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Abstract

The computational efficiency of the integro-moment method for solving steady-state two-dimensional rarefied gas flows
is investigated. The two-dimensional boundary driven flow of a single gas in a cavity is used as a model problem, because
the kinetic equations and the boundary conditions describing this flow contain most of the terms and features, which might
appear in problems modeled by kinetic equations. Following a detailed quantitative comparison with the discrete velocity
method, it is concluded that the integro-moment method may be considered as a alternative reliable and efficient compu-
tational scheme for solving rarefied (or non-equilibrium) flows in the whole range of the Knudsen number. Even more, it is
shown that by implementing the integro-moment method the propagation of any discontinuities, which may exist at the
boundaries, inside the computational domain and the production of an unphysical oscillatory behavior in the macroscopic
quantities, are completely eliminated. The proposed integro-moment methodology is general and may be applied to any
multidimensional non-equilibrium flow described by linear kinetic model equations.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The simulation of rarefied gas flows in two and three dimensions requires the implementation of advanced
computational approaches, which will provide accurate results with modest computational effort. The gas
rarefaction is specified by the Knudsen number (Kn), which is defined as the ratio of the mean free path over
a characteristic macroscopic length of the problem [1–4]. In general, when Kn > 0:1, the flow is considered as
far from local equilibrium and then the well known hydrodynamic equations cannot be applied since the
continuum assumption and the associated constitutive laws are not valid anymore. In these cases the problem
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formulation is based on kinetic theory [1–3]. The unknown distribution function is obtained by solving the
Boltzmann equation or its associated kinetic models, while the macroscopic quantities of practical interest
are obtained by the moments of the distribution function. It is noted that in many occasions kinetic model
equations are very reliable and can be used as an alternative to the Boltzmann equation producing accurate
results with much less computational effort in the whole range of the Kn number. Typical examples are the
BGK and S models for isothermal and non-isothermal flows respectively [4]. However, in general, the numer-
ical solution of kinetic equations require significant computational effort.

One of the most commonly used computational methods for solving rarefied flows is the direct simulation
Monte Carlo method (DSMC) [1]. This is a probabilistic approach, which actually circumvents the solution of
the kinetic equations and over the years it has been found to be very efficient in solving high speed flows. In the
case of flows characterized by small Mach numbers, the DSMC method suffers from statistical noise and
looses its effectiveness. Despite some recent improvements the required computational time is drastically
increased and it is very difficult to verify the accuracy of the results in several significant figures.

For low speed flows the kinetic equations can be linearized and then they can be solved in a straightforward
manner by the discrete velocity method (DVM). This is a deterministic scheme, which has been extensively
used over the years with considerable success in the solution of the Boltzmann equation [5–7] or of reliable
kinetic models [8,4,9–12]. It is characterized by the discretization of the kinetic equations in the physical
and molecular velocity spaces. The former is obtained by typical finite difference or finite volume schemes,
while the latter by replacing the continuum spectrum of molecular velocities by a discrete set, which is properly
chosen. Due to the discretization in the molecular velocity space the DVM is vulnerable to boundary induced
discontinuities. In particular, when the flow problem is subject to boundary conditions with discontinuities
then during the numerical estimation of the distribution functions, the discontinuities from the boundaries
propagate inside the computational domain and produce an unphysical oscillatory behavior in the macro-
scopic quantities. This problem is well known as ray effects in the transport theory community and exists
in neutron transport and radiative transfer [13], as well as in rarefied gas flows [14]. In the latter, the oscillatory
behavior of the results starts as the Knudsen number departs from zero and it is increased by increasing the
Knudsen number. The ray effects cannot be eliminated by simply increasing the number of discrete velocities
since in this case the amplitude of the oscillations is decreased but their frequency is increased.

Although, methodologies have been proposed to eliminate this problem [15,16], it is obvious that the devel-
opment and implementation of alternative computational schemes, which are not subject to ray effects, will be
very useful. This need is also justified by the increased interest during the last years of solving rarefied gas flows
in several emerging engineering and technological fields [17].

Such an alternative approach for handling low speed flows is the so-called integro-moment method (IMM).
Basic information regarding the formulation and the characteristics of the method may be found in [2,4,18,19].
The basic advantage of the IMM is that the derived equations are discretized only in the physical space and no
discretization in the molecular velocity space is needed. Therefore, due to its nature, the IMM is not subject to
boundary induced discontinuities. Also, the IMM must not be confused with the classical moment method.
Although in both methods the objective is to deduce a set of moment equations the two approaches are quite
different. In particular, in the classical moment method the distribution function is assumed to be continuous
in the velocity variables. Such an approximation is valid only at small Knudsen numbers and therefore the
moment method provides reliable results only in the hydrodynamic and slip regimes. In addition, in the
moment method a physical argument, which is not always fully justified, is required in order to close the sys-
tem of governing equations. These pitfalls are circumvented in the formulation and implementation of the
IMM. Over the years the IMM has been implemented mainly to problems in slab and axisymmetric geometries
[20–28]. More recently, it has been demonstrated that the IMM can be applied to solve two-dimensional rar-
efied gas flows through channels of various cross sections [29,30]. However, this type of flow configurations,
although are two-dimensional, they may be considered as a simple extension of the IMM, since the boundary
conditions are continuous and only one moment of the distribution function is examined.

