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HEURISTICS FOR MAXIMIZING FLEET AVAILABILITY  
SUBJECT TO FLIGHT & MAINTENANCE REQUIREMENTS 

George Kozanidis1, Andreas Gavranis2, George Liberopoulos3 

ABSTRACT. Flight and Maintenance Planning (FMP) addresses the question of which 
available aircraft should fly and for how long, and which grounded aircraft should perform 
maintenance operations, in a group of aircraft that comprise a unit. The objective is to achieve 
maximum availability of the unit over the planning horizon. In this work, we develop three 
heuristic solution procedures for the FMP problem. We present computational results which 
illustrate the computational performance of these procedures and evaluate the quality of the 
solutions that they produce. These results are very satisfactory, because they demonstrate that, 
under careful consideration, even large FMP instances can be handled quite effectively.  

INTRODUCTION 

Flight and Maintenance Planning (FMP) addresses the question of which available aircraft 
should fly and for how long, and which grounded aircraft should perform maintenance 
operations, in a group of aircraft that comprise a unit. The objective is to achieve maximum 
fleet availability of the unit over the planning horizon. Fleet availability is expressed in terms 
of the total number of aircraft that are available to fly (aircraft availability) and in terms of the 
total residual flight time of all available aircraft (flight time availability). The residual flight 
time of an aircraft is defined as the total remaining time that this aircraft can fly before it has 
to be grounded for maintenance check. FMP is a very important decision making problem 
arising in the operation of numerous types of fleets, involving military or fire-fighting aircraft, 
rescue choppers, etc.   

Kozanidis and Skipis (2006) developed a multiobjective mixed integer linear program (MILP) 
for the FMP problem. The 4 objectives of that model maximize the minimum aircraft and 
flight time availability of the unit (e.g., a wing) and of its subunits (e.g., squadrons), 
respectively. The model was developed for use on a specific aircraft type, but can be applied 
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repeatedly until all plans have been issued, if more than one aircraft types are present. 
Although it considers a single type of maintenance check, it can be easily extended to 
incorporate additional ones. The computational effort that this model needs in order to reach a 
nondominated solution increases rapidly with problem size, as is expected for problems of this 
type and as is verified by computational results. As a result, its applicability on large problems 
is quite limited. This raises the need to develop alternative intelligent approaches in order to 
address large FMP instances. To this end, we develop three heuristic solution procedures for 
the FMP problem in this work. These procedures are called Aircraft Flowchart Heuristic 1 and 
2 and Horizon Splitting Heuristic, and are described in the next section. For the remainder of 
this work, we use the terminology and notation introduced by Kozanidis and Skipis (2006).   
 
Although the research literature dealing with airline operations is quite rich, none of the 
reported works deals with the problem that we address in this work. To the best of our 
knowledge, no such work has been published to date, perhaps because most of the publicly 
available research in this area has been directed towards problems in the commercial airline 
industry, which have different objectives and requirements than those in the Air Force. The 
only reference related to the FMP problem that we know of is a Field Manual of the U.S. 
Department of the Army (US DoA, 2000), which describes a graphical tool for scheduling 
aircraft for periodic inspection and deciding which aircraft should fly in certain missions.   
  
HEURISTIC SOLUTION PROCEDURES 
 
Aircraft Flowchart Heuristic (AFH) 
 
The Hellenic Air Force (HAF) and many other Air Force organizations worldwide, solve the 
FMP problem empirically, utilizing in an ad-hoc manner a 2-dimensional graphical tool called 
the “aircraft flowchart,” (see Figure 1 in Kozanidis and Skipis, 2006). In current practice, the 
aircraft flowchart is at best used as a graphical device by the officer responsible for issuing the 
flight and maintenance plans. For example, in an aviation maintenance manual of the U.S. 
Army where this flowchart is described (US DoA, 2000), this officer is simply advised to 
utilize the flowchart by “flying the aircraft that are above the diagonal to get them down to the 
line” and “holding the aircraft that are below the diagonal to bring them up to the line”. No 
particular instructions are given on how this can be implemented effectively. Clearly, this 
procedure is highly subjective and dependent on numerous minor decisions made by the user. 
The first two heuristics that we propose are aimed at implementing the aircraft flowchart 
procedure more systematically. The first one takes into consideration the squadron each 
aircraft belongs to, while the second focuses on the wing and treats the aircraft as if they all 
belong to the same squadron. We term these two variants AFH1 and AFH2, respectively, and 
we introduce AFH1 first.   
 
Aircraft Flowchart Heuristic 1 
 
The application of AFH1 requires a number of minor decisions in each period of the planning 
horizon. For this reason, AFH1 computes a “priority index” for each squadron at the 
beginning of each period, and makes all relevant decisions thereafter based on this index. The 
first such decision regards the allocation of the maintenance station’s time capacity to the 
grounded aircraft. After this decision has been made, the number of maintenance dock spaces 
that will be available at the beginning of the next period is determined. This information is 
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important, because the production of the flight plans of the available aircraft depends strongly 
upon it.  
 
The priority index of squadron m in period t is defined as the flight load of squadron m in 
period t, divided by its total residual flight time at the beginning of period t. A higher priority 
index value reveals that the squadron experiences heavier load with respect to its current 
availability; therefore, higher priority should be given to the grounded aircraft that belong to 
this squadron. Hence, the maintenance station gives priority to the aircraft that belong to the 
squadron with the highest priority index first, and so on. In order to free dock space, the 
maintenance station works continuously on the same aircraft within each period, until either 
its time capacity is fully utilized, or the service of that aircraft is completed. Of course, if not 
enough time capacity exists, the service of an aircraft may be spread out over more than one 
periods. Every time that an aircraft completes its maintenance service, the priority index of the 
corresponding squadron is recomputed after Y time units are added to its total residual flight 
time, to reflect the fact that this aircraft becomes available.   
 
