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A rarefied gas flow into vacuum through a tube of finite length is investigated over the whole range
of gas rarefaction by the direct simulation Monte Carlo method. The nonequilibrium effects at the
inlet and outlet of the tube have been considered by including in the computational domain large
volumes of the upstream and downstream reservoirs. Results for the dimensionless flow rate and for
the flow field are presented for a wide range of the gas rarefaction and for various values of the
length to radius ratio in the range from 0 to 10. The influence of the gas-surface interaction model,
as well as the effect of the intermolecular potential model on the gas flow, is examined. A good
agreement has been obtained between the present numerical results and the corresponding
experimental ones available in the literature. © 2008 American Vacuum Society.
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I. INTRODUCTION

Rarefied gas flows through pipes of finite length have
been extensively investigated over the past years both nu-
merically and experimentally. The characteristics of such
flows are viable in the design of several industrial applica-
tions including vacuum pumping systems, equipment and de-
vices for space applications, filtration through porous media
and membranes, and fabrication of semiconductors and mi-
croelectronics. In all these applications, the operation of the
system may be under low, medium, or high vacuum condi-
tions. In several occasions, the characteristic dimension of
the system may be of the same order or even larger than the
mean free path of the gas. Therefore, the flow may occur
over the whole range of the Knudsen number.

A detailed and comprehensive summary of published
works related to gas flows through capillaries of finite length
can be found in Sec. V of the review article by Sharipov and
Seleznev.1 It is well known that the simulation of flows
through short tubes compared to those for infinitely long
tubes contains certain difficulties. In the latter case, even for
large pressures differences, the flow is linear �fully devel-
oped� and linearized kinetic theory2 has been applied with
considerable success.3–7 In the former case, usually, the flow
is strongly nonequilibrium and has to be tackled by nonlinear
kinetic equations2 or alternatively by the direct simulation
Monte Carlo �DSMC� method.8 Moreover, when the flow is
in the transition and continuum regimes, the distribution
functions at the entrance and the exit of the capillary are not
Maxwellians and therefore the computational domain in both
approaches �nonlinear kinetic equations and DSMC� must
include the containers before and after the capillary. Conse-
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quently, the computational effort for solving flows through
tubes of finite length is significantly increased compared to
the one required for tubes of infinite length. Despite all these
difficulties, as it is pointed in Ref. 1, there have been several
significant contributions in the simulation of rarefied gas
flows through short tubes, while more recent work on this
topic may be found in Refs. 9–11. It is evident, however, that
additional research work is needed in order to provide a more
complete data frame for a wide range of geometric and flow
parameters as well as the dependency of the flow character-
istics on various gas-surface interaction models and intermo-
lecular potentials.

In that framework, Shinagawa et al.9 extended earlier
work by Usami and Teshima,12 to compute and measure the
conductance of nitrogen gas through circular tubes of various
length to diameter ratios and for several pressure ratios
across the tube. Both experimental and computational con-
ductances were found to be lower than the ones provided by
the Hanks-Weissberg equation.13 Very recently, Lilly et al.,11

in an effort to optimize the design of short tubes for aero-
space propulsion, have studied in detail the effect of the
length of thin wall orifices. They have examined tubes with
two length to diameter ratios, namely, 0.015 and 1.2, for a
wide range of pressure ratios and they have computed for
each case the mass flow rate, the momentum flux, and the
specific impulse. It has been deduced that the thick orifice
has a higher propulsion efficiency.

In the present work, we apply the DSMC method to in-
vestigate numerically the flow of a monatomic gas into
vacuum through circular tubes with length to radius ratios
ranging from 0 up to 10. Numerical results for the mass flow
rates and the macroscopic distributions of the flow �velocity,
pressure, and temperature� are presented in the whole range

of the Knudsen number. In addition, we study the effect of
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the gas-surface interaction model by introducing the
Cercignani-Lampis scattering kernel14 as well as the effect of
the intermolecular potential model by using the hard sphere
and the variable hard sphere models. For specific flow con-
figurations, the numerical results are compared successfully
with the corresponding results from previous
experimental15,16 and computational11 works.

