost per unit of product in excess, whenever 
there is not enough space in the FG buffer to store the produced 
grade, and a lost-sales cost per unit short, whenever there is not 
enough FG inventory to satisfy demand. We model the SELSP as a 
discrete-time Markov Decision Process (MDP), where in each time period 
we must decide whether to initiate a changeover to a neighboring grade 
or keep the setup of the production facility unchanged, based on the 
current state of the system, which is determined by the current setup 
of the facility and the FG inventory levels of all the grades. The 
goal is to minimize the infinite-horizon long-run average cost. For 2 
and 3-grade problems we can numerically solve the resulting MDP 
problem using successive approximation. For problems with more than 
three grades, we develop a heuristic solution which is based on 
approximating the original multi-grade problem into many 3-grade sub-
problems and numerically solving each sub-problem using successive 
approximation. We present and discuss numerical results for incidences 
with 2, 4 and 5 grades, using both the exact numerical and the 
heuristic solution procedure. 
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Introduction 
 
Scheduling production of multiple products, each with random demand, 
on a single facility with limited production capacity and significant 
changeover costs and times between products is a classic problem in 
production planning research that is often referred to as the 
Stochastic Lot Scheduling Problem (SLSP). Sox et al. (1999) 
distinguishes between two versions of the SLSP: the Stochastic 
Economic Lot Scheduling Problem (SELSP) and the Stochastic Capacitated 
Lot Sizing Problem (SCLSP), for consistency with the deterministic 
demand literature. The SELSP assumes an infinite planning horizon and 
stationary demand, whereas the SCLSP assumes a finite planning horizon 
and allows for non-stationary demand. The SELSP is better suited for 
continuous-processing manufacturing, whereas the SCLSP is more 
appropriate for discrete-parts manufacturing. Discrete-parts 
manufacturing is characterized by individual parts that are clearly 
distinguishable and is often encountered in the industries of computer 
and electronic products, electrical equipment and appliances, 
transport equipment, machinery, fabricated metal, wood, furniture 
products, etc. Process industries, on the other hand, operate on 
material that is continually flowing, as is the case with petroleum 
and coal products, metallurgical products, non-metallic mineral 
products, food and beverage products, paper products, etc. Generally, 
process industries are capital intensive and focus on high-volume, 
low-variety production. In a typical process industry, the production 
facility operates continuously, and the different products are really 
variants of the same family that differ in one or more attributes, 
such as grade, quality, size, thickness, etc. Often, the different 
grades are related in such a way that the only allowable changeovers 
are from one grade to the next higher or lower grade in the chain. For 
example, if the facility produces three grades, A, B, and C – A being 
the lowest and C being the highest – the allowable changeovers are 
between A and B, between B and C, but not directly between A and C. 
The deterministic version of the SELSP, the so-called ELSP has 
received considerable attention (e.g., see the surveys of Elmaghraby, 
1978 and Salomon, 1991). Both analytical and heuristic solutions for 
the ELSP derive rigid cyclic production plans, which in many multi-
grade plants take the form of rigid product slates or wheels, whereby 
all grades are produced sequentially in a cycle, starting from the 
lowest grade, going up all the way to the highest grade, and returning 
down to the lowest grade. In the previous example with the three 
grades, a complete product grade slate would be A-B-C-B-A. 
Unfortunately, cyclic plans do not work well for the stochastic 
problem, for two reasons. Τhey focus on lot-sizing and not on dynamic 
capacity allocation and the inventories of finished products serve not 
only to reduce the number of changeovers but also to hedge against 
stock-outs. In the stochastic problem, both lot-sizing and capacity 
allocation have to be considered simultaneously, and the dynamics have 
to be included in the plan (Graves, 1980). 
 