In the present work, the IMM is properly formulated to tackle two-dimensional problems, which are char-
acterized by strong boundary discontinuities. In addition, the right hand side of the kinetic equation contains
several moments of the distribution function and the boundary conditions are not homogeneous. As far as the
authors are aware of there is only one attempt to handle this type of more complex rarefied flows using the

S. Varoutis et al. / Journal of Computational Physics 227 (2008) 6272–6287 6273



Author's personal copy

IMM [31]. It turns out that the extension of the IMM in such flow configurations, although in principal may
look straightforward, it is not trivial. The proposed formulation is presented by using the two-dimensional
flow of a single gas in a cavity, described by the linearized BGK equation [4,16], as a model problem. The
kinetic equations and the boundary conditions describing the cavity flow problem contain all kind of terms,
which might appear in problems modeled by kinetic equations and therefore it is used as a prototype problem.
In addition, this particular problem has been recently solved by the DVM [16] and therefore we perform a
detailed and systematic comparison of the two methods with regard to accuracy, convergence speed, storage
and CPU time. This comparison yields some solid concluding remarks about the computational performance
of the proposed IMM formulation and solution.

The formulation of the IMM is consisting, in general, of the following steps:

(i) The kinetic equation is solved on the basis of the method of characteristics and a closed form expression
is obtained for the unknown distribution function in terms of the boundary conditions and the unknown
macroscopic quantities.

(ii) This expression for the distribution function is substituted into the integral expressions for the macro-
scopic quantities to yield a set of coupled Fredholm integral equations.

(iii) When the boundary conditions contain unknown incoming distributions, following a similar procedure,
a set of integral equations is derived for the unknown quantities at the boundaries.

(iv) The deduced system of integral equations is solved numerically.

It is important to note that although the IMM formulation is presented in two dimensions, its extension in
three dimensions is straightforward. Also, the present analysis, which is based on the BGK equation is appli-
cable to other linear kinetic models (e.g. S, ES, etc. [4]). It is obvious that as we advance from two to three
dimensions and to more complex kinetic equations the required computational effort is increased. However,
beyond that, there are no new difficulties or trouble issues, which have not been tackled and resolved here.
Overall, it is argued that the proposed IMM procedure is general and can be applied to any multidimensional
rarefied gas flow described by a system of linear integro-differential equations.

2. Model problem

The model problem is consisting of the isothermal flow of a rarefied gas in a two-dimensional cavity with
rectangular cross section. Since a complete statement of the problem is provided in [16], here we present only a
brief description and the basic equations governing the flow with the associated boundary conditions.

The flow domain, shown in Fig. 1, is restricted by �1=2 6 x 6 1=2 and 0 6 y 6 A, where A is the aspect
ratio, defined as the ratio of the height over the width of the cavity. The flow is due to the motion of the wall
at y ¼ A. All lengths are in dimensionless form, by taking the width of the cavity as the characteristic length.
Next, by assuming that the constant velocity U 0 of the moving wall is small compared to the most probable
molecular speed v0 (U 0 � v0), the ratio U 0=v0 is used as the small parameter to linearize the kinetic equation.

Then, the gas flow under investigation can be described by the linearized Bhatnagar, Gross, Krook (BGK)
[4,16,32] equation

l cos h
o/
ox
þ sin h

o/
oy

� �
þ d/ ¼ d½qþ 2lðux cos hþ uy sin hÞ�; ð1Þ

where / ¼ /ðx; y; l; hÞ is the unknown perturbation function, which depends on the spatial variables x and y

and on the molecular velocity vector defined by its magnitude 0 6 l <1 and its polar angle 0 6 h 6 2p.
Here, the most probable speed v0 is used as the unity of the molecular speed. The quantities at the right hand
side of Eq. (1) are defined by the moments of / according to

qðx; yÞ ¼ 1

p

Z 2p

0

Z 1

0

/le�l2

dldh; ð2Þ

uxðx; yÞ ¼
1

p

Z 2p

0

Z 1

0

/l2e�l2

cos hdldh; ð3Þ
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and

uyðx; yÞ ¼
1

p

Z 2p

0

Z 1

0

/l2e�l2

sin hdldh: ð4Þ

They represent the number density and the two components of the bulk velocity in the x and y direction,
respectively. Another macroscopic quantity, which will be of interest in our work is the shear stress given by

Pðx; yÞ ¼ 1

p

Z 2p

0

Z 1

0

/l3e�l2

sin h cos hdldh: ð5Þ

Finally, in Eq. (1), d is the rarefaction parameter, which is proportional to the inverse Knudsen number and it
is defined as

d ¼ PW
gv0

¼
ffiffiffi
p
p

2

1

Kn
; ð6Þ

where P is a reference gas pressure, W is the cavity width and g is the shear viscosity. For d ¼ 0 the flow is in
the free molecular regime, while the case d!1 corresponds to the hydrodynamic limit.

It is noted that in the governing Eq. (1) only the perturbations with respect to number density and velocity
have been included, while the temperature perturbation term has been omitted. This is due to the fact that in
previous work [16] it has been shown that the temperature variation in the flow field is very small and its
impact on the major quantities of the flow of practical interest, such as velocity and shear stress distributions,
is negligible.