II. STATEMENT OF THE PROBLEM AND
DEFINITIONS

Consider a tube of radius R and finite length L connecting
two semi-infinite reservoirs. The geometric configuration
with the coordinate system �x� ,r�� and its origin are shown
in Fig. 1. A monotomic gas in the left reservoir is maintained
at equilibrium pressure P0 and temperature T0, while in the
right container, the pressure P1 is kept so low that it is as-
sumed to be equal to zero �P1=0�.

Two parameters determine the solution of this flow con-
figuration. The first one is a geometric parameter, namely, the
length to radius ratio L /R of the tube. The second one is the
rarefaction parameter �, defined as1

� =
RP0

�0v0
. �1�

Here, the radius R of the tube is taken as the characteristic
macroscopic length, P0 is the reference pressure, �0 is the
gas viscosity at reference temperature T0, and v0=�2kT0 /m
is the most probable molecular speed with k denoting the

FIG. 1. Short tube geometry.
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Boltzmann constant and m the molecular mass of the gas. It
is also noted that the rarefaction parameter � is proportional
to the inverse Knudsen number.

Our objective is to find the mass flow rate through the
tube and the detailed flow field in the tube and in the two
reservoirs in terms of the parameters L /R and �. The results
will be presented in terms of the reduced flow rate defined as

W =
Ṁ

Ṁ0

, �2�

where Ṁ0 is the flow rate through an orifice �L /R=0� at the

free-molecular limit ��=0�. The quantity Ṁ0 can be easily
computed in an analytical manner to yield

Ṁ0 =
��R2

v0
P0. �3�

Also, the dimensionless macroscopic distributions of veloc-
ity �ux�x ,r� ,ur�x ,r��, density n�x ,r�, pressure P�x ,r�, and
temperature T�x ,r� are defined by dividing the dimensional
ones with the corresponding characteristic quantities v0, n0,
P0, and T0 respectively, with P0=n0kT0. The quantities r
=r� /R and x=x� /R are the dimensionless radial and axial
coordinates. All results in Sec. IV are presented in terms of
dimensionless quantities.

III. SPECIFIC ISSUES OF THE IMPLEMENTED
DSMC SOLUTION

Recently, the DSMC algorithm based on the Non Time
Counter �NTC� scheme8 has been developed and applied
successfully to the simulation of rarefied gas flow through an
orifice �L /R=0�.17 In the present work, this code is accord-
ingly extended to that of simulating rarefied gas flow through
a short tube, i.e., for arbitrary values of the ratio L /R. Since
the details of the algorithm are well described and thor-
oughly explained in previous works,8,17 its detailed descrip-
tion is omitted and only the specific issues related to the
present formulation are provided for completeness and
clarity.

The axisymmetric computational domain is shown in Fig.
2. It is consisting of the tube defined by �0�r�1,0�x

FIG. 2. Computational domain with
nonuniform grid.
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�L /R� and two large cylinders defined by �0�r�R1 /R ,
−L1 /R�x�0� and �0�r�R2 /R ,L /R�x� �L+L2� /R�,
which correspond to the computational volumes of the up-
stream and downstream reservoirs, respectively. Several
computational sizes of the two reservoirs have been tested
and the minimum ones which guarantee invariance in the
results less than 1% were selected, namely, L1=R1=8R and
L2=R2=4R. The computational grid is structured and non-
uniform containing cells with three different sizes. These
three different areas of the grid are shown in Fig. 2. Such a
three level grid is required in order to capture the steep mac-
roscopic gradients close to the boundaries and maintain rea-
sonable computational efficiency.

In order to maintain, as much as possible, uniform distri-
butions of particles at each cell in the whole computational
domain, the concept of the weighting factor has been intro-
duced. In addition to the radial weighting zones introduced
in Ref. 17, a number of axial weighting zones have been
added. More specifically, in all cases, seven radial and three
axial weighting zones have been applied. The decomposition
of the computational domain into weighting zones is pre-
sented in Fig. 3. Particles which are moving toward the axis
r=0 or from left to right and enter a new radial or axial
weighting zone, respectively, are doubled with prescribed
weights equal to one-half of the weight of the initial par-
ticles. On the other hand, when particles are moving away