In this paper, we study a variant of the SELSP in which a single 
production facility must produce several grades to meet random 
stationary demand for each grade from a common finished-goods (FG) 
inventory buffer with limited storage capacity. Demand that can not be 
satisfied directly from stock is lost. Raw material is always 
available, and the production facility produces at a constant rate all 
the time. When the facility is set up to produce a particular grade, 
the only allowable changeovers are from that grade to next lower or 
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higher grade. In many industries, it is customary to divide the 
intermediate grade produced during a changeover, say from grade A to 
grade B, into two halves, and classify the first half as A and the 
second half as B, although in reality the grade of the product coming 
out of the production facility may gradually change from grade A to 
grade B. In this paper, for simplicity, we assume that the grade 
produced during a changeover from A to B is classified as A, and the 
grade produced during the reverse changeover, from B to A, is 
classified as B. Under this assumption, the amounts of grades A and B 
that will be produced in the long run will be the same as those that 
would have been produced had we divided the produced grade during a 
changeover into two halves. We also assume that all changeover times 
are deterministic and equal to each other. The cost structure of our 
model includes a changeover cost per changeover occasion, a spill-over 
cost per unit of product in excess, whenever there is not enough space 
in the FG buffer to store the produced grade, and a lost-sales cost 
per unit short, whenever there is not enough FG inventory to satisfy 
demand. The assumptions presented above are realistic and are based on 
a real dynamic scheduling problem of a PET processing plant, presented 
in Liberopoulos et al. (2009). 
 
We model the SELSP problem described above as a discrete-time Markov 
Decision Process (MDP), where in each time period the decision is 
whether to initiate a changeover to a neighboring grade or keep the 
setup of the facility unchanged, based on the current state of the 
system, which is determined by the current setup and the FG inventory 
levels of all the grades. The goal is to minimize the infinite-horizon 
long-run average cost. 
 
Because of its theoretical and practical importance, the SELSP problem 
has received considerable attention in the literature. A comprehensive 
review of related works can be found in Sox et al. (1999) and Winands 
et al. (2005). From these reviews, it is apparent that there have been 
two approaches to the SELSP. One approach is to develop a cyclic 
schedule using a deterministic approximation of the stochastic problem 
and develop a control rule for the stochastic problem to pursue this 
schedule. The other approach, which we follow in this paper, is to 
develop a dynamic schedule that determines which product to produce 
based on the current state of the system. 
 
One of the first papers that looked at the SELSP as a discrete-time 
stochastic control problem with dynamic sequencing is Graves (1980). 
Graves first solves a one-product problem with inventory-backorder 
costs and changeover costs, but no changeover times, where the 
decision in each period is to produce or idle the facility. He then 
uses the solution of the one-product problem as the basis for a 
heuristic procedure to solve the multi-product problem. In that 
heuristic, scheduling conflicts among different products are solved by 
comparing the value functions derived for each individual and 
“composite” product from the one-product analysis. The composite 
product is a concept that Graves introduces to help anticipate 
possible scheduling conflicts in the multi-product problem. The idea 
is that the composite inventory of several products should indicate 
the need for current production, in case the individual product 
inventories are deemed just adequate when viewed separately. 
 
Qiu and Loulou (1995) look at a problem with Poisson demand, 
deterministic processing and changeover times, and changeover and 
inventory-backlog costs. They model the problem as a semi-Markov 
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decision process, where the objective is to decide in each review 
epoch which product, if any, to set up the facility to produce, in 
order to minimize the infinite-horizon, discounted cost. The review 
epochs are those points in time when either the production facility is 
idle and some demand arrives, or when a part has just been processed 
and the production facility is free. They use successive approximation 
to generate near-optimal control policies by solving the problem on a 
truncated inventory space, and compute error bounds caused by the 
truncation. They present numerical results for two-product problems, 
and state that systems with more than two products are limited by the 
curse of dimensionality. 
 
Leachman and Gascon (1988) develop a dynamic, periodic review control 
policy that determines which products to produce and how much, based 
on solutions of deterministic ELSP that account for non stationary 
demand. This solution is modified if two or more products are close to 
being stocked out or are backordered. 
 