After the maintenance plans of all grounded aircraft in period t are produced, the number of 
dock spaces that will be available at the beginning of period t+1 is determined as well. These 
spaces will be occupied by the aircraft that will enter the station for service at the beginning of 
period t+1. Besides determining the order in which the aircraft will receive maintenance 
service, the priority indices are also used to determine the order in which the squadrons will 
occupy dock space that is emptied at the maintenance station. Thus, the aircraft of the 
squadron with the highest priority index value are considered first, and so on. Whether a 
specific aircraft will be grounded in period t+1 or not, depends on its current residual flight 
time, as compared to its current proportionate flight load. More specifically, the aircraft with 
the lowest residual flight time in this squadron will be grounded at the beginning of period t+1 
if its proportionate flight load over period t is greater or equal to its residual flight time at the 
beginning of the same period. The proportionate flight load of each available aircraft is 
computed by dividing the flight load of the corresponding squadron by the total number of 
available aircraft in that squadron. If this check denotes that this aircraft should be grounded 
for maintenance at the beginning of period t+1, then its flight time in period t is set equal to its 
residual flight time at the beginning of the same period. Additionally, the priority index value 
of the squadron it belongs to is recomputed, after this time is subtracted from the total residual 
flight time and from the flight load of this squadron. If additional empty spaces exist, the 
squadron with the highest priority index is considered next, and so on. This procedure is 
repeated until either there do not exist empty dock spaces at the maintenance station, or until 
there do not exist candidate aircraft for entering the maintenance station.      
 
Once the aircraft that will exit and enter the maintenance station in period t+1 are determined, 
the aircraft that will be available at the beginning of period t+1 are determined as well. Then, 
the flight time of each available aircraft in period t is determined by solving a simple 
nonlinear optimization problem that minimizes the total deviation index that will be realized 
at the beginning of period t+1. Assume that the aircraft of squadron m that will be available in 
period t+1 (let their total number be N) are arranged on a flowchart in nondecreasing order of 
their residual flight times at the beginning of period t. On this flowchart, consider the line 
segment (called “the diagonal”), connecting the origin with the point with coordinates (N, Y), 
where Y is the maximum time that an aircraft can fly between two consecutive maintenance 
checks, often referred to as “phase interval” in the related literature. The index of the aircraft 
with the smallest residual flight time at the beginning of period t is equal to 1 in this 
arrangement. Therefore, if s is the slope of the diagonal, the residual flight time of this aircraft 
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at the beginning of period t+1 should ideally be equal to s(1) = s. Similarly, the index of the 
aircraft with the next largest residual flight time at the beginning of period t is equal to 2; 
therefore its residual flight time at the beginning of period t should ideally be equal to 2s, etc. 
An aircraft that will exit the maintenance station at the beginning of period t+1 is considered 
to have residual flight time equal to Y at the beginning of period t in this arrangement, but its 
flight time during period t is also restricted to 0-value (since this aircraft will be grounded 
during period t). Clearly, s is equal to Y/N. Thus, the problem of deciding the flight time of 
each available aircraft of squadron m reduces to a nonlinear optimization problem, in which 
the total deviation index value that will be realized at the beginning of period t+1 is 
minimized. The functional constraints of this problem ensure that the sum of flight times of all 
the aircraft that belong to squadron m lies in the interval [LSmt, USmt], that the flight time of 
each aircraft does not exceed Xmax (or 0 in the case of an aircraft that will be grounded during 
period t), and that the residual flight time of each available aircraft at the beginning of period 
t+1 is at least equal to Ymin. To illustrate this procedure, assume that we have determined the N 
aircraft of squadron m that will be available at the beginning of period t+1. In order to produce 
their flight plans, we arrange them in nondecreasing order of their residual flight times at the 
beginning of period t. If we replace the indices m and n of each aircraft by the index i, for 
simplicity, the nonlinear optimization problem that arises is the following: 

 
In the objective function, the sum of squares of all vertical deviations from the diagonal that 
will be realized at the beginning of period t+1 is minimized. The first set of constraints 
updates the residual flight of each aircraft at the beginning of period t+1, based on its residual 
flight time at the beginning of period t and its flight time during period t. The second set of 
constraints ensures that the flight requirements of squadron m in period t are satisfied. The 
next two sets of constraints impose upper and lower bounds on the flight time and on the 
residual flight time of each aircraft, respectively, and the last set of constraints accounts for 
the nonnegativity of the flight times. Note that the yit+1’s and the xit’s are decision variables in 
this formulation, while the yit’s are known parameters. In order to solve this problem, we 
obtain, after some basic manipulation, the following equivalent formulation:  
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The problem defined by (1)-(4) is a quadratic programming problem. It can be easily shown 
that its objective function is convex. Therefore, the KKT conditions (see Bazaraa et al., 2006) 
are necessary and sufficient for optimality. We give next a simple procedure called “Sweep” 
that can be used to obtain the optimal solution. On the corresponding flowchart described 
above, consider a line parallel to the diagonal which is placed initially far to the top so that all 
aircraft lie below it, as shown in Figure 1 (in what follows, we refer to a point on the graph 
and the aircraft whose residual flight time this point represents, interchangeably). Assume 
now that this line starts moving towards the diagonal (and past it, while always remaining 
parallel to it), sweeping along each aircraft that it comes across. As this move takes place, 
flight times are accordingly assigned to the aircraft in the order that they are swept by the line 
(each aircraft is allowed to move vertically only). If during this procedure one of the aircraft 
swept by the line reaches its maximum flight time, Xui, then the line should “disengage” this 
aircraft, to ensure that the resulting solution will remain feasible. Therefore, the line should 
continue its move without sweeping further this aircraft in that case.  
  