Next, applying the Maxwell diffuse boundary conditions for the outgoing distributions at the boundaries
[16] yields at the three stationary walls

/þ � 1

2
; y; l; h

� �
¼ qL �

1

2
; y

� �
for � p

2
6 h 6

p
2
; ð7Þ

/þðx; 0; l; hÞ ¼ qBðx; 0Þ for 0 6 h 6 p; ð8Þ

/þ
1

2
; y; l; h

� �
¼ qR

1

2
; y

� �
for

p
2
6 h 6

3p
2
; ð9Þ

and at the moving wall (y ¼ A)

/þðx;A; l; hÞ ¼ qT ðx;AÞ þ 2l cos h for p 6 h 6 2p: ð10Þ

Fig. 1. Flow domain with the coordinate system and its origin and definition of the distance s0 and the outgoing boundary distribution
/þð� 1

2
; y;l; hÞ along a typical characteristic s.
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The superscript + denotes outgoing distributions at the boundaries and the parameters qi, with i ¼ L;B;R; T
denoting the left, bottom, right and top wall respectively, are estimated by applying the impermeability con-
dition at each boundary to yield

qL �
1

2
; y

� �
¼ � 2ffiffiffi

p
p

Z 3p
2

p
2

Z 1

0

/ � 1

2
; y; l; h

� �
l2e�l2

cos hdldh; ð11Þ

qBðx; 0Þ ¼ �
2ffiffiffi
p
p

Z 2p

p

Z 1

0

/ðx; 0; l; hÞl2e�l2

sin hdldh; ð12Þ

qR
1

2
; y

� �
¼ 2ffiffiffi

p
p

Z 2p

p

Z 1

0

/
1

2
; y; l; h

� �
l2e�l2

cos hdldh; ð13Þ

and

qT ðx;AÞ ¼
2ffiffiffi
p
p

Z p

0

Z 1

0

/ðx;A; l; hÞl2e�l2

sin hdldh: ð14Þ

Thus, the model problem is described by the kinetic equation (1) and the associated integrals (2)–(4), subject to
boundary conditions (7)–(10), which are supplemented by Eqs. (11)–(14). Our objective is to solve this prob-
lem in the whole range of d and for any A via the IMM.

The model problem is subject to discontinuities at the four corners of the cavity, where the distribution
function / has two values coming from the corresponding boundary conditions. The discontinuities at the
two corners connecting the moving and stationary walls is significantly stronger than in the other two
corners due to the existence of the source term in the boundary condition (10). In addition, the outgoing
distributions at the boundaries are not known and they are expressed in terms of the incident distribu-
tions, i.e. by Eqs. (11)–(14), which are part of the solution. Finally, the kinetic equation contains at its
right hand side three moments of the unknown distribution. All these features make the model problem
quite general covering most of the specific issues, which might appear in rarefied gas flows simulated by a
kinetic approach. Therefore, the IMM formulation and numerical solution presented in the next two sec-
tions can be applied, in a straightforward manner, to a wide range of flows described by linearized kinetic
equations.

3. Formulation of the integro-moment equations

Applying the method of characteristics we write Eq. (1) in the more convenient form

�l
d/
ds
þ d/ ¼ d½qþ 2lðux cos hþ uy sin hÞ�; ð15Þ

where s denotes the distance from a point (x; y) along the characteristic defined by the polar angle h of the
molecular velocity vector. Then, multiplying (15) by expð�ds=lÞ and integrating the resulting equation along
the characteristic the following closed form expression for the unknown distribution function / is deduced:

/ðx; y; l; hÞ ¼ /þe�ds0=l þ d
l

Z s0

0

½qðx0; y0Þ þ 2lðuxðx0; y 0Þ cos hþ uyðx0; y0Þ sin hÞ�e�ds=lds: ð16Þ

Here, s0 is the distance from a point ðx; yÞ up to the boundary in the opposite direction to that of the molecular
velocity ðl; hÞ, while /þ is the outgoing boundary distribution function where the characteristic terminates.
The points (x0; y 0) along the characteristic are related to the integration variables by

x0 ¼ x� s cos h and y 0 ¼ y � s sin h: ð17Þ
A typical characteristic line s passing from a point ðx; yÞ with a polar angle h, along with the corresponding
distance s0 and boundary distribution /þ, are shown in Fig. 1.

Eq. (16) is substituted into the integral expressions (2)–(4) to deduce, after some routine manipulation, three
coupled integral equations for the macroscopic quantities of the number density and the x and y components
of bulk velocity:
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qðx; yÞ ¼ d
p

Z 2p

0

Z s0

0

fT 0ðdsÞqðx0; y0Þ þ 2T 1ðdsÞ½uxðx0; y0Þ cos hþ uyðx0; y0Þ sin h�gdsdh

þ 1

p

Z 2p

0

T 1ðds0Þ/þ dh; ð18Þ

uxðx; yÞ ¼
d
p

Z 2p

0

Z s0

0

fT 1ðdsÞqðx0; y0Þ þ 2T 2ðdsÞ½uxðx0; y0Þ cos hþ uyðx0; y0Þ sin h�g cos hdsdh

þ 1

p

Z 2p

0

T 2ðds0Þ/þ cos hdh; ð19Þ

uyðx; yÞ ¼
d
p

Z 2p

0

Z s0

0

fT 1ðdsÞqðx0; y0Þ þ 2T 2ðdsÞ½uxðx0; y0Þ cos hþ uyðx0; y0Þ sin h�g sin hdsdh

þ 1

p

Z 2p

0

T 2ðds0Þ/þ sin hdh: ð20Þ

Following the same procedure for the shear stress we readily find

Pðx; yÞ ¼ d
p

Z 2p

0

Z s0

0

fT 2ðdsÞqðx0; y0Þ þ 2T 3ðdsÞ½uxðx0; y0Þ cos hþ uyðx0; y 0Þ sin h�g sin h cos hdsdh

