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The rarefied gas flow through circular tubes of finite length has been investigated computationally
by the direct simulation Monte Carlo method. The reduced flow rate and the flow field have been
calculated as functions of the gas rarefaction, the length-to-radius ratio, and the pressure ratio along
the tube. The gas rarefaction, which is inversely proportional to the Knudsen number, is varied from
0 to 2000, i.e., the free-molecular, transitional, and hydrodynamic regimes are embraced. A wide
range of the length-to-radius ratio, namely, from 0 corresponding to the orifice flow up to 10
representing a sufficiently long tube, has been considered. Several values of the pressure ratio
between 0 and 0.7 have been regarded. This pressure range covers both gas flow into vacuum and
into a background gas. It has been found that the rarefaction parameter has the most significant
effect on the flowfield characteristics and patterns, followed by the pressure ratio drop, while the
length-to-radius ratio has a rather modest impact. Several interesting findings have been reported
including the behavior of the flow rate and other macroscopic quantities in terms of these three
parameters. In addition, the effect of gas rarefaction on the choked flow and on the Mach disks at
large pressure drops is discussed. Comparison of some of the present numerical results with
available experimental data has shown a good agreement. © 2009 American Vacuum Society.
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I. INTRODUCTION

The detailed quantitative description of the flow field of
rarefied gas flows through short circular tubes is of major
importance in the optimized design and operation of various
types of industrial equipment in several technological fields.
Some of these applications may include mass flow control-
lers in gas metering, micropropulsion in high altitude and
space gas dynamics, pipe networks, pumps and distillation
towers in vacuum systems, membranes and porous media in
filtering, fabrication processes in microelectronics, and gas-
eous devices in microelectromechanical systems. It is noted
that in all these applications the operation of the system may
be under low, medium, or high vacuum conditions.

Due to its theoretical and practical importance, this flow
has been extensively investigated. Following the pioneering
work by Knudsen1 and Clausing,2 many studies, both theo-
retical and experimental, on flows through orifices and short
tubes have been reported. A list of all these works would be
too lengthy to report here, and thus we cite only some of
them, which are more related to the present work.3–7 Also, a
more complete and detailed bibliographic review may be
found in Refs. 8–10.

The flow of rarefied gases between two reservoirs through
short tubes, despite its simple geometry, requires significant
computational effort, mainly due to the fact that large regions
in both reservoirs must be included in the simulation to allow

a�
Electronic mail: stylianos.varoutis@itp.fzk.edu

1377 J. Vac. Sci. Technol. A 27„6…, Nov/Dec 2009 0734-2101/2009/
an accurate description of the flow field. The most common
computational scheme to handle this type of flow in the tran-
sition regime is the direct simulation Monte Carlo �DSMC�
method described in Ref. 11, while in the slip and hydrody-
namic regimes, the compressible Navier–Stokes equations
with slip and no-slip boundary conditions, respectively, may
be applied. It is noted that although, in general, the DSMC
approach is very efficient, the computational effort becomes
very demanding particularly when all geometric and flow
parameters, which may influence the flow, are examined. The
most computationally expensive cases occur when the
length-to-radius ratio is increased and the pressure drop is
small, but still the flow may not be considered as fully de-
veloped and cannot be handled by linearized kinetic theory
or both. In addition, the required computational time and
storage are increased as the Knudsen number is decreased. It
is also noted that very few experimental works cover the
whole range of the involved parameters. Therefore, even
though the subject has been studied for a long time, the
available data needed for engineering purposes are still
limited.

In that framework the conductance of nitrogen gas
through circular tubes of various length-to-diameter ratios
and for several pressure ratios along the tube have been com-
puted and measured.12,13 Both experimental and computa-
tional conductances were found to be lower than the ones
provided in Ref. 3. In Ref. 12 the authors also proposed an
expression to estimate conductance in the continuum regime

and in the transition regime at small Knudsen numbers. In

137727„6…/1377/15/$25.00 ©2009 American Vacuum Society



1378 Varoutis, Valougeorgis, and Sharipov: Simulation of gas flow through tubes of finite length 1378
the case of small cylindrical sonic orifices, the dependency
of the discharge coefficients on the length-to-diameter ratio
and on the Reynolds number have been studied
experimentally.14 It is well known that cylindrical micro-
tubes, while they perform as well as typical micronozzles,
offer the advantage of simple manufacturing. In Ref. 14 in
addition to conductance, the flow structure inside the tube
has been monitored to find several compression waves inside
the nozzle. In an effort to optimize the design of short tubes
for aerospace propulsion, the effect of the length of thin wall
orifices have studied computationally and
experimentally.15,16 This work includes two length-to-
diameter ratios and flows into vacuum. It has been deduced
that the thick orifice has a higher propulsion efficiency. In
most of these works, the results are in dimensional form and
they are related to specific gases. Recently, in Ref. 17 the
DSMC algorithm has been applied to provide generalized
results for the flow rate and the macroscopic distributions for
tubes with several length-to-radius ratios. However, again as
in Refs. 15 and 16, the flow is expanding into vacuum; i.e.,
the background gas pressure equals to zero. A detailed ex-
perimental work has been recently performed for long and
short tubes, covering the whole range of Knudsen number.18