 
Figure 1. Illustration of the Procedure “Sweep” 

 
Consider now the following 4 solutions obtained during the application of this procedure: 
1. The solution in which the sum of the assigned aircraft flight times is equal to LSmt. In what 
follows, we refer with “L” to the value of this sum. 
2. The solution in which the sum of the assigned aircraft flight times is equal to USmt. In what 
follows, we refer with “U” to the value of this sum. 
3. The solution in which each aircraft is assigned its maximum possible flight time. In what 
follows, we refer with “X” to the sum of the assigned aircraft flight times of this solution. 
4. The solution in which the sweeping line coincides with the diagonal. In what follows, we 
refer with “D” to the sum of the assigned aircraft flight times of this solution. 
The following is a very crucial and interesting result, utilized in the development of AFH1:  
 
Proposition 1. If the quantities L, U, X and D are placed in nondecreasing order, then: 
a) If, after taking into consideration all ties present (if any), there does not exist an 
arrangement in which L precedes X, then the problem defined by (1)-(4) is infeasible. 
b) If an arrangement in which L precedes X exists, then the optimal solution of the problem 
defined by (1)-(4) is the one obtained from Procedure Sweep when the sum of the assigned 
aircraft flight times becomes equal to the quantity that appears second in this arrangement. 
Proof. See Appendix.        
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The application of Procedure Sweep produces the flight time of each available aircraft, which 
concludes the computations for the current period. The same steps are then repeated 
successively for each period, until the aircraft flight and maintenance plans of the entire 
planning horizon are produced. Based on this discussion, the detailed steps of AFH1 are 
introduced next. The following additional notation is used in the pseudocode: 
Samt = number of available aircraft of squadron m in period t 
Sxmt = total flight time of squadron m in period t 
Symt = total residual flight time of squadron m in period t 
Shmt = total maintenance time of squadron m in period t 
Sgmt = total residual maintenance time of squadron m in period t 
exitmt = number of aircraft of squadron m exiting the maintenance station at the end of period t   
Bres = residual maintenance time capacity 
Cres = residual maintenance space capacity 
 
Aircraft Flowchart Heuristic 1  
Step 0: initialization 
Sam1 = 0, Sym1 = 0, Sgm1 = 0, Cres = C  
for m = 1 to |M| do 
 for n = 1 to |Nm| do 

amn1 = A1mn, Sam1 = Sam1 + amn1, Cres = Cres – 1 + amn1 
ymn1 = Y1mn, Sym1 = Sym1 + ymn1  
gmn1 = G1mn, Sgm1 = Sgm1 + gmn1  

 end for 
 arrange in nondecreasing order of ymn1 the available aircraft of squadron m 

arrange in nondecreasing order of gmn1 the grounded aircraft of squadron m   
end for 
for t = 1 to T do 
 Step 1: development of maintenance plans 
 Bres = Bt, exitmt = 0, hmnt = 0, Shmt = 0  
 while Bres > 0 and grounded aircraft exist do  
  k =

: 0
arg max

mt mtm M Sg Sh∈ − >
Smt /(Symt + (exitmt * Y))  

l =  arg min  ( - ): ( - ) > 0
k

knt knt knt knt
n N

g h g h
∈

 

  if Bres > gklt  
Bres = Bres - gklt , hklt = gklt, Shkt = Shkt + hklt  
Cres = Cres + 1, exitmt = exitmt +1 

   else    
hklt = Bres, Shkt = Shkt + hklt, Bres = 0      

 end while 
 Step 2: decision on aircraft that will be grounded 

xmnt = 0, Sxmt = 0  
 while Cres > 0 and not all squadrons have been considered do 
  k = arg max

m M∈
 (Smt - Sxmt)/(Symt - Sxmt + (exitmt * Y))  

 l = arg min
kn N∈

(yknt - xknt): yknt - xknt > 0  

  if (Skt – Sxkt)/(Sykt – Sxkt ) > yklt   
xklt = yklt, Sxkt = Sxkt + xklt, Cres = Cres - 1 

  else  
remove k from set of squadron indices that have not been considered 
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 end while 
 Step 3: development of flight plans 
 for m = 1 to |M| do 
  using Procedure Sweep, issue the aircraft flight plans of squadron m in period t 
 end do 
 Step 4: next period update 
 Samt+1 = Samt, Symt+1 = Symt, Sgmt+1 = Sgmt  
 for m = 1 to |M| do 

for n = 1 to |Nm| do 
 if (amnt == 0 and hmnt == gmnt)  
  amnt+1 = 1, Samt+1 = Samt+1 + 1 
  ymnt+1 = Y, Symt+1 = Symt+1 + Y 
  gmnt+1 = 0, Sgmt+1 = Sgmt+1 - hmnt  
 else if (amnt == 1 and xmnt < ymnt) 
  amnt+1 = 1 
  ymnt+1 = ymnt - xmnt, Symt+1 = Symt+1 - xmnt 
  gmnt+1 = 0 
 else if (amnt == 1 and xmnt == ymnt) 
  amnt+1 = 0, Samt+1 = Samt+1 - 1 
  gmnt+1 = G, Sgmt+1 = Sgmt+1 + G 
  ymnt+1 = 0, Symt+1 = Symt+1 - xmnt  
 else if (amnt == 0 and hmnt < gmnt) 
    amnt+1 = 0 
  gmnt+1 = gmnt - hmnt, Sgmt+1 = Sgmt+1 - hmnt 
  ymnt+1 = 0 
end for 

 end for 
end for   
 
In order to avoid confusion and keep the above pseudocode clear to the reader, the restriction 
that a positive residual maintenance time should be at least equal to Gmin is not taken into 
consideration in the development of the maintenance plans, although in the actual coding it is.   
 