Finally, Sox and Muckstadt (1997) and Karmarkar and Yoo (1994) develop 
finite-horizon stochastic mathematical programming models for the 
SELSP, that can also be classified as SCLSP, with deterministic 
production and changeover times, and use Lagrangian relaxation for 
finding optimal or near-optimal solutions for problems of small sizes. 
Our work in this paper follows the stream of papers that view the 
SELSP as a discrete-time periodic-review control problem with dynamic 
production sequencing and global lot sizing, and is most closely 
related to Graves (1980) and Qiu and Loulou (1995). It differs from 
previous works in that it considers a new variant of the SELSP, where 
the only allowable changeovers are from one grade to the next lower of 
higher grade. The latter feature renders problems with a large number 
of grades amenable to heuristic solution procedures that are based on 
approximating the original problem by many smaller (i.e., with fewer 
grades) sub-problems that are computationally easier to solve. Thus, 
for two-grade and three-grade problems we are able to numerically 
solve the resulting MDP problem using successive approximation, and 
obtain insight into the optimal control policy. For problems with N 
grades, where N > 3, we develop a heuristic solution which is based on 
decomposing the original N-grade problem into (N – 2) 3-grade sub-
problems and numerically solving each sub-problem using successive 
approximation. Each 3-grade sub-problem is an approximation of the 
original N-grade problem, where the middle grade in the sub-problem 
corresponds to one of the grades in the original problem, the low 
(left) grade in the sub-problem is the composite of all grades in the 
original problem that are lower than the middle grade, and the high 
(right) grade is the composite of all grades that are higher than the 
middle grade. For example, if the original problem consists of five 
grades, A-B-C-D-E, we formulate the following 3-grade sub-problems: A-
B-(C+D+E), (A+B)-C-(D+E), and (A+B+C)-D-E, where the notation “(A+B)” 
indicates the composite grade formed by grades A and B. After solving 
all the sub-problems, the heuristic control policy for the original N-
grade problem is obtained by combining parts of the optimal policies 
of the sub-problems. 
 
The rest of this paper is organized as follows. In Section 0, we 
present the stochastic dynamic programming formulation and solution of 
the MDP model of the original N-grade problem. The heuristic procedure 
for solving problems with more than three grades is outlined in 
Section 0. Finally, numerical results for problem incidences with 2, 4 
and 5 grades, using both the exact numerical and the heuristic 
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solution procedure are presented in Section 0, and conclusions are 
drawn in Section 0. 
 
Problem Formulation and Dynamic Programming Solution 
 
We consider a discrete-time model of a production facility that can 
produce N different grades, one at a time. Grade changeovers are only 
allowed between neighboring grades, n and n + 1, n = 1, …, N – 1. The 
changeover time is one period. In each time period, the production 
facility produces P units of the grade that is was set up for at the 
beginning of the period. The quantity produced is stored in a common 
FG buffer with a finite storage capacity of X units; any excess amount 
that does not fit in the buffer is spilled over, incurring a spill-
over cost of CS per unit of excess product. The FG buffer is flexible 
in that it can contain any quantity of any grade at the same time, as 
long as the total amount does not exceed X. After the quantity 
produced by the facility has been added to the FG buffer, a vector of 
random demands D  (D1, …, DN) must be met from FG inventory. The 
demand for grade n, Dn, n = 1, …, N, is a discrete random variable with 
known stationary joint probability distribution. For each grade n, the 
part of the demand that can not be satisfied from FG inventory, if 
any, is lost, incurring a lost-sales cost of CLn per unit of 
unsatisfied demand. In many real problems, P is not considered as a 
control variable for scheduling purposes, because changing P may cause 
instabilities in the production process. In this paper, we assume that 
P is fixed and equal to (or close to) the total expected demand for 
all grades. 
 