The experimental data have been compared with the corre-
sponding numerical data available in the literature including
the computational results by Varoutis et al.,17 for gas flows
through short tubes into vacuum, where a very good agree-
ment has been observed.

As it is seen although significant amount of work has been
performed, there is no computational study so far, providing
results in a wide range of all involved flow and geometric
parameters. In the present work, based on the DSMC ap-
proach, the flow of a monoatomic gas through circular tubes
with length-to-radius ratios from 0 to 10 and the downstream
over the upstream pressure ratio ranging from 0.1 up to 0.7 is
numerically investigated. Since the dependency of the results
on the gas-surface interaction law and on the intermolecular
potential have been studied before,17 here we apply only the
diffuse scattering and the hard sphere model for gaseous
molecules and focus our investigation on the effects of the
rarefaction, the pressure drop, and the tube length on the
flow quantities and characteristics. Numerical results for the
flow rate and the macroscopic distributions of the flow �ve-
locity, pressure, and temperature� are presented in the whole
range of the Knudsen number and in reasonably wide ranges
of the length-to-radius and pressure ratios. All results are
reported in dimensionless form in order to be general and
easily adapted to specific flow conditions. For certain flow
configurations, the numerical results are compared success-
fully with corresponding experimental results in Refs. 4 and
6. Note that it is the first time that mass flow rate and flow
field are calculated in the whole range of gas rarefaction and
wide range of length-to-radius ratios and pressure drops.

II. STATEMENT OF THE PROBLEM

Consider the axisymmetric flow of a monoatomic gas

through a tube of radius R and finite length L, connecting

J. Vac. Sci. Technol. A, Vol. 27, No. 6, Nov/Dec 2009
two semi-infinite reservoirs, maintained at pressures P0 and
P1 �P0� P1�. The geometric configuration with the coordi-
nate system �x ,r� and its origin are shown in Fig. 1. The
upstream and downstream reservoirs, in Fig. 1, are shown
having finite volumes due to computational restrictions. The
temperature in the reservoirs far from the inlet and outlet of
the tube as well as along the tube walls and the plates at x
=0 and x=L /R is kept constant and equal to T0. The quan-
tities n0, P0, and T0 are taken as reference density, pressure,
and temperature, respectively, with P0=n0kT0, while k de-
notes the Boltzmann constant.

The solution of this flow configuration is determined in
terms of three parameters, namely, the length-to-radius ratio
L /R of the tube, the pressure ratio P1 / P0, and the reference
rarefaction parameter, defined as, see, e.g., Ref. 8:

� =
RP0

�0v0
, �1�

where �0 is the gas viscosity at T0 and v0=�2kT0 /m is the
most probable molecular speed with m denoting the molecu-
lar mass of the gas. The radius R and the velocity v0 are
taken as the characteristic length and velocity, respectively. It
is noted that since the ratio �0 / P0 is proportional to the
molecular mean free path, the rarefaction parameter � is in-
versely proportional to the Knudsen number, i.e., ��1 /Kn.
Hence, the limit �=0 represents the free-molecular regime,
while the opposite situation, i.e., ��1, corresponds to the
continuum mechanics regime. The main idea of the imple-
mentation of the rarefaction parameter instead of the Knud-
sen number is to avoid using directly the mean free path,
which is not well defined and depends on the choice of the
molecular potential. Also, it is noted that the pressure ratio
P1 / P0 may vary between 0 and 1 and as it is decreased the
pressure drop is increased.

FIG. 1. Geometry and three-level computational domain �top�. Weighting
zones �bottom�.
The reduced flow rate W through the tube is defined as
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W =
Ṁ

Ṁ0

. �2�

Here, Ṁ is the mass flow rate through the tube at any L /R,
P1 / P0 and �, while

Ṁ0 =
��R2

v0
P0 �3�

is the mass flow rate through an orifice �L /R=0� into
vacuum �P1 / P0=0� at the free molecular limit ��=0� and it
is calculated analytically. Note that in the case of the free-
molecular flow through a tube into vacuum, i.e., �=0 and
P1 / P0=0, the quantity W becomes the transmission probabil-
ity, see, e.g., Refs. 8 and 11.