Computational Complexity of AFH1 
 
For the computational complexity analysis of AFH1, we prove the next interesting result first. 
 
Lemma 1. The problem defined by (1)-(4) can be solved in time O(N), where N is the total 
number of variables xit. 
Proof. The values of L and U are known. The values of D and X can be computed in time 
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where di = 2, ai = 2(yit - is), bi = 1, b0 = S, li = 0 and ui = Xui, for i = 1,…, N. This problem can 
be solved in time O(N) (see Brucker, 1984). Therefore, the problem defined by (1)-(4) can be 
solved in total time O(N).  
Let max max mm M

N N
∈

= . Proposition 2 utilizes Lemma 1 in order to analyze the computational 

complexity of AFH1. 
 
Proposition 2. AFH1 requires time O(|M| max(NmaxlogNmax, TNmax, TC, T|M|)).  
Proof. See Appendix.        
 
Aircraft Flowchart Heuristic 2 
 
AFH2 acts exactly the same way as AFH1, but assumes that all aircraft belong to the same 
squadron and does not make the relevant decisions based on squadron priority indices. The 
next aircraft to receive maintenance service is always the one with the smallest residual 
maintenance time among all grounded aircraft. Aircraft for entering the maintenance station in 
the next period are considered in nondecreasing order of their residual flight times, 
independently of the squadron they belong to. The aircraft flight plans of each period are 
produced solving one problem such as the one defined by (1)-(4) for each squadron. Note 
however that, in the corresponding arrangement, the index i of each aircraft determines its 
order when all the aircraft of the wing (and not only those of the squadron it belongs to) are 
arranged in nondecreasing order of their residual flight times. Based on this discussion, the 
detailed steps of AFH2 are:   
 
Aircraft Flowchart Heuristic 2  
Step 0: initialization 
Sam1 = 0, Sym1 = 0, Sgm1 = 0, Cres = C  
for m = 1 to |M| do 
 for n = 1 to |Nm| do{ 

amn1 = A1mn, Sam1 = Sam1 + amn1, Cres = Cres – 1 + amn1 
ymn1 = Y1mn, Sym1 = Sym1 + ymn1  
gmn1 = G1mn, Sgm1 = Sgm1 + gmn1  

 end for 
 arrange in nondecreasing order of ymn1 the available aircraft of squadron m 

arrange in nondecreasing order of gmn1 the grounded aircraft of squadron m   
end for 
arrange in nondecreasing order of ymn1 the available aircraft of the wing  
arrange in nondecreasing order of gmn1 the grounded aircraft of the wing    
for t = 1 to T do 
 Step 1: development of maintenance plans 
 Bres = Bt, hmnt = 0  
 while Bres > 0 and grounded aircraft exist do   

k,l =
, 

arg min  ( - ): ( - ) > 0
m

mnt mnt mnt mnt
m M n N

g h g h
∈ ∈

 

  if Bres > gklt  
Bres = Bres - gklt , hklt = gklt, Cres = Cres + 1 

   else    

s.t. 0
1

N

i it
i

b x b
=

=∑  

li < xit  < ui, i = 1,…, N, 
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hklt = Bres, Bres = 0    
 end while 
 Step 2: decision on aircraft that will be grounded 
 xmnt = 0, Sxmt = 0   
 while Cres > 0 and not all squadrons have been considered do 

k,l =
, 

arg min
mm M n N∈ ∈

(ymnt – xmnt): ymnt – xmnt > 0  

  if (( ) /( ))kt kt kt kt kltS Sx Sy Sx y− − >   
xklt = yklt , Sxkt = Sxkt + xklt, Cres = Cres - 1 

  else  
remove k from set of squadron indices that have not been considered 

 end while 
 Step 3: development of flight plans 
 for m = 1 to |M| do 
  using Procedure Sweep, issue the aircraft flight plans of squadron m in period t 
 end do  
 Step 4: next period update 
 Samt+1 = Samt, Symt+1 = Symt, Sgmt+1 = Sgmt 
 for m = 1 to |M| do 

for n = 1 to |Nm| do 
 if (amnt == 0 and hmnt == gmnt)  
  amnt+1 = 1, Samt+1 = Samt+1 + 1 
  ymnt+1 = Y, Symt+1 = Symt+1 + Y 
  gmnt+1 = 0, Sgmt+1 = Sgmt+1 - hmnt  
 else if (amnt == 1 and xmnt < ymnt) 
  amnt+1 = 1 
  ymnt+1 = ymnt - xmnt, Symt+1 = Symt+1 - xmnt 
  gmnt+1 = 0 
 else if (amnt == 1 and xmnt == ymnt) 
  amnt+1 = 0, Samt+1 = Samt+1 - 1 
  gmnt+1 = G, Sgmt+1 = Sgmt+1 + G 
  ymnt+1 = 0, Symt+1 = Symt+1 - xmnt  
 else if (amnt == 0 and hmnt < gmnt) 
    amnt+1 = 0 
  gmnt+1 = gmnt - hmnt, Sgmt+1 = Sgmt+1 - hmnt 
  ymnt+1 = 0 
end for 

 end for 
 arrange in nondecreasing order of ymnt+1 the available aircraft of the wing 
end for   
 
Although the order of the available aircraft within each squadron does not change when 
Procedure Sweep is applied, the order of the available aircraft within the wing may change. 
For this reason, a rearrangement of this order takes place at the end of each time period.    
 
Computational Complexity of AFH2 
 
Letting m

m M
N N

∈

= ∑ , we get the following result for the computational complexity of AFH2: 
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Proposition 3. AFH2 requires time O(|M|Nmax max(logNmax, Tlog|M|)). 
Proof. See Appendix.        
 