þ 1

p

Z 2p

0

T 3ðds0Þ/þ cos hdh: ð21Þ

The functions T aðzÞ, with a ¼ 0; 1; 2; 3, appearing in the kernel of Eqs. (18)–(21) belong to a class of transcen-
dental functions defined by [33]

T aðzÞ ¼
Z 1

0

ca exp �c2 � z
c

� �
dc: ð22Þ

The accurate estimation of the T aðzÞ functions is essential for the overall performance of the scheme and there-
fore the procedure for their estimation is presented in Appendix A. The outgoing boundary distributions /þ,
appearing in Eqs. (18)–(21), are given by the boundary conditions (7)–(10), depending on which of the four
boundaries a characteristic line will terminate. Finally, the parameters qi, with i ¼ L;B;R; T appearing in
the boundary conditions are obtained by substituting (16) into Eqs. (11)–(14) to find

qL �
1

2
; y

� �
¼ � 2dffiffiffi

p
p

Z 3p=2

p=2

Z s0

0

fT 1ðdsÞqðx0; y 0Þ þ 2T 2ðdsÞ½uxðx0; y 0Þ cos h

þ uyðx0; y0Þ sin h�g cos hdsdh� 2ffiffiffi
p
p

Z 3p=2

p=2

T 2ðds0Þ/þ cos hdh; ð23Þ

qBðx; 0Þ ¼ �
2dffiffiffi
p
p

Z 2p

p

Z s0

0

fT 1ðdsÞqðx0; y0Þ þ 2T 2ðdsÞ½uxðx0; y0Þ cos h

þ uyðx0; y0Þ sin h�g sin hdsdh� 2ffiffiffi
p
p

Z 2p

p
T 2ðds0Þ/þ sin hdh; ð24Þ

qR
1

2
; y

� �
¼ 2dffiffiffi

p
p

Z p=2

�p=2

Z s0

0

fT 1ðdsÞqðx0; y 0Þ þ 2T 2ðdsÞ½uxðx0; y 0Þ cos h

þ uyðx0; y 0Þ sin h�g cos hdsdhþ 2ffiffiffi
p
p

Z p=2

�p=2

T 2ðds0Þ/þ cos hdh; ð25Þ

and

qT ðx;AÞ ¼
2dffiffiffi
p
p

Z p

0

Z s0

0

fT 1ðdsÞqðx0; y0Þ þ 2T 2ðdsÞ½uxðx0; y0Þ cos hþ uyðx0; y0Þ sin h�g sin hdsdh

þ 2ffiffiffi
p
p

Z p

0

T 2ðds0Þ/þ sin hdh: ð26Þ
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The final set of coupled integro-moment equations to be solved is consisting of Eqs. (18)–(20) for the macro-
scopic quantities of number density and of the two components of the bulk velocity plus Eqs. (23)–(26) arising
from the boundary conditions. Once this system of equations is solved and the quantities q, ux and uy are esti-
mated, then the shear stress P is obtained by Eq. (21).

4. Numerical scheme

The numerical solution of the system of integral Eqs. (18)–(20) and (23)–(26) may be obtained in several
ways. Here, we propose a numerical scheme, which we have found to be very efficient and accurate.

In all equations, the double integrals require an integration over the whole computational domain, while
the single integrals require an integration along the boundaries. The integration is performed by using the
line-of-sight principal [21]. From Eq. (17), it is readily seen that

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y 0Þ2

q
; cos h ¼ x� x0

s
and sin h ¼ y � y 0

s
; ð27Þ

while

sdsdh ¼ dx0 dy0: ð28Þ
Based on the above transformation we write Eqs. (18)–(20) and Eqs. (23)–(26) in the more convenient and
compact form

Mpðx; yÞ ¼
X3

q¼1

Z A

0

Z 1=2

�1=2

U pqðx; y : x0; y0ÞMqðx0; y0Þdx0 dy 0 þ
X4

q¼1

Z
Rpqðx; y : n0ÞLqðn0Þdn0 þ Qpðx; yÞ; ð29Þ

and

LrðnÞ ¼
X3

q¼1

Z A

0

Z 1=2

�1=2

V rqðn : x0; y0ÞMqðx0; y 0Þdx0 dy 0 þ
X4

q¼1

Z
Srqðn : n0ÞLqðn0Þdn0 þ W rðnÞ; ð30Þ

respectively, where p ¼ 1; 2; 3 and r ¼ 1; 2; 3; 4. Here,

M1 ¼ q; M2 ¼ ux and M3 ¼ uy ; ð31Þ
L1 ¼ qL; L2 ¼ qB; L3 ¼ qR and L4 ¼ qT ; ð32Þ

while the kernels U pq, V rq, Rpq and Srq and the source terms Qp and W r are given explicitly in the Appendix. In
addition, when the integration is along the bottom and top boundaries then n ¼ x (and n0 ¼ x0), while when the
integration is along the left and right boundaries then n ¼ y (and n0 ¼ y0). It is noted that all kernels are
singular at ðx; yÞ ¼ ðx0; y0Þ and ðn ¼ n0Þ.