Over the years several empirical expressions have been
derived for W, based on experimental and numerical data.
Although all these equations are valid only in certain ranges
of the geometric and flow parameters, they may be useful for
handy calculations. Such empirical formulas are the ones
proposed in Ref. 6 for flows into vacuum as well as the one
proposed in Ref. 4 for the more general case of any pressure
ratio:

W�S� =
1 − P1/P0

1 + L/�2R��1 + P1/P0

5��
� + 1.038� . �4�

The latter one as well as some of the experimental results in
Ref. 6 for nonzero background pressure are applied in Sec.
IV for comparison purposes with the present numerical
results.

III. DSMC ALGORITHM

All calculations have been performed using the DSMC
method, based on the no-time counterscheme, see Ref. 11. In
brief, the DSMC approach may be described as follows: A
sample of model molecules is evolved in time to statistically
mimic the behavior of real molecules. At each time step, the
process is split between streaming and collisions. The state
of the system is defined by the position and velocity vectors
of the model particles. Each model particle in the simulation
represents a large number of real molecules in the physical
system. A rigorous proof that DSMC produces a solution to
the Boltzmann equation in the limit of vanishing discretiza-
tion and stochastic errors has been provided in Ref. 19. The
problem, due to the axisymmetry of the flow, may be con-
sidered as two dimensional in the physical space. This is
achieved by rotating the velocity vector according to the pro-
cedure described in Section 15.1 of Ref. 11.

Recently, the DSMC algorithm has been accordingly
modified and successfully applied to the simulation of rar-
efied gas flows through tubes of finite length into vacuum in
Ref. 17, i.e., at P1 / P0=0. Here, this code is extended to
include the more general case of arbitrary pressure drops,
i.e., when P1 / P0�0. Since the details of the algorithm are
well known and described in Ref. 11, its detailed description
is omitted and only specific issues related to the present for-

mulation are provided for completeness and clarity.
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The axisymmetric computational grid, shown in Fig. 1, is
structured with nonuniform cells of three different sizes.
Such a three-level grid is required in order to capture the
steep macroscopic gradients close to the boundaries and
maintain reasonable computational efficiency. In addition, as
shown in Fig. 1, three radial and seven axial weighting zones
have been incorporated to ensure more uniform distributions
of model particles over the computational domain, see Refs.
7 and 17. The computational parameters have been accord-
ingly chosen to ensure results accurate up to at least 1%. In
particular, in all cases, the time increment and the largest cell
side of the grid are taken equal to

�t = 0.01R/v0 �5�

and

�x� = 0.05R , �6�

respectively. Also, in all cases the number of model mol-
ecules is N=3�107. It has been found that this number of
computational particles is adequate to ensure numerical re-
sults within the prescribed error in the hydrodynamic limit
and therefore in all other regimes as well. In addition, several
computational sizes of the upstream and downstream reser-
voirs have been tested and the minimum ones, which guar-
antee an invariance in the results of less than 1%, have been
selected. It has been found that this is achieved by taking
L1=R1=L2=R2=8R. Finally, it is noted that the same inves-
tigation has been performed for different sizes of the compu-
tational grid and the final parameters also guarantee the in-
variance in the results of less than 1%.

The total number of cells is about 8�104 and the number
of particles in each cell varies between 102 and 2�103. Fi-
nally, the evolution of the system �i.e., the number of times
steps or samples� is terminated when the relative scattering
of the results satisfy the condition

�N+

N+ − N− 	 0.001, �7�

where N+ and N− denote the total numbers of particles cross-
ing from left to right and from right to left, respectively, the
inlet cross section of the tube at x=0 during the simulation
time.

It is noted that the computational effort is significantly
increased as the ratios P1 / P0 and L /R are increased. This is
easily justified since, at large P1 / P0 and L /R, the quantity N−

gets closer to N+. Therefore, the relative scattering of the
flow given by Eq. �7� is increased as well. The computational
effort is also increased, as the rarefaction parameter � ap-
proaches the hydrodynamic limit because the number of the
intermolecular collision to be simulated is enlarged.