We formulate the dynamic scheduling problem of the production facility 
as a discrete-time MDP, where the state of the system at the beginning 
of each period is defined by the vector y  (s, x1, …, xN), where s is 
the grade that the facility is set up for during that period and xn, n 
= 1, …, N, is the FG inventory level of grade n at the beginning of 
the period. Note that s  {1, …, N}, and the set of allowable 
inventory levels is determined by all integers xn, n = 1, …, N, such 
that 0  Σn xn  X. Thus, the size of the state space is ½NXN. The 
decision, u, to be made at the beginning of each period is whether to 
initiate a changeover to a neighboring grade or leave the facility 
setup unchanged. Thus, if the current setup is s, the allowable 
decisions are given by the set U(s), where U(1) = {1, 2}, U(N) = {N – 
1, N}, and U(s) = {s – 1, s, s + 1}, s = 2, …, N – 1. If the decision 
is to initiate a changeover, then this changeover will be in effect at 
the beginning of the next period. A decision to initiate a changeover 
at the beginning of a period incurs a changeover cost CC in that 
period. Suppose that the state of the system at the beginning of a 
period is y, decision u is taken, and demand D is realized. Let 
g(y,u,D) be the cost incurred during that period and let y  (s, x1, 
…, xN) = f(y,u,D) be the state of the system at the beginning of the 
next period. From the above discussion, it is clear that s = u and xn 
= [xn + p(y)In=s – Dn]+, n = 1, …, N, where p(y) is the amount added to 
the FG buffer after the facility produces P units and before the 
demand is satisfied and is given by p(y)  min{P, X – Σn xn}, Ia is the 
indicator function which takes the value of 1 if a is true, and 0 
otherwise, and [x]+  max{0, x}. Moreover, g(y,u,D) = CCIus + CS(P – 
p(y)) + Σn CLn[Dn – xn – p(y)In=s ] +.  
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The objective is to find a state dependent policy u = μ(y) that 
minimizes the long-run (infinite-horizon) expected average cost per 
period, denoted by J. To find such a policy we need to solve the so-
called Bellman equation, which can be written as J + V(y) = 
minuU(s)Tu(V(y)), where V(y) is the differential cost starting from 
state y, and the operator Tu() is defined as Tu(V(y))  ED{ g(y,u,D) + 
V(y)}. The minimizer in the Bellman equation determines the optimal 
policy when the system is in state y, denoted by μ*(y). 
 
We solve the Bellman equation by the method of successive 
approximations. We denote by Vk(y) the value of the differential cost 
function at the kth iteration. Initially, we set V0(y) = 0  y. The 
values at the (k + 1)th iteration are obtained from the previous 
iteration by the recursion Vk+1(y) = T(Vk(y)) – T(Vk(ŷ)), where T(Vk(y)) 
= minuU(s)Tu(Vk(y)) and ŷ is an arbitrarily chosen special state. Note 
that in each iteration the differential cost for the special state is 
reset to zero. Assuming that the iteration scheme converges to some 
values V(y), then from the recursion equation, these values must 
satisfy T(V(ŷ)) + V(y) = T(V(y)). A comparison of this equation and 
the Bellman equation reveals that J = T(V(ŷ)).  
 
To implement the successive approximation method, at each iteration k 
= 1, 2, … we compute the maximum and minimum differences, VkU = 
maxy{Vk(y) – Vk–1(y)} and VkL = miny{Vk(y) – Vk–1(y)}. The procedure is 
terminated when VkU – VkL < εT(Vk(ŷ)), where ε is some small positive 
scalar. 
 