We proceed with the discretization by dividing the computational domain in rectangular elements denoted
by ði; jÞ, with i ¼ 1; 2; . . . ; I and j ¼ 1; 2; . . . ; J . The geometrical center of each element is determined by
xi ¼ ði� 1=2ÞDx and yj ¼ ðj� 1=2ÞDy, Dx ¼ 1=I and Dy ¼ A=J . The computational grid with a typical cell
ði; jÞ and a typical boundary element k are shown in Fig. 2. Then, Eqs. (29) and (30) are approximated at each
computational cell and each boundary segment as

Mij
p ¼

X3

q¼1

XJ

n¼1

XI

m¼1

U ij;mn
pq Mmn

q þ
X4

q¼1

XK

l¼1

Rij;l
pq Ll

q þ Qij
p ; ð33Þ

and

Lk
r ¼

X3

q¼1

XJ

n¼1

XI

m¼1

V k;mn
rq Mnm

q þ
X4

q¼1

XK

l¼1

Sk;l
rq Ll

q þ T k
r ; ð34Þ

respectively, where p ¼ 1; 2; 3, r ¼ 1; 2; 3; 4, i ¼ 1; 2; . . . ; I , j ¼ 1; 2; . . . ; J and k ¼ 1; 2; . . . K, while K ¼ I when
the integration is along the bottom and top boundaries and K ¼ J when the integration is along the left and
right boundaries. Even more, it is noted that
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Mij
p ¼ Mpðxi; yjÞ; Mmn

q ¼ Mqðxm; ynÞ and Qij
p ¼ Qpðxi; yjÞ; ð35Þ

Lk
r ¼ LrðnkÞ Ll

q ¼ LqðnlÞ and W k
r ¼ W rðnkÞ; ð36Þ

where nk ¼ xi (n0 ¼ x0) or nk ¼ yj (n ¼ y0) depending upon the boundary that the integration takes place.
Finally,

Uij;mn
pq ¼

Z ynþDy=2

yn�Dy=2

Z xmþDx=2

xm�Dx=2

U pqðxi; yj : x0; y 0Þdx0 dy 0; ð37Þ

V k;mn
rq ¼

Z ynþDy=2

yn�Dy=2

Z xmþDx=2

xm�Dx=2

V rqðnk; : x0; y 0Þdx0dy 0; ð38Þ

Rij;l
pq ¼

Z nkþDn=2

nk�Dn=2

Rpqðxi; yj : n0Þdn0; ð39Þ

and

Sk;l
rq ¼

Z nkþDn=2

nk�Dn=2

Srqðnk : n0Þdn0: ð40Þ

It is seen that the quantities M, Q in Eq. (33) and L, T in Eq. (34) are approximated by their corresponding
values at the center of each cell and boundary segment respectively, while the quantities U, V and R, S are
computed by integrating over each cell and along each boundary segment. Details on the estimation of the
integrals (37)–(40), which depends only on geometrical parameters, are given in Appendix B.

Following the computation of the above integrals, Eqs. (33) and (34) are reduced into a system of algebraic
equations and they are solved for the unknowns Mij

p and Lk
r in an iterative manner. The iteration process starts

by assuming initial estimates for Mmn
q and Ll

q at the right hand side of the equations and it is ended when the
convergence criterion imposed on the overall quantities M is satisfied. Typical stationary or dynamic acceler-
ation schemes may be applied to speed-up the convergence of the iteration scheme.

5. Results and discussion

The cavity flow problem has been solved via the IMM, implementing the proposed formulation and numer-
ical scheme over a wide range of the rarefaction parameter d and for various values of the aspect ratio A. In

Fig. 2. Computational grid with typical cell and boundary elements.
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particular, results are presented for d ¼ 0; 0:1; 1; 2; 5; 10 and A ¼ 0:5; 1; 2. For each set of these parameters
three different computational grids are implemented, with Dx ¼ Dy ¼ h in all cases. The absolute convergence
criterion is equal to 10�7.

The model problem, has been also solved by the discrete velocity method (DVM), which as pointed before
is considered as the most efficient computational scheme for solving flows with small Mach and Reynolds
numbers. Therefore, by comparing the corresponding results of the two methods it is possible to judge the
computational effort as well as the expected accuracy of the IMM.

In order to have a first qualitative picture of the IMM results, some velocity streamlines for A ¼ 2, and
d ¼ 0; 1; 10 are presented in Fig. 3, with h ¼ 0:01. These flow patterns are identical with the ones obtained
by the DVM and indicate that the proposed IMM is capable of capturing several flow configurations in a wide
range of d including the secondary vortices appearing under the main vortex as the rarefaction parameter d is
increased.