Initially, the modeled particles are distributed uniformly
over the left container and inside the tube with the density

given by
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nL =
n0

FN
, �8�

where n0= P0 /kT0 is the equilibrium density in the right con-
tainer and FN is the number of real molecules represented by
one model particle. The model particles in the right container
are also distributed uniformly with the density given as

nR = nL
P1

P0
. �9�

Then, during the streaming stage some of them are freely
moved through some distance defined by the time step �t
and their velocities ci �1
 i
N�, while others may interact
with the solid boundaries of the tube or of the reservoirs. The
interaction of particles with the solid boundaries maintained
at temperature T0 is simulated by diffuse reflection. Also,
during the free motion some particles may get out from the
computational domain and then they are eliminated for the
rest of the simulation. At the same time, new particles are
generated at the open boundaries of the computational do-
main having the corresponding Maxwellian distributions de-
fined by �P0 ,T0� in the left reservoir and by �P1 ,T0� in the
right one. The number of particles entering the computa-
tional domain through the boundaries of the left and right
containers is defined by

NL =
1

2��
ALnLv0�t , �10�

and

NR =
1

2��
ARnRv0�t , �11�

respectively. Here, AL and AR are the areas of the left and
right open boundaries, while nL and nR are given by Eqs. �8�
and �9�, respectively. It is noted that NL and NR remain con-
stant for all time intervals. Upon establishing steady state
conditions the number of particles leaving and entering the
computational domain is approximately the same and there-
fore the total number of simulated particles remains practi-
cally constant.

During the collision stage, particles within a cell are ran-
domly selected as a collision pair according to collision
probabilities derived from kinetic theory. Since it was shown,
in previous works,7,17 that the influence of the intermolecular
potential model on this type of flow is modest, here we con-
sider only the hard sphere particles with a constant cross
section. Therefore, in the present work, the viscosity is pro-
portional to �T and the dimensionless results, presented in
Sec. IV are general in the sense that they can be used for any
gas.

The mass flow rate Ṁ can be expressed in terms of the net

number of particles crossing the inlet of the tube at x=0 as
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Ṁ =
m�N+ − N−�FN

t
, �12�

where t is the total simulation time. Then, according to Eq.
�2�, the reduced flow rate W is estimated as

W =
2

��

�N+ − N−�V
R2tv0N

, �13�

where V is the volume of the computational domain and N is
the number of model particles generated initially.

The number density in a computational cell is given by

nj =
N̄jFN

Vj
, j = 1,2, . . . ,J , �14�

where j denotes the computational cell having volume Vj, J

is the total number of cells, and N̄j is the average value of the
number of particles in the jth cell at each time interval. The
dimensionless number density is given as

nj

n0
=

N̄j

N

V

Vj
, j = 1,2, . . . ,J . �15�

Working in a similar manner the dimensionless bulk velocity
vector and temperature of the jth cell are found to be

uj

v0
=

1

Nj
�
i=1

Nj

cij, j = 1,2, . . . ,J �16�

and

Tj

T0
=

2

3� 1

Nj
�
i=1

Nj

cij
2 − 	 u

v0

2�, j = 1,2, . . . ,J . �17�

respectively. In Eqs. �16� and �17�, Nj is the number of par-
ticles in the jth cell and cij denotes the dimensionless three
component molecular velocity vector of the ith particle at the
jth cell. Both quantities refer to the total time of the simula-
tion. Finally, the dimensionless pressure is calculated using
the equation of state as

Pj

P0
=

nj

n0

Tj

T0
, j = 1,2, . . . ,J . �18�

In Sec. IV, the numerical results are presented for the
flow rate and the distributions of velocity, pressure, and
temperature.

IV. RESULTS AND DISCUSSIONS

Calculations have been carried out for the following
ranges of the parameters determining the solution: 0
�

2�103, 0	L /R
10, and 0
 P1 / P0
0.7. It is noted that
the obtained results cover actually the whole range of � and
a reasonably wide range of L /R and P1 / P0. For this range of
parameters, the results are presented in Sec. IV A and IV B.
The first one is focused on the flow rate including some
comparisons with experimental results and the second one

provides an analysis of the flow field.
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A. Flow rate

The behavior of the dimensionless flow rate W in terms of
the parameters �, L /R and P1 / P0 is shown in Figs. 2–4,
respectively. In Fig. 2, the results of W with regard to the
rarefaction parameter for L /R=0.1,1 ,5 and P1 / P0

=0 ,0.1,0.5,0.7 are shown. In all cases the qualitative depen-
dency of W on � is similar. More specifically, as � is in-
creased from 0 to 1, W is increased very slowly; then in the
range 1
�
102 there is a significant increase of W and
finally, at the large values of �, W keeps increasing very

FIG. 2. Dimensionless flow rate W in terms of � for various L /R and P1 / P0.
weakly reaching asymptotically the continuum results at the
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hydrodynamic limit ��→��. It is noted that the results for
P1 / P0=0 and 0.1 are almost identical when ��10.