TABLE I. Dimensionless flow rate W vs L /R and � fo

� L /R=0 L /R=0.1 L /

0.0 1.000 0.953 0
0.1 1.014 0.965 0
0.5 1.069 1.018 0
1 1.129 1.074 0
2 1.221 1.165 0
5 1.374 1.312 1

10 1.463 1.404 1
20 1.512 1.462 1
50 1.534 1.498 1

100 1.533 1.508 1
200 1.529 1.512 1
500 1.526 1.515 1

1000 1.523 1.515 1
2000 1.522 1.517 1

FIG. 3. Weighting zones.
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from the axis r=0 or from right to left and enter a new
weighting zone, half of them are completely eliminated,
while the other half is maintained with prescribed weights
equal to the double weight of the initial particles. By follow-
ing this practice, the statistical scattering of the results is
significantly reduced, while the same number of model par-
ticles is maintained. The number of modeled particles and of
computational cells used in the simulations strongly depends
on the ratio of the length over the radius of the tube �L /R�.
The total number of particles and cells varies from 2�107 to
3�107 and from 4�104 and 8�104, respectively, depend-
ing on the ratio L /R.

Initially, the modeled particles are distributed uniformly
in the left container with the Maxwellian distribution corre-
sponding to the equilibrium state far from the tube inlet.
Then, the simulation starts by advancing in small time steps
�t, such that �t� tm, where tm is the mean collision time.
Following the standard procedure at each time step, the dy-

HS model and diffuse gas-surface interaction.

W

.5 L /R=1 L /R=5 L /R=10

0.672 0.311 0.192
0.680 0.312 0.190
0.715 0.322 0.194
0.754 0.334 0.198
0.819 0.361 0.213
0.948 0.436 0.258
1.062 0.543 0.335
1.168 0.695 0.463
1.287 0.917 0.696
1.358 1.068 0.874
1.412 1.184 1.020
1.449 1.271 1.125
1.456 1.282 1.143
1.458 1.284 1.145
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FIG. 4. Comparison between the present numerical results and the corre-
sponding experimental ones by Barashkin �Ref. 15�.
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namic motion of the particles is split into the free motion of
the particles �first stage� followed by their collisions �second
stage�.

During the first stage, all of the particles are freely moved
through some distance defined by their molecular velocities
and the time step. During this free motion, some of them
may interact with the solid boundaries of the tube or of the
reservoirs. The interaction of particles with solid boundaries
is simulated by diffuse reflection. To investigate the influence
of the nondiffuse scattering, the Cercignani-Lampis
model2,14 was used for some values of the gas rarefaction
and length to radius ratio. The Cercignani-Lampis model has
two accommodation coefficients �one for the tangential mo-
mentum and one for the kinetic energy due to the molecular
velocity normal to the surface� and provides a more physical
description of the gas scattering on solid surfaces. Since gas-
surface interaction plays an important role in the present flow
configuration, results for both purely diffuse and partially
diffuse-specular reflections have been provided. Also during
this free motion, some particles may get out from the com-
putational domain. These particles are completely eliminated
from the rest of the simulation. At the same time, new par-
ticles are generated at the boundaries of the upstream reser-
voir having the corresponding Maxwellian distributions. The
number of particles entering the flow is defined by

Nb =
1

4
An0vt�t , �4�

where A is the area of the boundary, n0 is the equilibrium
numerical density, and vt is the corresponding mean thermal
speed. Upon establishing steady state conditions, the number
of particles leaving and entering the computational domain is

FIG. 5. Comparison between the present numerical results and the corre-
sponding ones by Fujimoto and Usami �Ref. 16�, based on their approximate
formula �21�.
approximately the same and therefore the total number of
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simulated particles remains practically constant.
During the second stage, the intermolecular interactions at

each cell is simulated as in Ref. 17. The intermolecular po-
tential was modeled using the hard-sphere �HS� and the vari-
able hard sphere �VHS� models.8 In the former case, the total
cross section is constant, the viscosity is proportional to �T,
and the deduced dimensionless results are general since they
can be presented in terms of �, i.e., it is not necessary to
prescribe a specific gas. In the latter case, the total cross
section is a function of the relative velocity between two
collided particles and the viscosity is proportional to T�,
where the parameter � characterizes a specific gas. In the
next section, we study the effect of the intermolecular poten-
tial by comparing the corresponding results between the HS
model and the VHS model for helium ��=0.66�.