Heuristic Solution 
 
Although the exact method presented in the preceding section can in 
principle determine the optimal policy for any number of grades, it 
becomes computationally intractable for more than three grades. In 
this section, we present a heuristic procedure that approximates any 
N-grade problem, N > 3, by several 3-grade sub-problems and then uses 
the sub-problem solutions (determined by the exact numerical method) 
to construct a heuristic policy for the original problem. More 
specifically, the heuristic procedure works as follows. Let S denote 
the original N-grade problem. Then, for each grade n, n = 2, …, N – 1, 
we formulate a 3-grade sub-problem, denoted by Sn, in which the middle 
grade is grade n, the low grade is the composite of all grades that 
are lower than n, i.e., grades 1, …, n – 1, and the high grade is the 
composite of all grades that are higher than n, i.e., grades n + 1, …, 
N; hence Sn is an approximation of the original problem S. For each 
sub-problem Sn, we define the state of the system by the vector yn = 
(sn, wn, xn, zn), where sn  {1, 2, 3} and wn and zn are the total 
inventory levels of the low and high composite grades, respectively, 
and are given by wn  x1 + … + xn–1 and zn  xn+1 + … + xN. In each sub-
problem Sn, the demand distribution of the middle grade is the same as 
the demand distribution of grade n in the original problem, the demand 
distribution of the low grade is the convolution of the demand 
distributions of grades 1, …, n – 1 in the original problem, and the 
demand distribution of the high grade is the convolution of the demand 
distributions of grades n + 1, …, N in the original problem. We use 
the exact method to obtain the optimal policy μn*(yn) of sub-problem Sn. 
The heuristic policy for the N-grade problem, denoted by μ(y), is then 
constructed by using parts of the optimal policies of the sub-
problems, as follows: μ(1, x1, …, xN) = μ2*(1, ŵ2, x2, ž2), μ(N, x1, …, 
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xN) = μN–1*(3, ŵN–1, xN–1, žN–1), and μ(n, x1, …, xN) = μn*(2, ŵn, xn, žn), n 
= 2, …, N – 1, where ŵn and žn are the “aggregate” inventory levels of 
the low and high composite grades, respectively, which represent in 
some aggregate way their individual components and hence are given by 
ŵn = h(x1, …, xn–1) and žn = h(xn+1, …, xn) for some appropriate function 
h, which will be defined next. 
 

First, note that ŵ2 = x1 and žN–1 = xN, because in these cases the 
composite grade corresponds to a single grade. We now focus on ŵn, n > 
2, as žn is obtained in exactly the same way. An obvious choice for the 
aggregate inventory level of the composite grade made up of grades 1, 
…, n – 1 is the sum of the inventory levels of the individual grades, 
i.e., ŵn = wn. This is a reasonable choice, especially with respect to 
estimating potential spill-over costs, but may underestimate the 
possibility of lost sales when one or more of the individual 
components of the composite grade is very low compared to the others. 
To illustrate this, suppose that the facility is currently set up to 
produce grade 4, and that the inventory levels of grades 1-4 are x1 = 
x2 = 15, x3 = 0, and x4 = 6. Then, in sub-problem S4, the inventory 
level of the middle grade would be x4 = 6, and the total inventory 
level of the low composite grade would be w4 = x1 + x2 + x3 = 30. In 
this case, the optimal policy obtained by solving S4 might indicate 
that it is optimal for the facility not to changeover to the low 
composite grade, because there is enough of it (30 units) in storage 
compared to the inventory level of the middle grade 4, which is much 
lower (6 units). What the heuristic fails to see in this case is that 
although the sum of the inventory levels that make up the composite 
grade is relatively high, one of its components, namely x3, is zero, 
and unless the facility changes over to grade 3, a heavy stock-out 
penalty is likely to be incurred in the current and in the following 
period. 
 
To take into account such a situation, we seek an aggregate inventory 
level, ŵn, for the composite grade made up of grades 1, …, n – 1 that 
would result in the same value of the expected lost sales for that 
composite grade as that computed by summing the expected lost sales of 
the individual component grades of the composite. The sum of the 
expected lost sales of the individual grades is given by LS = E[D1 – 
x1]+ + … + E[Dn–1 – xn–1]+. The expected lost sales for a given inventory 
level w of the composite grade is equal to E[(D1 + … + Dn–1) – w]+; 
therefore, ŵn is the value of w that makes the latter expression as 
close as possible to LS. To compute this expression we first need to 
derive the probability distribution of the aggregate grade demand by 
convolution of the probability distributions of individual grade 
demands. In case this is not computationally convenient we propose the 
following faster alternative.  
 
We approximate the sum of the expected lost sales of the individual 
grades by LS = [E(D1) – x1]+ + … + [E(Dn–1) – xn–1]+. If all inventory 
levels xi are large enough so that LS = 0, we set ŵn = wn. Otherwise, 
we define ên = [E(D1) + … + E(Dn–1)] – LS, and we set ŵn to be a linear 
combination of ên and wn, i.e., ŵn = αên + (1 – α)wn , rounded to the 
nearest integer, for some 0  α  1. 
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Numerical Results 
 
In this section, we present numerical results for problem examples 
with 2, 4 and 5 grades, using both the exact numerical and the 
heuristic solution procedure presented in the previous sections. 
First, we look at a 2-grade example (N = 2), where P = 5 and the 
demand distribution for the two grades is given in    Table 1. 
 