The dependency of W on P1 / P0 for L /R=0.1,1 ,5 and �
=1,10,102 ,103 is shown in Fig. 3. In all cases W is in-
creased as P1 / P0 is decreased �i.e., as the difference between
upstream and downstream pressures is increased�. It is seen,
however, that as the pressure ratio is decreased, at small L /R
and �, W is rapidly increased, while at large L /R and � the
increase in W is modest. Actually, in some cases �e.g., L /R
=5 and �=102 or 103�, there is a critical pressure ratio
�P1 / P0�*, beyond which as P1 / P0 is further decreased the
corresponding increase in W is not significant. This phenom-

FIG. 3. Dimensionless flow rate W in terms of P1 / P0 for various L /R and �.
enon, called choked flow, is well known in the continuum
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limit and it is also present in rarefied flows. It is deduced,
however, that the value of the critical pressure ratio is de-
creased as the rarefaction is increased �i.e., by decreasing ��.
It is also noted that at L /R=0.1, the corresponding results for
�=102 and 103 almost coincide.

In Fig. 4, the results of W in terms of L /R are shown for
P1 / P0=0.1,0.5,0.7 and �=10−1 ,1 ,10,102 ,103. As expected
in most cases, W has its maximum value at L /R=0 and then
it is decreased as the length to radius ratio is increased. It is
observed, however, that for some set of parameters and, in
particular, for large P1 / P0 and �, W may have a slight maxi-

FIG. 4. Dimensionless flow rate W in terms of L /R for various P1 / P0 and �.
mum at some L /R different than zero. This phenomenon,
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which is present in the hydrodynamic regime, has been also
observed in experimental work, see, e.g., Refs. 16 and 20 but
it has not been yet physically explained.

A comparison between the present numerical results and
the experimental results in Ref. 6 is performed in Fig. 5. The
experimental results have been obtained by digitizing Fig. 8
in Ref. 6 for L /R=0.99, ��1, and 0
 P1 / P0
0.5. In order
to be able to perform the comparison, the corresponding re-
sults of W for L /R=1, presented here, are multiplied by the
quantity �1− P1 / P0�−1. The very good agreement between the
experiment and simulation, in a wide range of � and P1 / P0,
validates the numerical solution at L /R=1 and it is reason-
able to expect that this accuracy is extended to other length-
to-radius ratios as well.

Another comparison with experimental results is per-
formed in Fig. 6, based on the empirical expression �4� in
Ref. 4, for various set of parameters. The agreement is good
in the free molecular and part of the transition regime up to
�
2 and reasonably good for 2	�
5 and P1 / P0=0.7 and
0.5. Outside this range of parameters, formula �4� is not
reliable.

This subsection is closed by providing some tabulated re-
sults for the flow rate W in terms of � and L /R in Tables I–III
for P1 / P0=0.1, 0.5, and 0.7, respectively. For the case of
L /R=10, the numerical effort is very intense and therefore
results are provided only for limited number of � in the free
molecular and transition regimes. Also, in Table IV, results
for W are tabulated for P1 / P0=0.2,0.3,0.4 and for charac-
teristic values of � and L /R. It is noted that Tables I–IV
include some results presented before in graphical form and
also additional results covering a wide range of all three
parameters determining the flow. We consider that the tabu-
lated results are important in this type of research work since
they can be easily accessed by the research community for
comparison purposes with experimental results or as bench-
marks for validation of computational work.

B. Flow field

We continue with a more detailed observation inside the

FIG. 5. Comparison between the present DSMC results and the correspond-
ing experimental data by Fujimoto and Usami �Ref. 6�.
flow field by providing, in Fig. 7, the streamlines for
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P1 / P0=0.5, L /R=0.5,5, and �=1,10,102 ,103. It is seen that
in the transition regime ��=1� the streamlines are almost
symmetric before and after the tube and no vortices are
present. This flow pattern is typical for any pressure and
length-to-radius ratios when �
1. As � is increased, the
streamlines bend and vortices start to appear in the down-
stream reservoir. At �=10, such vortices have already been
created, while at �=102 and 103, these vortices have been
enlarged and as a result strong jets of gas along r=0 at the
exit of the tube have been produced. The diameter of the jets
is equal to the diameter of the tube and its length is extended
downstream several L /R. Comparing the streamlines be-

FIG. 6. Comparison between the present DSMC results and the correspond-
ing experimental data by Sreekanth �Ref. 4�.
tween L /R=0.5 and 5, it is seen that the vortex creation is
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delayed as L /R is increased. The flow patterns, shown in Fig.
7, for P1 / P0=0.5 is typical for any pressure ratio 0

 P1 / P0
0.7.