Horizon Splitting Heuristic (HSH) 
 
The third heuristic that we propose for the solution of large FMP instances makes use of the 
simple idea of splitting the original planning horizon into several consecutive ones, and 
solving an FMP subproblem for each of them. The ending system state of each smaller 
horizon becomes the beginning state of the next one, and so on. The smaller horizons do not 
necessarily need to have equal lengths. The quality of the solution obtained this way is 
expected to be inferior to the one obtained when the problem is solved up front for all the 
periods of the original planning horizon. On the other hand, the total computational time 
needed in order to reach a solution is expected, in general, to decrease, especially as the length 
of the smaller horizons decreases. This is mainly because the computational effort needed to 
reach an optimal solution with MILP is expected, in general, to increase with problem size.  
 
COMPUTATIONAL RESULTS 
 
AFH1 and AFH2 were coded in C/C++ and the coding is available upon request. For the 
solution of MILP, we applied the weighted sums approach (see Steuer, 1986), by introducing 
strictly positive weights w1, w2, w3 and w4 such that w1 + w2 + w3 + w4 = 1. Since the residual 
flight time of an available aircraft is equal to Y/2 on the average, we multiplied the first 
objective with Y/2, the third objective with |M|(Y/2), and the fourth objective with |M| for 
scaling reasons. A single criterion problem was obtained this way with objective Z = 
(Y/2)w1z1 + w2z2 + |M|(Y/2)w3z3 + |M|w4z4. The same transformation was adopted for the 
application of HSH. The resulting mixed integer linear programs were solved using version 
9.1 of AMPL/CPLEX (see Fourer et al., 2002), with default values where possible. All 
experiments were performed on a Pentium IV/1.8 GHz dual core processor, with 1 GB system 
memory.  
 
Due to space limitation, instead of presenting the results of the experiments that were 
conducted, we present the most important conclusions reached from the analysis of these 
results. A first observation that can be made is that, besides problem size, the actual values of 
the problem parameters also have a strong influence on the total computational effort needed 
to reach an optimal solution in the case of MILP and HSH. This is supported by the fact that, 
even for the same problem size, a large variance is exhibited in the computational times of 
MILP and HSH. One of the parameters that have strong impact on this computational effort is 
the flight load (parameter Smt). For example, for a particular problem size with |M| = 3, |Nm| = 
4, T = 10 and a certain way for producing random instances, the average computational time 
over 10 instances that AMPL needed to reach an optimal solution was 36.97 seconds and the 
maximum time 148.22 seconds. When the average flight load was increased by 30%, the 
average computational time over 10 instances that AMPL needed to reach an optimal solution 
was 3512.4 seconds (almost 100 times larger) and the maximum time 8280.4 seconds. A 
similar behavior was observed for different problem sizes and parameter combinations. 
Therefore, as the flight load increases, the computational effort required by AMPL in order to 
reach an optimal solution seems to increase considerably. On the other hand, the 
computational effort of AFH1 and AFH2 on the same problem size does not vary significantly 
even when the exact values of the problem parameters vary considerably. Therefore, the 
actual values of the problem parameters do not have a strong influence on the computational 
effort of AFH1 and AFH2.   
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The total computational time needed in order to reach an optimal solution decreases 
significantly when HSH is used instead of MILP. For example, for the aforementioned 
problem size and the same average flight load as in the first set of experiments, the average 
computational time over the same 10 problem instances that HSH needed to reach an optimal 
solution was 0.98 seconds and the maximum time 2.21 seconds. On the other hand, the 
computational time required by AFH1 and AFH2 on practical problem sizes is negligible. 
This is also supported by the results of Table 1, which show the average and maximum 
computational time (in seconds) that AFH1 and AFH2 needed to find the optimal solution, 
over 10 random large scale problem instances. These results confirm that the computational 
effort needed for the execution of AFH1 and AFH2 is not very significant, even for problems 
whose size is exceptionally larger than the typical problem size arising in practical 
applications. For the same problem size, the computational effort required by AFH2 seems to 
be higher than that of AFH1, an observation which is in agreement with the computational 
complexity analysis of the previous section.  
 
The significant computational savings of the three heuristic procedures come at a price, since 
the quality of the solutions that they produce is inferior to the quality of the solutions obtained 
by MILP. HSH exhibits a rather myopic behavior. It focuses on maximizing fleet availability 
in the initial periods first, but this may result in low availability over the next periods. On the 
other hand, a more conservative planning over the initial periods may, in some cases, result in 
higher availability over the entire planning horizon. Nevertheless, the solution obtained by 
HSH is quite satisfactory in most cases. Therefore, HSH can also be considered alternatively 
for obtaining an acceptable solution when the size of the problem prohibits its solution using 
MILP. In general, the number of periods of each smaller horizon has a strong effect on the 
quality of the obtained solution. An interesting conclusion that arises from this observation is 
that, since this is an on-going problem repeatedly solved in successive horizons, the length of 
the horizons for which the wing command issues the flight requirements has a strong impact 
on the long term availability of the unit. As the number of periods over which the command 
issues the flight requirements increases, the fleet availability of the unit is expected to 
increase, too. 
 