We proceed with a detailed quantitative study of the results. To achieve that we introduce two overall quan-
tities namely the dimensionless flow rate G of the main vortex and the mean dimensionless shear stress D along
the moving plate. The first quantity is defined by integrating the x-component of the velocity profile along the
axis x ¼ 0 from the center of the top vortex up to the moving wall of the cavity as

G ¼
Z A

O
uxð0; yÞdy; ð41Þ

where the point O denotes the center of the top vortex. The second quantity is obtained by integrating the
shear stress along the moving wall of the cavity according to

D ¼
Z 1=2

�1=2

Pðx;AÞdx: ð42Þ

Based on these overall quantities a detailed comparison between the IMM and the DVM is presented in
Tables 1–3 for A ¼ 0:5, 1 and 2, respectively. In each table results of G and D with the corresponding required
number of iterations and overall CPU time are provided, for 0 6 d 6 10 and for three different computational
grids consisting of about 850, 5150 and 20300 nodes. To achieve that we have for A ¼ 0:5 and A ¼ 2 grids
with 41� 21, 101� 51 and 201� 101 points and for A ¼ 1 grids with 29� 29, 71� 71 and 143� 143 points.
The results are based on the same convergence criterion imposed on the iteration map of both methods. It is
also noted that the number of discrete velocities in the DVM method is N ¼ 12800, which is the smallest num-
ber of discrete velocities required to ensure convergence up to at least two significant figures. The same con-
vergence requirement is imposed on the IMM scheme in order to have a reliable comparison between the two
methods.

From these tables it can be seen that in all cases as the grid is refined the dimensionless flow rate and mean
shear stress obtained by the IMM converge up to at least two significant figures. In general, in rarefied atmo-
spheres, i.e. at d � 1, the convergence rate is faster than in continuum atmospheres, i.e. at d!1. It may be
deduced that when the IMM is implemented for small values of d the grid may be coarse, while for large values
of d dense grids are important to achieve good accuracy. Next, it is noted that the IMM converged results are
in very good agreement with the corresponding DVM converged results. In all cases the converged results of
the two methods agree up to at least two significant figures within �1 to the last one. It may be concluded that
the proposed IMM scheme is a reliable algorithm for solving this particular problem, providing results with
very good accuracy.

In order to examine the involved computational effort of the IMM we compare between the two methods
the required number of iterations and CPU time. It is clearly seen that in both methods the number of iter-
ations is increased as d is increased, while for each d the required number of iterations for the IMM and the
DVM is about the same. The convergence characteristics including the spectral radius of the DVM has been
studied in detail in [10]. There is no similar study for the convergence rate of the IMM but Tables 1–3 clearly
indicate that the spectral radius of the two iterative processes must be very close.

Since the number of iterations upon convergence for both methods is about the same it is obvious that
the comparison in terms of required CPU time depends on the CPU time per iteration. It is well known that
the CPU time for one DVM iteration is proportional to the product I � J � N , where I � J are the nodes of
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the grid and N the number of discrete velocities. Regarding the IMM, it is expected from the formulation of
the method that the CPU time per iteration is proportional to ðI � JÞ2. This finding is also verified by
checking in Tables 1–3 the computational time with respect to the number of nodes at each of the three
different grids. The CPU time of the IMM is less than the corresponding time of the DVM when the nodes

-0.5 0 0.5
0

1

2

-0.5 0 0.5
0

1

2

-0.5 0 0.5
0

1

2

Fig. 3. Velocity streamlines for a cavity with A ¼ 2 and d ¼ 0 (top), d ¼ 1 (middle) and d ¼ 10 (bottom).
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of the computational grid I � J are less than the number N of discrete velocities and vice versa. When
N ¼ I � J , then it is expected that the required CPU time for the two methods will be about the same.
At this point it is noted that as the rarefaction parameter d is increased both methods require a larger num-
ber of nodes I � J . In addition, the DVM at small d requires a large number of discrete velocities, which
may be gradually decreased as d is increased. Based on the above it may be concluded that the IMM is
computationally more efficient than the DVM for d 6 1 and the other way around for d > 1.

We conclude this section by making some comments on the issue of the ray effects. In Fig. 4, the x-com-
ponent of the velocity profile along the axis x ¼ 0 is provided for a cavity with A ¼ 1 and d ¼ 10�3, using both
methods. It is seen that the DVM results are subject to an oscillatory behavior known as ray effects, which can

Table 1
G and D vs rarefaction parameter d by IMM and DVM at A ¼ 0:5

d Grid (x� y) IMM DVM

G D Iterations CPU (s) G D Iterations CPU (s)

0 41� 21 0.533(�1) 0.728 22 14 0.549(�1) 0.720 23 52
0.1 0.543(�1) 0.719 22 14 0.559(�1) 0.714 22 50
1 0.623(�1) 0.655 20 13 0.640(�1) 0.668 23 52
2 0.691(�1) 0.608 29 16 0.710(�1) 0.627 34 76
5 0.836(�1) 0.523 64 25 0.852(�1) 0.537 71 160

10 0.982(�1) 0.440 142 48 0.992(�1) 0.440 160 358
0 101� 51 0.533(�1) 0.728 22 278 0.538(�1) 0.725 24 333
0.1 0.544(�1) 0.719 22 280 0.549(�1) 0.719 22 305
1 0.625(�1) 0.655 20 260 0.630(�1) 0.674 23 320
2 0.695(�1) 0.608 29 352 0.700(�1) 0.634 34 471
5 0.842(�1) 0.523 64 715 0.846(�1) 0.545 72 994