The variation in the pressure, temperature, and local Mach
along the symmetry axis r=0 and −4
x
L /R+8 are
shown in Figs. 8–10, respectively, for �=1, 10, 100, and
1000, L /R=0.1 and 5, and P1 / P0=0.1, 0.3, and 0.5.

In Fig. 8, for �=1, the pressure variation is decreased
monotonically. It starts from its upstream equilibrium value
P0 and remains constant for x
−2. Then, it drops along the
distance −2
x
L /R+2 reaching its downstream equilib-
rium value P1, which remains constant for x�L /R+2. The
corresponding temperature in Fig. 9, for �=1, is constant and
equal to its equilibrium value for x
−2, and then it starts
dropping until x�L /R, where for all L /R, it has a minimum.
Next, it is increasing and reaches its equilibrium value,
which is equal to T0. In general, the temperature variation,

TABLE I. Dimensionless flow rate W vs L /R and � for P1 / P0=0.1.

�

W

L /R=0.1 0.5 1 2 5 10

0 0.856 0.721 0.605 0.463 0.279 0.170
0.1 0.869 0.731 0.613 0.468 0.281
0.5 0.924 0.775 0.648 0.493 0.291 1.171
1 0.984 0.826 0.689 0.521 0.304
2 1.08 0.911 0.761 0.573 0.330 0.192
5 1.27 1.08 0.913 0.699 0.412

10 1.38 1.20 1.05 0.842 0.529 0.321
20 1.45 1.29 1.16 0.985 0.689
50 1.49 1.38 1.28 1.15 0.915

100 1.51 1.43 1.35 1.26 1.07
200 1.51 1.46 1.41 1.34 1.18
500 1.51 1.48 1.45 1.39 1.27

1000 1.51 1.49 1.46 1.40 1.28
2000 1.51 1.49 1.46 1.40 1.27

TABLE II. Dimensionless flow rate W vs L /R and � for P1 / P0=0.5.

�

W

L /R=0.1 0.5 1 2 5 10

0 0.475 0.399 0.336 0.256 0.155 0.0935
0.1 0.486 0.409 0.343 0.260 0.156
0.5 0.528 0.444 0.370 0.280 0.163 0.0934
1 0.583 0.488 0.405 0.304 0.175
2 0.688 0.573 0.474 0.351 0.197 0.114
5 0.948 0.796 0.658 0.486 0.271

10 1.15 1.01 0.866 0.669 0.388 0.223
20 1.27 1.15 1.04 0.864 0.571
50 1.35 1.28 1.20 1.07 0.828

100 1.37 1.35 1.29 1.19 0.993
200 1.39 1.39 1.35 1.28 1.11
500 1.39 1.41 1.39 1.32 1.18

1000 1.39 1.42 1.40 1.34 1.20
2000 1.39 1.42 1.40 1.34 1.19
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TABLE III. Dimensionless flow rate W vs L /R and � for P1 / P0=0.7.

�

W

L /R=0.1 0.5 1 2 5 10

0 0.286 0.241 0.201 0.153 0.093 0.0543
0.1 0.292 0.246 0.205 0.156 0.093
0.5 0.321 0.270 0.224 0.170 0.100 0.0606
1 0.361 0.300 0.249 0.190 0.106
2 0.436 0.363 0.298 0.220 0.123 0.0700
5 0.654 0.541 0.440 0.319 0.174

10 0.885 0.762 0.640 0.471 0.263 0.146
20 1.03 0.937 0.831 0.672 0.411
50 1.12 1.08 1.00 0.884 0.658

100 1.15 1.15 1.10 1.00 0.814
200 1.16 1.19 1.16 1.09 0.922
500 1.17 1.20 1.19 1.13 0.975

1000 1.16 1.20 1.19 1.13 0.980
2000 1.16 1.20 1.19 1.13 0.986
FIG. 7. Streamlines for various �, with P1 / P0=0
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TABLE IV. Dimensionless flow rate W vs L /R and � for various P1 / P0.