   Table 1: Demand distribution of the 2-grade example 
 

 Pr(Dn=i)  
n \ i 0 1 2 3 4 5 6 E(Dn)

1 0.1 0.15 0.15 0.2 0.15 0.15 0.1 3 
2 0.15 0.15 0.4 0.15 0.15 0 0 2 

 
   Table 2 shows the number of iterations of the successive 
approximation procedure until convergence, denoted by kc, for 
convergence tolerance criterion ε = 0.001, and the resulting optimal 
long-run average cost, J, for various combinations of space capacity, 
X, and cost parameters, where it is assumed that both grades have the 
same lost-sales cost rate, i.e., CL1 = CL2 = CL. From the results, is 
can be seen that as X increases, kc increases and J decreases, as is 
expected. J also increases as the cost parameters increase. 
 

   Table 2: Results for the 2-grade example 
     X = 40 X = 60 X = 80 X = 100 

Case CC CS CL  kc J kc J kc J kc J 
1 1 5 5  186 0.9824 474 0.618 895 0.4503 1447 0.354 
2 1 10 10  188 1.7454 472 1.0965 891 0.7985 1444 0.6277 
3 2 5 5  179 1.1640 448 0.7342 844 0.5354 1367 0.421 
4 5 10 1  181 1.6842 437 1.0682 806 0.7806 1286 0.6146 
5 5 1 10  211 1.6933 515 1.074 956 0.7848 1538 0.6178 
6 2 10 10  186 1.9648 474 1.2361 895 0.9006 1447 0.7079 
7 10 1 1  340 1.1409 369 0.7536 408 0.5587 588 0.4445 
8 10 5 10  168 2.7141 411 1.7277 761 1.2644 533 0.9962 
9 1 10 5  225 1.3610 555 0.855 1032 0.6228 1659 0.4896 
10 1 5 10  253 1.3679 632 0.8593 1184 0.626 1908 0.4921 

 
Figure 1 shows the optimal changeover policy as a function of 
inventories x1 and x2, for cases 1 and 3 of Table 2, for X = 40, and is 
representative of the other cases as well.  
 

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

X
1

X 2

      
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

X1

X 2

 
Figure 1: Optimal changeover policy for cases 1 (left) and 3 (right) 
of    Table 2, for X = 40 
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In both cases 1 and 3, the optimal policy partitions the inventory 
space in several regions, each characterized by a different optimal 
changeover action. If we let μ*(s, R) denote the optimal policy when 
the facility is set up to produce grade s and the inventory levels are 
in region R, then μ*(1, a) = μ*(2, a) = 1, μ*(1, b) = μ*(2, b) = 2, 
μ*(1, c) = 1, μ*(2, c) = 2, μ*(1, d) = 2, μ*(2, d) = 1. Thus, the 
optimal policy dictates the following actions: When the inventory 
levels are in region a, changeover to produce grade 1, when in b, 
changeover to produce grade 2, when in c, do not changeover, and when 
in d, changeover to the other grade. A typical production sequence 
when the inventory levels are in and around region d would be one 
where the facility changes over from one grade to the other in each 
period. When the inventory levels are in region c, the facility would 
be producing grade 1 in successive periods until the inventory levels 
cross the border between regions c and b and then changing over to 
grade 2 and producing that grade until the inventory levels cross the 
border between regions c and a. Notice that region c is wider in case 
3 than in case 1, indicating that in case 3 it is optimal to produce 
longer runs of the two grades with less frequent changeovers, because 
the changeover cost in case 3 is twice as much as in case 1. In fact, 
the widening of region c in case 3 is big enough to eliminate region 
d. Another observation is that the inventory space partition is more 
or less symmetric for the two grades but with a slight displacement in 
favor of grade 1, because grade 1 has a higher demand than grade 2. 
Next, we look at a 4-grade (N = 4) and a 5-grade (N = 5) example. In 
each example, we assume that the demand for each grade is identically 
distributed to one of the random variables Dj, j = A, B, …, E, F, whose 
distributions are given in    Table 3. 
 