The dynamic motion of the particles is simulated for a
sufficient number of time steps such that steady-state flow
conditions in the computational domain are established. The
dimensionless time step is always �t / tm=0.01� and in all
cases we consider that steady-state conditions have been ob-
tained when the statistical scattering of the dimensionless
flow rate W is less than 1%. To estimate W, the difference
between the particles crossing the inlet cross section of the
tube at x=0 from left to right and from right to left denoted
by N+ and N−, respectively, is computed. Upon convergence,

+ −

TABLE II. Dimensionless flow rate W for various boundary conditions and
intermolecular potentials: Diffuse �	n=	t=1�; CL, Cercignani-Lampis
�	n=1,	t=0.5�; HS, hard spheres; VHS, variable hard spheres �helium,
�=0.66�.

L /R �

W

HS
VHS

diffuseDiffuse CL

0 0.1 1.014 1.010 1.014
1 1.129 1.129 1.115

10 1.462 1.454 1.446
100 1.534 1.523 1.531

1000 1.523 1.516 1.522

0.1 0.1 0.965 0.983 0.963
1 1.074 1.093 1.063

10 1.404 1.415 1.388
100 1.508 1.507 1.507

1000 1.515 1.509 1.514

1 0.1 0.680 0.802 0.680
1 0.754 0.891 0.746

10 1.062 1.183 1.041
100 1.358 1.396 1.349

1000 1.456 1.466 1.456

10 0.1 0.190 0.343 0.190
1 0.198 0.363 0.197

10 0.335 0.493 0.318
100 0.874 0.932 0.842

1000 1.143 1.162 1.117
this quantity �N −N � is equal to the corresponding one at
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the exit cross section of the tube at x=L /R. It is pointed that
as the length to radius ratio is increased, the required number
of time steps is also increased. This is easily justified since
the relative scattering of the flow is of the order �N+ / �N+

−N−� and as L /R is increased, then N− is increased as well.
Also, as the rarefaction parameter � is increased and we are
approaching the continuum limit, the overall computational
effort is significantly increased because the number of the
intermolecular collision to be simulated is large.

IV. RESULTS AND DISCUSSIONS

Calculations have been carried out in the wide range of

FIG. 6. Dimensionless axial velocity �top�, pressure �middle�, and temperatu
L /R.
the rarefaction parameter � from 0 to 2000 and for L /R=0,
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0.1, 0.5, 1, 2, 5, and 10. The results presented in this section
include, for all these cases, the dimensionless flow rate W as
well as contours and profiles of macroscopic distributions
with practical interest.

A. Dimensionless flow rate

Results for the dimensionless flow rate W for the purely
diffuse boundary conditions and the HS model are presented
in the Table I in terms of � and L /R. The purely diffuse
reflection can be easily deduced from the Cercignani-Lampis
model by setting both the tangential momentum coefficient

ttom� distributions along r=0 for �=1 �left� and �=100 �right� and various
re �bo
at and the kinetic energy coefficient an equal to 1. The case
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of L /R=0, which corresponds to flow through an orifice, has
been included for completeness and comparison purposes.
As expected, the results of the present work for this specific
case are identical with the corresponding ones in Ref. 17. In
addition, the results corresponding to the free-molecular re-
gime ��=0� coincide, within the computational error, with
those obtained in Ref. 1 by the test particle method �fifth
column of Table 30 in Ref. 1�.