10 0.988(�1) 0.440 148 1586 0.991(�1) 0.448 162 2246
0 201� 101 0.533(�1) 0.728 23 5193 0.536(�1) 0.727 24 1519
0.1 0.544(�1) 0.719 23 5199 0.546(�1) 0.721 23 1458
1 0.625(�1) 0.655 21 4765 0.628(�1) 0.676 23 1456
2 0.695(�1) 0.608 29 6502 0.698(�1) 0.635 34 2147
5 0.843(�1) 0.522 64 14100 0.845(�1) 0.546 73 4598

10 0.989(�1) 0.437 148 33572 0.990(�1) 0.450 162 10191

Table 2
G and D vs rarefaction parameter d by IMM and DVM at A ¼ 1

d Grid (x� y) IMM DVM

G D Iterations CPU (s) G D Iterations CPU (s)

0 29� 29 0.964(�1) 0.685 24 16 0.980(�1) 0.671 25 54
0.1 0.973(�1) 0.677 23 16 0.989(�1) 0.665 21 46
1 0.104 0.625 19 15 0.106 0.620 23 50
2 0.111 0.584 28 17 0.113 0.580 35 76
5 0.127 0.502 71 30 0.128 0.493 83 181

10 0.143 0.417 176 60 0.145 0.397 194 423
0 71� 71 0.964(�1) 0.685 24 301 0.971(�1) 0.678 25 320
0.1 0.973(�1) 0.678 24 302 0.980(�1) 0.674 22 300
1 0.104 0.625 20 261 0.105 0.628 22 300
2 0.111 0.584 28 343 0.112 0.588 36 488
5 0.127 0.501 71 787 0.128 0.504 82 1109

10 0.144 0.413 175 1860 0.145 0.411 198 2672
0 143� 143 0.964(�1) 0.685 24 5878 0.967(�1) 0.683 26 1393
0.1 0.973(�1) 0.678 24 5882 0.976(�1) 0.676 22 1178
1 0.104 0.625 20 4936 0.105 0.631 22 1178
2 0.111 0.584 28 6830 0.112 0.592 36 1922
5 0.127 0.500 71 17012 0.128 0.507 82 4369

10 0.145 0.412 175 41638 0.145 0.415 199 10582
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be eliminated only if the so-called splitting approach, as it has been done in [16], is applied. It is also seen that
the IMM results are not subject to ray effects, since no discretization in the velocity space is needed.

6. Concluding remarks

The integro-moment method has been properly formulated for solving multidimensional non-equilibrium
gas flows described by linear integro-differential equations. The efficiency of the proposed algorithm has been

Table 3
G and D vs rarefaction parameter d by IMM and DVM at A ¼ 2

d Grid (x� y) IMM DVM

G D Iterations CPU (s) G D Iterations CPU (s)

0 21� 41 0.104 0.674 34 17 0.106 0.655 36 80
0.1 0.104 0.668 33 17 0.107 0.650 24 54
1 0.110 0.622 19 13 0.112 0.608 21 47
2 0.115 0.583 27 16 0.118 0.570 34 76
5 0.129 0.502 71 27 0.134 0.483 82 183

10 0.144 0.421 184 57 0.151 0.390 201 450
0 51� 101 0.104 0.675 34 404 0.105 0.667 36 500
0.1 0.105 0.668 33 395 0.105 0.662 23 320
1 0.110 0.622 20 260 0.110 0.620 21 292
2 0.116 0.583 27 333 0.116 0.582 34 472
5 0.130 0.500 71 793 0.131 0.498 84 1163

10 0.147 0.413 185 1981 0.148 0.407 206 2848
0 101� 201 0.104 0.675 34 7074 0.104 0.671 36 2267
0.1 0.105 0.668 33 6877 0.105 0.665 24 1516
1 0.110 0.622 20 4249 0.110 0.623 21 1327
2 0.116 0.583 27 5260 0.116 0.587 34 2141
5 0.131 0.499 71 13788 0.131 0.503 85 5339

10 0.147 0.411 185 40863 0.147 0.412 208 13042

ux

y

-0.1 0 0.1 0.2 0.3
0

0.2
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Fig. 4. Velocity profile of uxð0; yÞ for a cavity with A ¼ 1 and d ¼ 10�3 by the IMM and DVM.
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demonstrated by solving the two-dimensional cavity flow problem in the whole range of the Knudsen number.
This particular flow problem has been considered as a prototype problem because it contains most of the fea-
tures, which might appear in non-equilibrium flows simulated by a kinetic approach.

Following a detailed quantitative comparison with the discrete velocity method it is concluded that the inte-
gro-moment method may be considered as a reliable alternative computational scheme for solving linear non-
equilibrium multidimensional flows. The method is particularly suitable for problems, which are subject to
boundary induced discontinuities eliminating completely their propagation inside the computational field
and producing macroscopic results without oscillatory behavior. The present methodology with the associated
computational scheme may be applied to other linear kinetic models describing rarefied gas flows in multidimen-
sional geometries. At the present time, when the interest in the simulation of non-equilibrium problems has been
significantly increased it is important to have various numerical methodologies for tackling such problems.
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Appendix A. Numerical estimation of the Ta functions

The estimation of the T aðxÞ functions, with a ¼ �1; 0; 1; 2; 3, is performed numerically by applying a
Gauss–Legendre quadrature. No recurrence relations have been used. The transformation

zðxÞ ¼ x� 1

xþ 1
ð43Þ

is applied to map x 2 ½0;1Þ onto z 2 ½�1; 1�. In all tabulated results of the present work a 64 point Gauss–
Legendre quadrature has been implemented. This specific quadrature provides accurate estimates of the
T aðxÞ functions up to seven significant figures within �1 in the last one. The accuracy of these estimates
has been validated in several ways including a comparison with the corresponding results obtained by conver-
gent series expansions [34,4].