   Table 3: Demand distributions for the 4-grade and 5-grade examples 
 

 Pr(Dj = i)  
J \ i 0 1 2 3 E(Dj)
A 0.65 0.25 0.05 0.05 0.5 
B 0.4 0.5 0.05 0.05 0.75 
C 0.25 0.5 0.25 0 1 
D 0.25 0.25 0.5 0 1.25 
E 0.25 0.25 0.25 0.25 1.5 
F 0.05 0.2 0.45 0.3 2 

 
For each example, we consider four cases, each with a different demand 
pattern that captures a different way that total demand is distributed 
among the individual grades. In each case, the total expected demand 
is equal to the production rate. First, we solve each case optimally 
by dynamic programming, using ε = 0.001. Then, we solve each case by 
the heuristic. In the implementation of the heuristic we use the 
faster alternative to approximate the sum of the expected lost sales 
of the individual grades, described at the end of Section 0, for 
values of α ranging from 0 to 1 with a step of 0.1. In all cases we 
assume that CC = 1, CS = CLn = 1, n = 1,…, 5, and P = 6. The results 
for the 4-grade example, for X = 30, are shown in Table 4. The 
notation “F,C,F,C” in column 2 is used to indicate that D1 is 
distributed as DF, D2 is distributed as DC, etc. The computational 
(CPU) times are in hours. For the heuristic, we show the total CPU 
time it takes to solve the 3-grade problems and generate the heuristic 
policy, but not the time it takes to evaluate the heuristic policy. 
The optimal value of α in the heuristic is denoted α* and the 
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corresponding long-run average cost is J(α*). The last column shows the 
percentage cost increase between the heuristic and the optimal policy. 
 

Table 4: Results for the 4-grade example 
 

 Demand  Exact Heuristic % cost 
Case pattern  kc CPU J α* CPU J(α*) Difference 

1 F,C,F,C  187 52.41 1.1835 0.1 0.024 1.3207 11.59 
2 F,C,C,F  110 41.84 1.2881 0.1 0.054 1.3139 1.96 
3 C,F,F,C  55 21.57 1.0034 0.7 0.024 1.2442 24.00 
4 F,F,C,C  156 48.22 1.0927 0.5 0.038 1.2253 12.13 

 
From the results, we observe that cases 1 and 2 have higher expected 
costs compared to cases 3 and 4. This is because in the latter two 
cases the grades with the highest demands are adjacent in the sequence 
of allowed changeover transitions, while in the first two cases any 
transition between those two grades has to go through other grades, 
thus incurring higher switching costs. In all cases, except case 3, 
the heuristic average cost is insensitive to parameter α. Case 3 tends 
to have lower cost for α between 0.5 and 0.8 and significantly higher 
cost for α between 0.9 and 1. The cost difference between the 
heuristic and the exact solution is 1.96% for case 2, where the end 
grades 1 and 4 have the highest demand, and 24% for case 3, where the 
middle grades 2 and 3 have the highest demand. The heuristic is 
between 700 and 2,000 times faster than the exact solution. 
 
The results for the 5-grade example, for X = 20, are shown in    Table 
5. Cases 2 and 3 have higher average costs because they require more 
product switches to move between products with the highest demands. A 
significant difference with the 4-grade example is that the heuristic 
average cost seems to be an increasing function of α, which means that 
the best heuristic policy is obtained when ŵn = wn. The cost difference 
between the heuristic and the exact solution is between 10% and 20% in 
all cases, and the heuristic is between 3,000 and 120,000 faster than 
the exact solution.  
 