Table 1. Computational times of AFH1 and AFH2 on large scale problems. 
|M| |Nm| T AFH1 AFH2 

   Avg Max Avg Max 
50 50 50 0.33 0.34 0.47 0.49 
50 50 100 0.69 0.71 0.97 1.00 
50 100 50 0.64 0.65 0.96 0.97 
100 50 50 0.75 0.76 1.25 1.26 
50 100 100 1.33 1.35 1.96 2.05 
100 50 100 1.57 1.58 2.64 3.44 
100 100 50 1.44 1.46 3.38 4.07 
100 100 100 3.05 3.10 6.97 8.69 

  
With respect to the quality of the solutions produced, MILP always produces the solution with 
the highest quality, which is additionally guaranteed to be nondominated (see Steuer, 1986). 
Moreover, the optimal values of the 4 objectives in the solutions produced by MILP appear to 
be close (approximately 2 to 3% on the average) to their ideal values (see Ehrgott, 2000). This 
is because the objectives of the model are not in direct conflict with each other, but there 
exists a certain degree of synergy among them. It should be noted though, that the best 
solutions are obtained when all of them are treated as objectives, otherwise the obtained 
solution may not be satisfactory with respect to the objective that was omitted. This is due to 
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the fact that if we replace one of the objectives with a corresponding constraint, the model will 
only focus on providing a given lower bound for it, without any special concern for 
optimizing it.  
 
The values of the 4 objectives in the solutions produced by AFH1 and AFH2 appear to be 
close (approximately 10% on the average) to the corresponding values of the solutions 
produced by MILP. This percentage did not remain constant but varied significantly between 
2% and 20% in our experiments. The reason that this percentage is high in some cases is 
because the aim of MILP does not exactly coincide with the aim of AFH1 and AFH2, since 
MILP maximizes fleet availability, while AFH1 and AFH2 minimize the total deviation 
indices. As a result, even when a solution with higher fleet availability exists, AFH1 and 
AFH2 will prefer another one with lower fleet availability, if this leads to a lower deviation 
index. Despite the existence of such extreme peculiarities, AFH1 and AFH2 perform quite 
satisfactorily in general, mainly because they prevent bottlenecks in the maintenance station 
and ensure a smooth utilization of the maintenance station. Moreover, our computational 
experience shows that certain enhancements can be used to improve the quality of the 
solutions produced by these heuristics, which suggests that this is an area for future research 
with lots of potential.  
 
The solutions produced by HSH, AFH1 and AFH2 are not nondominated in general. In some 
extreme cases, they may be infeasible, although the original problem is not. For HSH, this 
happens when it “exhausts” the system in order to optimize it in one of the smaller horizons, 
but then the solution obtained at the end of this horizon is inadequate and can not satisfy the 
flight requirements of the next one. On the other hand, the reason that this may sometimes 
happen in AFH1 and AFH2 is because they make the relevant decisions sequentially in each 
period; thus, it is possible to reach a point in later periods where some of the problem’s 
constraints can not be satisfied. In such cases, the user has to go back and revise his previous 
decisions in order to reach a feasible solution. In general, a careful design should address 
accordingly such peculiarities that may arise. 
 
CONCLUSIONS 
 
In this work, we proposed three heuristics for solving large FMP instances and we 
summarized some interesting results regarding their computational performance and the 
quality of the solutions that they produce. The results are very satisfactory, because they 
demonstrate that, under careful consideration, even large FMP instances can be handled quite 
effectively. Future research should be directed towards investigating the performance of these 
heuristics further, and towards exploring the extent to which they can be enhanced, or new 
better ones can be developed.  
 
The aim of the present research is not to promote one particular tool that will be used 
exclusively for addressing the FMP problem, but rather to provide a set of tools that can be 
used collectively in order to address this important problem. The final decision on how to 
utilize these tools in order to get the most effective solution relies upon the user and depends 
on many parameters, such as the desired compromise between computational time and 
solution quality. In fact, one of the major goals of this research is to eventually produce an 
online decision support system for use by the HAF, which will enable the user to enter a 
specific instance of the FMP problem and combine the above tools in order to solve it.  
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APPENDIX 
Proof of Proposition 1 
Let λ1, λ2 and ui (i = 1,…, N) be the nonnegative dual multipliers of constraints (2), (3) and (4), respectively. In 
addition to the original constraints of the problem, the KKT conditions are: 

Since L < U always, 12 different arrangements of the quantities L, U, D and X exist. When X precedes L and this 
can not change using any ties present, the problem is clearly infeasible, since the flight requirements (constraint 
(2)) can not be satisfied, even when each aircraft is assigned its maximum possible flight time. In each of the 
remaining 8 cases, it is clear that the solution obtained from the application of the Procedure Sweep when the 
sum of the assigned aircraft flight times is equal to the second quantity in the arrangement, satisfies (2)-(4) and is 
therefore feasible. We show next that this solution also satisfies conditions (5)-(10), and is therefore optimal, too. 
 
Case 1: The arrangement is {L,U,D,X} or {L,U,X,D}. 
In this case, the sum of the assigned aircraft flight times in the obtained solution is equal to the second quantity 
in the arrangement, U. We partition the indices of the decision variables of this solution into 4 sets: 
a) Set S1 contains the indices of the variables xit such that xit = 0 = Xui.   
b) Set S2 contains the indices of the variables xit such that xit = 0 < Xui, 
c) Set S3 contains the indices of the variables xit such that 0 < xit = Xui, 
d) Set S4 contains the indices of the variables xit such that 0 < xit < Xui. 
 