Appendix B. Details in the numerical scheme

The kernels U pq, V rq, Rpq and Srq and the source terms Qp and W r in Eqs. (29) and (30) are defined as follows:

U pq ¼
d
p

1

s

T 0 2T 1 cos h 2T 1 sin h

T 1 cos h 2T 2 cos2 h 2T 2 cos h sin h

T 1 sin h 2T 2 cos h sin h 2T 2 sin2 h

8><
>:

9>=
>;; ð44Þ

V rq ¼
2dffiffiffi
p
p 1

s

�T 1 cos h �2T 2 cos2 h �2T 2 cos h sin h

�T 1 sin h �2T 2 cos h sin h �2T 2 sin2 h

T 1 cos h 2T 2 cos2 h 2T 2 cos h sin h

T 1 sin h 2T 2 cos h sin h 2T 2 sin2 h

8>>><
>>>:

9>>>=
>>>;
; ð45Þ

Rpq ¼
1

p
1

s

T 1 T 1 T 1 T 1

T 2 cos h T 2 cos h T 2 cos h T 2 cos h

T 2 sin h T 2 sin h T 2 sin h T 2 sin h

8><
>:

9>=
>;; ð46Þ

Srq ¼
2ffiffiffi
p
p 1

s
T 2

� cos h � cos h � cos h � cos h

� sin h � sin h � sin h � sin h

cos h cos h cos h cos h

sin h sin h sin h sin h

8>>><
>>>:

9>>>=
>>>;
; ð47Þ
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Qp ¼
2

p
1

s

T 2 cos h

T 3 cos2 h

T 3 cos h sin h

8><
>:

9>=
>;; ð48Þ

W r ¼
4ffiffiffi
p
p 1

s
T 3

� cos2 h

� cos h sin h

cos2 h

0

8>>><
>>>:

9>>>=
>>>;
: ð49Þ

For convenience, the above quantities are given in terms of ðs; hÞ and they can be easily expressed in terms of
ðx; y; x0; y0Þ by using the relations in Eq. (27), while the functions T a ¼ T aðdsÞ, with a ¼ 0; 1; 2; 3 are given by
Eq. (22).

Next, we comment on the estimation of the integrals given by Eqs. (37)–(40). In particular, the double inte-
grals (37) and (38) over the rectangular cell

xm �
Dx
2
6 x0 6 xm þ

Dx
2
; yn �

Dy
2
6 y0 6 yn þ

Dy
2

ð50Þ

can be reduced into single integrals in an analytical manner if the integration over ðx0; y 0Þ is transformed in
polar coordinates ðs; hÞ. For demonstration purposes, let us consider the specific case of U ij;mn

11 , then the math-
ematical manipulation is as follows:

Uij;mn
11 ¼ d

p

Z Z
T 0ðdsÞ

s
dx0 dy0 ¼ d

p

Z Z
T 0ðdsÞdsdh ¼ 1

p

Z
½T 1ð0Þ � T 1ðds�Þ�dh

¼ � 1

p

Z h2

h1

T 1 d
xi � xm � Dx=2

cos h

� �
dh� 1

p

Z h3

h2

T 1 d
yj � yn � Dy=2

sin h

� �
dh

� 1

p

Z h4

h3

T 1 d
xi � xm þ Dx=2

cos h

� �
dh� 1

p

Z h1

h4

T 1 d
yj � yn þ Dy=2

sin h

� �
dh: ð51Þ

The distances s�ðhÞ and the angles

h1 ¼ arctan
yj � yn þ Dy=2

xi � xm � Dx=2

� �
; h2 ¼ arctan

yj � yn � Dy=2

xi � xm � Dx=2

� �
;

h3 ¼ arctan
yj � yn � Dy=2

xi � xm þ Dx=2

� �
; h4 ¼ arctan

yj � yn þ Dy=2

xi � xm þ Dx=2

� � ð52Þ

Fig. 5. Geometrical interpretation of s�ðhÞ and of angles h1, h2, h3 and h4.
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are shown in Fig. 5. In the case of i ¼ n and j ¼ m, then

U ij;ij
11 ¼ 1� 4

Z p=4

0

T 1 d
Dx=2

cos h

� �
dh� 4

Z p=2

p=4

T 1 d
Dy=2

sin h

� �
dh: ð53Þ

This manipulation is applied to all U ij;mn
pq and V ij;mn

pq . In the general case the reduction procedure is of the form

d
Z Z

ð	Þ T aðdsÞ
s

dx0dy0 ¼ d
Z Z

ð	ÞT aðdsÞdsdh ¼ 1

p

Z
ð	Þ½T aþ1ð0Þ � T aþ1ðds�Þ�dh; ð54Þ

with a ¼ 0; 1; 2; 3.
The deduced single integrals along with integrals (39) and (40), which are also calculated in terns of h, are

estimated numerically using the trapezoidal rule. It is noted that the analytical deduction of the double inte-
grals into single integrals is important to upgrade the efficiency of the IMM in terms of accuracy and required
CPU time.
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