P1 / P0

W

� L /R=0.1 1 5

0.2 1 0.889 0.622 0.269
10 1.35 1.02 0.507

100 1.49 1.35 1.06
1000 1.51 1.45 1.26
2000 1.51 1.46 1.27

0.3 1 0.790 0.552 0.242
10 1.30 0.989 0.477

100 1.47 1.35 1.05
1000 1.49 1.45 1.27
2000 1.49 1.45 1.25

0.4 1 0.689 0.480 0.208
10 1.24 0.937 0.437

100 1.43 1.33 1.031
1000 1.45 1.43 1.22
2000 1.45 1.43 1.23
.5 and L /R=0.5 �left� and L /R=5 �right�.
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for �=1, is small and it is reduced as the pressure and the
length-to-radius ratios are increased. The pressure and tem-
perature variations for �=1 and 10 are qualitatively similar.

For �=102, both pressure and temperature variations,
compared to those for �=1 are drastically changed, i.e., they
are not monotonic anymore. In Fig. 8, for �=102, the pres-
sure at the exit of the tube is reduced well below P1 / P0 and
then along the distance L /R	x
L /R+8, it is characterized
by an oscillatory behavior with reducing amplitude around
its downstream equilibrium value. Such a phenomenon is

FIG. 8. Pressure distributions along r=0 for variou
called Mach disks and has been earlier discussed in slightly

JVST A - Vacuum, Surfaces, and Films
rarefied gas flows using a quasi-gas-dynamics approach.21,22

The oscillatory behavior is reduced as the pressure ratio is
increased and finally it vanishes at P1 / P0=0.5. This oscilla-
tory behavior of the pressure is due to the compression
waves, which are produced inside the tube and they propa-
gate downstream. The corresponding behavior of the tem-
perature variation, in Fig. 9, for �=102, has similar charac-
teristics with the ones for pressure. Also, the pressure and
temperature variations for �=103 are qualitatively similar to
the one for �=102. Comparing all temperature variations in

nd P1 / P0 with L /R=0.1 �left� and L /R=5 �right�.
terms of �, it is seen that the minimum values of the tem-
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perature departure from equilibrium is increased as the rar-
efaction is decreased �i.e., as � is increased�. It is also noted
that the pressure and temperature variations do not change
significantly in terms of L /R. As a general remark, it is
stated, that the pressure and temperature fields �and therefore
the whole flow field� depend strongly on P1 / P0 as well as on
�, while their dependency on L /R is not as strong.

The variation in the Mach number along r=0 is shown in
Fig. 10. For a monoatomic gas the local Mach number is
computed from the gas velocity according to Ma

�

FIG. 9. Temperature distributions along r=0 for vari
= 6T0 /5Tux /v0. Far upstream, the Mach number is equal to
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zero. Then, at the same point �about x=−2�, where the pres-
sure starts to decrease, the Mach number starts to increase. It
keeps increasing along the tube and it reaches its maximum
value, which, as it is seen, strongly depends on P1 / P0 and �,
while it is practically independent of L /R, at the exit of the
tube. Then, it starts decreasing toward zero. It is seen that for
the same pressure ratio, as � is decreased, the maximum
value of the Mach number is drastically decreased, too. For
sufficiently low pressure ratio, the flow may be supersonic at
the exit of the tube when �=102 ,103, but it becomes sub-

and P1 / P0 with L /R=0.1 �left� and L /R=5 �right�.
sonic when �=1,10. Also, for the same pressure ratio, as the



ious

1387 Varoutis, Valougeorgis, and Sharipov: Simulation of gas flow through tubes of finite length 1387
rarefaction parameter is decreased, the oscillatory behavior
of the Mach number at the downstream reservoir is reduced
and finally vanishes. These observations are in agreement

FIG. 10. Axial velocity distribution along r=0 for var
with the reported flow rates in Sec. IV A.

JVST A - Vacuum, Surfaces, and Films
Next, in order to observe in a more detailed manner the
flow field characteristics inside the tube, the velocity, pres-
sure, and temperature profiles are plotted at the inlet �x=0�,

� and P1 / P0 with L /R=0.1 �left� and L /R=5 �right�.
middle �x=L / �2R��, and outlet �x=L /R� of a tube with
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L /R=0.5, �=1,103, and P1 / P0=0.1,0.7. The selected com-
binations of � and P1 / P0 may be considered as indicative for
cases when both of them are small or large, as well as for
cases when one of them is small and the other is large and
the presented radial profiles may be considered as typical for
the flow evolution along the tube.

Starting with the velocity profiles ux, shown in Fig. 11, the
way that the flow is accelerated from one cross section to the
next one is clearly demonstrated. The acceleration becomes
faster as P1 / P0 is decreased and � is increased. At �=1 and
P1 / P0=0.7, the acceleration of the flow is negligible. The
shape of the corresponding profiles for �=1 and �=103 is
quite different. For �=1, the profiles follow a parabolic type
shape having minimum and maximum values at the wall and
at the center of the tube, respectively. For �=103, the veloc-
ity profiles reach their maximum values near the wall, at r
�0.8 and not in the center of the tube as it might be ex-

FIG. 11. Velocity profiles at the inlet �x=0:���, middle �x=L / �2R�: –
pected. This behavior occurs both for P1 / P0=0.1 and 0.7,
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but it becomes clearer at small pressure ratios �i.e., at large
pressure drops�.