We set λ1 = 0 and λ2 = 2(yit – is – xit), 4i S∈ . Note that the value of λ2 is the same for any 4i S∈ , since set S4 
contains the indices of all the variables which lie on the sweeping line at the current solution, and, as a result, 
have equal perpendicular distances from the diagonal, yit – is – xit. We also set ui = max(2(yit – is – xit) - λ2, 0) 
for 1i S∈ , ui = 0 for 2 4i S S∈ ∪ and ui = 2(yit – is – xit) - λ2 for 3i S∈ . This last quantity is always nonnegative, 
since set S3 contains the indices of the variables which were initially swept and later disengaged by the sweeping 
line because they reached their upper bound; therefore, the perpendicular distance of each of these points from 
the diagonal can not be smaller than the perpendicular distance from the diagonal of any point that lies on the 
sweeping line at the current solution. For 1i S∈  and 3i S∈ , constraints (5) and (6) are clearly satisfied. 
Constraints (5) are clearly satisfied as an equality for 4i S∈ ; therefore, constraints (6) are satisfied, too. For 

2i S∈ , constraints (6) are clearly satisfied and constraints (5) are satisfied if λ2 > 2(yit – is – xit), which is true, 
since set S2 contains the indices of all the variables which have not been swept by the line yet; therefore, their 
perpendicular distance from the diagonal can not be larger than the perpendicular distance from the diagonal of 
any point that lies on the sweeping line at the current solution. Finally, constraints (7)-(10) are clearly satisfied, 
too. Hence, the current solution together with λ1, λ2 and ui (i = 1,…, N) as the dual multipliers satisfies the KKT 
conditions and is therefore optimal. 
 
Case 2: The arrangement is {L,D,U,X} or {L,D,X,U}. 
In this case, the sum of the assigned aircraft flight times in the solution obtained is equal to the second quantity 
in the arrangement, D. We partition the indices of the decision variables of this solution into the same 4 sets as in 
Case 1. We set λ1 = λ2 = 0, ui = max (2(yit – is – xit), 0) for 1i S∈ , ui = 0 for 2 4i S S∈ ∪  and ui = 2(yit – is – xit), 
for 3i S∈ . This last quantity is always nonnegative, since set S3 contains the indices of the variables which were 
initially swept and later disengaged by the sweeping line because they reached their upper bound; therefore, 
since the sweeping line coincides with the diagonal at the current solution, the perpendicular distance of each of 
these points from the diagonal, yit – is – xit, can not be negative. For 1i S∈  and 3i S∈ , constraints (5) and (6) are 
clearly satisfied. For 2i S∈ , constraints (6) are clearly satisfied and constraints (5) are satisfied if -2(yit – is – xit) 
> 0, which is true, since set S2 contains the indices of the variables which have not been swept by the line yet; 

1 22( ) 0,   = 1,...,it it iy is x u i Nλ λ− − − − + + ≥  (5) 

1 2[ 2( ) ] 0,   = 1,...,it it it ix y is x u i Nλ λ− − − − + + =            (6) 

1
1

( ) 0
N

mt it
i

LS xλ
=

− =∑  (7) 

2
1

( ) 0
N

it mt
i

x USλ
=

− =∑  (8) 

( ) 0,   = 1,...,i it uiu x X i N− =  (9) 
λ1 > 0, λ2 > 0, ui > 0, i = 1,…, N (10) 
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therefore, since the sweeping line coincides with the diagonal at the current solution, each of these points has 
nonpositive perpendicular distance from the diagonal. Set S4 contains the indices of the variables which lie on the 
sweeping line at the current solution. Since the sweeping line coincides with the diagonal at this solution, the 
perpendicular distance of each of these variables from the diagonal, (yit – is – xit), is equal to 0. As a result, 
constraints (5) and (6) are also satisfied for 4i S∈ . Finally, constraints (7)-(10) are clearly satisfied, too. Hence, 
the current solution together with λ1, λ2 and ui (i = 1,…, N) as the dual multipliers satisfies the KKT conditions 
and is therefore optimal. 
 
Case 3: The arrangement is {D,L,U,X} or {D,L,X,U}. 
In this case, the sum of the assigned aircraft flight times in the solution obtained is equal to the second quantity 
in the arrangement, L. We partition the indices of the decision variables of this solution into the same 4 sets as in 
Cases 1 and 2. We set λ2 = 0 and λ1 = -2(yit – is – xit), 4i S∈ . Note that the value of λ1 is the same for any 4i S∈ , 
since set S4 contains the indices of all the variables which lie on the sweeping line at the current solution, and, as 
a result, have equal perpendicular distances from the diagonal, yit – is – xit. Additionally, each of these distances 
is nonpositive, since the fact that D appears first in the arrangement implies that the sweeping line can not lie 
above the diagonal at the current solution; therefore, the value of λ1 is nonnegative. We also set ui = max(2(yit – 
is – xit) + λ1, 0) for 1i S∈ , ui = 0 for 2 4i S S∈ ∪ and ui = 2(yit – is – xit) + λ1 for 3i S∈ . This last quantity is always 
nonnegative, since set S3 consists of all the variables which were initially swept and later disengaged by the 
sweeping line because they reached their upper bound; therefore, since the sweeping line can not lie above the 
diagonal at the current solution, the perpendicular distance of each of these points from the diagonal can not be 
smaller than the perpendicular distance from the diagonal of any point that lies on the sweeping line. For 1i S∈  
and 3i S∈ , constraints (5) and (6) are clearly satisfied. Constraints (5) are clearly satisfied as an equality for 

4i S∈ ; therefore, constraints (6) are satisfied, too. For 2i S∈ , constraints (6) are clearly satisfied and constraints 
(5) are satisfied if –λ1 > 2(yit – is – xit), which is true, since set S2 contains the indices of all the variables which 
have not been swept by the line yet; therefore, since the sweeping line can not lie above the diagonal at the 
current solution, the perpendicular distance of each of these points from the diagonal can not be larger than the 
perpendicular distance from the diagonal of any point that lies on the sweeping line. Finally, constraints (7)-(10) 
are clearly satisfied, too. Hence, the current solution together with λ1, λ2 and ui (i = 1,…, N) as the dual 
multipliers satisfies the KKT conditions and is therefore optimal. 
 