   Table 5: Results for the 5-grade example 
 

 Demand  Exact Heuristic % cost 
Case pattern  kc CPU J α* CPU J(α*) Increase 

1 C,C,F,C,C  48 32.27 2.944 0 0.010 3.414 15.96 
2 E,D,A,D,E  87 142.77 4.076 0 0.014 4.918 20.66 
3 E,B,E,B,E  65 125.51 3.851 0 0.023 4.293 11.48 
4 
5 
6 
7 

B,D,F,D,B 
F,D,D,B,B 
F,D,B,B,D 
F,B,D,B,D 

 

35 
71 
129
129

38.05
 78.70
369.40
140.30

2.652
3.002
3.492
3.657

0.1
0.1
0 
0 

0.008
0.004
0.003
0.003

3.036
3.451
3.876
3.935

14.48 
14.96 
11.05 
7.59 

 
Conclusions 
 
We studied a variant of the SELSP in which a single production 
facility must produce several grades to meet random demand for each 
grade from a common FG inventory buffer with limited storage capacity. 
The only allowable changeover of the facility is from one grade to 
next lower or higher grade. All changeover times are deterministic. We 
modeled this problem as a discrete-time MDP, where in each time period 
it must be decided whether to initiate a changeover to a neighboring 
grade, based on the current state of the system. The goal is to 
minimize the infinite-horizon long-run average changeover, spill-over 
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and lost-sales cost. For 2-grade and 3-grade problems we proposed to 
numerically solve the resulting MDP problem using successive 
approximation. For problems with more than three grades, we developed 
a heuristic solution which is based on approximating the original 
multi-grade problem into many 3-grade sub-problems and numerically 
solving each sub-problem using successive approximation. We presented 
numerical results for problem incidences with 2, 4 and 5 grades, using 
both the exact numerical and the heuristic solution procedure. For the 
4 and 5-grade examples, the cost difference between heuristic and 
exact solution was as small as 1.96% and as high as 24%. The main 
advantage of the heuristic is that it was between 700 and 120,000 
times faster than the exact solution. 
 
Acknowledgements 
 
This work was supported by grant “03ED913: Optimization of production 
planning and grade distribution of a PET resin chemical plant,” within 
the Reinforcement Program of Human Research Manpower. It was co-
financed by Greece’s General Secretariat of Research and Technology 
(17%), the European Social Fund (68%), and Artenius Hellas S.A. PET 
Industry (15%). 
 
References 
 
Elmaghraby, S.E., 1978, “The economic lot scheduling problem (ELSP): 

Review and extensions,” Management Science, 24(6), 587-598. 
Graves, S.C., 1980, “The multi-product production cycling problem,” 

AIIE Transactions, 12(3), 233-240. 
Karmarkar, U.S., J. Yoo., 1994, “The stochastic dynamic product 

cycling problem,” European Journal of Operational Research, 73, 360-
373. 

Liberopoulos, G., G. Kozanidis, O. Hatzikonstantinou, 2009, 
“Production scheduling of a multi-grade PET resin production plant,” 
Computers and Chemical Engineering, (in press: 
doi:10.1016/j.compchemeng.2009.05.017). 

Leachman, R.C., A. Gascon., 1988, “A heuristic scheduling policy for 
multi-item, single-machine production systems with time-varying, 
stochastic demands,” Management Science, 34(3), 377-390. 

Salomon, M., 1991, “Deterministic lotsizing models for production 
planning,” Lecture Notes in Economics and Mathematical Systems, 
Springer-Verlag, Berlin. 

Sox, C.R., P.L. Jackson, A. Bowman, J.A. Muckstadt, 1999, “A review of 
the stochastic lot scheduling problem,” International Journal of 
Production Economics, 62(3), 181-200. 

Sox, C.R., J.A. Muckstadt., 1997, “Optimization-based planning for the 
stochastic lot-sizing problem,” IIE Transactions, 29(5), 349-357. 

Qiu, J., R. Loulou., 1995, “Multiproduct production/inventory control 
under random demands,” IEEE Transactions on Automatic Control, 
40(2), 350-356. 

Winands, E.M.M., I.J.B.F. Adan, G.J. van Houtum, 2005, “The stochastic 
economic lot scheduling problem: A survey,” Working paper. Beta 
Research School for Operations Management and Logistics, Technical 
University of Eindhoven. 

 