The corresponding pressure P�x� and temperature T�x�
profiles are shown in Figs. 12 and 13, respectively. For each
set of parameters, the pressure and temperature drop in the
tube may be observed. For �=1 it is seen that the slope of the
pressure profiles at the inlet and outlet cross sections is op-
posite �i.e., at x=0 the pressure is higher close to the wall
than at the center of the tube and at x=L /R is the other way
around�, while in the middle cross section x=L /2R, the pres-
sure is almost constant. For �=103, the pressure profiles have
at the inlet a parabolic type shape, which is flattening gradu-
ally along the tube. The shape of the corresponding tempera-
ture and velocity profiles possess an antisymmetric qualita-
tive resemblance. The locations in the tube with high
velocities are characterized by low temperatures and vice
versa. Also, for �=1 in all three cross sections, the tempera-

and outlet �x=L /R: –·–·–� cross sections of a tube with L /R=0.5.
– –�
ture at the center of the tube is lower than close to the walls,
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while for �=103, the temperature profiles have a minimum at
r�0.8. At �=1 and P1 / P0=0.7, the temperature variation
inside the tube is negligible and the flow is almost isother-
mal. The presented results in Figs. 11–13 for L /R=0.5 are
indicative for all length-to-radius ratios.

Finally, for a complete view of the whole flow field, the
isolines of the local Mach number are plotted in Fig. 14,
covering the region around and inside the tube for L /R
=0.5, �=1,102, and P1 / P0=0.1,0.7. It is seen that for the
same pressure ratios, the flow fields downstream from the
exit of the tube vary significantly both qualitatively and
quantitatively between �=1 and �=102. It is also seen that
the effect of various P1 / P0 is more significant in dense rather
than in rarefied conditions. Based on the results presented in
this subsection, it may be argued that rarefaction has the
most significant effect on the flow characteristics and pat-
terns, followed by the pressure ratio drop, while the length-
to-radius ratio has a rather modest impact.

V. CONCLUDING REMARKS

The rarefied gas flow through circular tubes of finite
length has been investigated computationally in terms of the

FIG. 12. Pressure profiles at the inlet �x=0: ���, middle �x=L / �2R�:
three parameters defining the flow problem, namely, the rar-
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efaction parameter �, the length-to-radius ratio L /R, and the
pressure ratio P1 / P0. The numerical scheme is based on the
DSMC method. Results are presented for the first time, in
tabulated and graphical forms, for the flow rate, the bulk
distributions of velocity, pressure and temperature, and the
Mach number for the following range of the main param-
eters: 0
�
2000, 0
L /R
10, and 0
 P1 / P0
0.7. For
some specific flow configurations, the numerical results are
found to be in very good agreement with available experi-
mental results. Since the presented results correspond to a
wide range of the all three involved parameters, their effect
on the flow patterns and characteristics has been examined in
a detailed and systematic manner.

It has been shown that the flow quantities and character-
istics strongly depend on � and P1 / P0, while their depen-
dency on L /R is not as strong. As a qualitative remark, it
may be stated that as � is decreased and intermolecular col-
lisions become rare, the strength of the vortex creating
mechanisms is reduced, and the flow view is gradually sim-
plified. Also, the decrease in P1 / P0 �i.e., the increase in the
pressure drop� in rarefied atmospheres alters the flow quan-
tities but not the flow patterns, while in dense atmospheres, it

� and outlet �x=L /R: –·–·–� cross sections of a tube with L /R=0.5.
– – –
has both a qualitative and a quantitative impact. In addition,
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FIG. 13. Temperature profiles at the inlet �x=0: ���, middle �x=L / �2R�: – – –� and outlet �x=L /R: –·–·–� cross sections of a tube with L /R=0.5.
FIG. 14. Isolines of local Mach number for typical values of �, P1 / P0 and L /R=0.5.
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several interesting findings have been reported including the
behavior of the flow rate and other macroscopic quantities in
terms of the three basic problem parameters, while the issues
of the choked flow and of the Mach disks at large pressure
drops have been discussed.

The present results could be useful to plan experimental
works as well as to design and optimize systems operating
under low pressure conditions or microfluidics devices.
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