Case 4: The arrangement is {L,X,U,D} or {L,X,D,U}. 
In this case, the sum of the assigned aircraft flight times in the solution obtained is equal to the second quantity 
in the arrangement, X. We partition the indices of the decision variables of this solution into 2 sets: 
a) Set S1 contains the indices of the variables xit such that xit = 0 = Xui, 
b) Set S2 contains the indices of the variables xit such that 0 < xit = Xui. 
 
We set λ1 = λ2 = 0, ui = max(2(yit – is – xit), 0) for 1i S∈ and ui = 2(yit – is – xit) for 2i S∈ . This last quantity is 
always nonnegative, since set S2 contains the indices of the variables which were initially swept and later 
disengaged by the sweeping line because they reached their upper bound; therefore, since the sweeping line has 
not reached the diagonal yet, their perpendicular distance from the diagonal, yit – is – xit, is nonnegative. 
Constraints (5)-(10) are clearly satisfied for 1 2i S S∈ ∪ . Hence, the current solution together with λ1, λ2 and ui (i 
= 1,…, N) as the dual multipliers satisfies the KKT conditions and is therefore optimal.  
 
Proof of Proposition 2 
The initialization command in the first line of Step 0 requires time O(|M|). Each command inside the nested for-
loop of Step 0 requires time O(1) and is repeated at most |M|Nmax times. Each of the next two commands outside 
the nested for-loop requires time O(NmaxlogNmax) and is repeated |M| times. Therefore, the total time that Step 0 
requires is O(|M|) + O(|M|(Nmax+ NmaxlogNmax) = O(|M|NmaxlogNmax). The initialization command in the first line 
of Step 1 requires time O(|M|Nmax). The check in the while command of Step 1 requires time O(1), since the 
existence of grounded aircraft is already known. Finding k requires time O(|M|) and finding l requires time O(1), 
since the grounded aircraft of each squadron are already sorted. The if-else clause inside the while-loop of Step 1 
requires time O(1). Since the while-loop of Step 1 is repeated at most C times (once for each grounded aircraft), 
Step 1 requires time O(|M|Nmax) + O(C|M|) in total. The initialization command in the first line of Step 2 requires 
time O(|M|Nmax). The check in the while command of Step 2 requires time O(1). Finding k requires time O(|M|) 
and finding l requires time O(1), since the available aircraft of each squadron are already sorted. The if-else 
clause inside the while-loop of Step 2 requires time O(1). Since the while-loop of Step 2 is repeated at most 
O(|M|+C) times (when C aircraft that belong to the squadron with the minimum priority index are grounded), 
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Step 2 requires time O(|M|Nmax) + O((|M|+C)|M|) in total. In Step 3, solving |M| times the problem defined by (1)-
(4) requires time O(|M|Nmax) in total. Finally, updating the system status for period t+1 in Step 4 requires time 
O(|M|Nmax). Since Step 0 is executed once and each of Steps 1-4 is repeated T times, the total time required by 
AFH1 is O(|M|NmaxlogNmax) + O(T(|M|Nmax + C|M| + |M|Nmax + (|M|+C)|M| + |M|Nmax + |M|Nmax)) = 
O(|M|NmaxlogNmax) + O(T max(|M|Nmax, C|M|, |M|2)) = O(|M| max(NmaxlogNmax, TNmax, TC, T|M|)).       
 

Proof of Proposition 3 
The initialization command in the first line of Step 0 requires time O(|M|). Each command inside the nested for-
loop of Step 0 requires time O(1) and is repeated at most |M|Nmax times. Each of the next two commands outside 
the nested for-loop requires time O(NmaxlogNmax) and is repeated |M| times. The two commands outside the for-
loops of Step 0 sort the available and grounded aircraft of the wing and require time O(Nlog|M|), since the 
aircraft of each squadron are already sorted. Therefore, the total time that Step 0 requires is O(|M|) + O(|M|(Nmax+ 
NmaxlogNmax)) + O(Nlog|M|) = O(|M|Nmax max(logNmax, log|M|)). The initialization command in the first line of 
Step 1 requires time O(|M|Nmax). The check in the while command of Step 1 requires time O(1), since the 
existence of grounded aircraft is already known. Finding k and l requires time O(1), since the grounded aircraft 
of the wing are already sorted. The if-else clause inside the while-loop of Step 1 requires time O(1). Since the 
while-loop of Step 1 is repeated at most C times (once for each grounded aircraft), Step 1 requires time 
O(|M|Nmax) + O(C) = O(|M|Nmax) in total. The initialization command in the first line of Step 2 requires time 
O(|M|Nmax). The check in the while command of Step 2 requires time O(1). Finding k and l requires time O(1), 
since the available aircraft of the wing are already sorted. The if-else clause inside the while-loop of Step 2 
requires time O(1). Since the while loop of Step 2 is repeated at most O(|M|+C) times (when C aircraft that 
belong to the squadron considered last are grounded), Step 2 requires time O(|M|Nmax) + O(|M|+C) = O(|M|Nmax) 
in total. In Step 3, solving |M| times the problem defined by (1)-(4), requires time O(|M|Nmax) in total. Finally, 
updating the system status for period t+1 in Step 4 requires time O(|M|Nmax). Then, sorting the available aircraft 
of the wing requires time O(Nlog|M|), since the available aircraft of each squadron are already sorted. Therefore, 
the total time required by Step 4 is O(|M|Nmax+ Nlog|M|) = O(|M|Nmaxlog|M|). Since Step 0 is executed once and 
each of Steps 1-4 is repeated T times, the total time required by AFH2 is O(|M|Nmax max(logNmax, log|M|)) + 
O(T(|M|Nmax + |M|Nmax + |M|Nmax + |M|Nmaxlog|M|)) = O(|M|Nmax max(logNmax, Tlog|M|)).  
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