By analyzing the results of W in terms of � and L /R, the
following remarks can be deduced. For fixed values of �, it
can be seen that W decreases by increasing the length L /R. It

FIG. 7. Dimensionless axial velocity �top�, pressure �middle�, and temperat
various �.
is noted that at �=1, the values of W between L /R=0.1 and
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10 are reduced more than five times, while at �=102, the
corresponding reduction is less than two times. For fixed
length L /R, W is increased as � is increased from the free-
molecular limit ��=0� up to the hydrodynamic one ��
=2000�. The dependency of W on � for all L /R can be
clearly distinguished in three regions. More specifically, as �
is increased, at small �, the reduced flow rate W is increased
very slowly. At intermediate �, there is a significant increase
of W, which is approximately linearly proportional to log �.
Finally, at large values of �, W keeps increasing very weakly,
reaching asymptotically the continuum results at the hydro-

ottom� distributions along r=0 for L /R=0.5 �left� and L /R=5 �right� and
ure �b
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dynamic limit ��→
�. The exact values of �, determining
the limits of each of the three regions, depend on L /R and
can be estimated from Table I.

At this point a comparison with experimental results
available in the literature is provided. In Fig. 4, numerical
results of the present work for the dimensionless flow rate W
for L /R=2 and 10 are compared with the corresponding ex-
perimental results by Barashkin15 for L /R=1.92 and 10.66,
respectively. It is seen that although the experimental results
are for the polyatomic gas of CO2, while the numerical ones
are for a monotomic gas, the agreement in both cases is
excellent for all �. Any discrepancies are within the experi-
mental uncertainties. Fujimoto and Usami,16 based on their
experimental results, have proposed an approximate formula
�Eq. �21� in Ref. 16�, supplemented by a specific procedure
to obtain approximate results for the dimensionless flow rate
W. In Fig. 5, the numerical results of the present work are
compared with the corresponding experimental ones pro-
duced according to Ref. 16. It is seen that the agreement is

FIG. 8. Dimensionless axial velocity profiles at the inlet �x=0, —�, mid
combinations of L /R and �.
very good for all L /R and for ��500.
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Finally, a comparison with the very recent computational
results of Lilly et al.10 has been performed. We examine both
length to radius ratios that they have considered �L /R=0.03
and 2.4�, with upstream pressures P1=1071 and 410 Pa,
which correspond to reference rarefaction parameters
�=24.7 and 9.45, respectively. In all cases, the discrepancy
between the present numerical results and the ones in Ref. 10
are less than 2%. This agreement provides some additional
confidence to the accuracy of our solutions in the whole
range of L /R examined in the present work.

B. Gas-surface interaction

In Table II, the dimensionless flow rate W is shown for
specific values of L /R and � using the diffuse �third column�
and Cercignani-Lampis �fourth column� boundary condi-
tions. In the latter one, the accommodation coefficients are
taken to be 	t=0.5 and 	n=1. The case L /R=0 is also in-

=L / �2R�, - - -�, and outlet �x=L /R, -·-·-� of the tube for characteristic
dle �x
cluded for comparison. The HS model has been used.
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It is clearly seen that as the ratio L /R is increased, the
effect of the gas-surface interaction law is drastically in-
creased. Specifically, for L /R=0.1, 1, and 10 and for the
same �=1, the estimates of W in the fourth column of Table
II compared to the corresponding ones in the third column
are increased by 1.8%, 18.4%, and 83.3%, respectively. The
same tendency is observed for all values of �. Therefore, the
dependency of the flow rate on the type of gas-surface inter-
action is weak for L /R�1 but it becomes strong for L /R
�1.

It is also seen from Table II that the effect of the gas-
surface interaction has a weak dependency on �. In particu-
lar, for �=0.1, 1, and 10 and for the same L /R=1, the esti-
mates of W in the fourth column Table II are increased by
17.9%, 18.2%, and 11.4%, respectively, compared to the cor-
responding ones in the third column. In general, as � is in-
creased, the dependency on the gas-surface interaction is sig-
nificantly decreased and it is computationally negligible in

FIG. 9. Dimensionless pressure profiles at the inlet �x=0, —�, middle �x=L
of L /R and �.
the slip and continuum regimes.
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C. Intermolecular potential

As mentioned above, the influence of the intermolecular
potential on the flow characteristics is studied by implement-
ing in addition to the HS, the VHS model. In the last column
of Table II, the dimensionless flow rate W obtained for the
VHS model corresponding to helium and assuming the dif-
fuse boundary conditions is tabulated. By comparing the es-
timates of W between the third and fifth columns of Table II,
it may be deduced that the sensitivity of W on the intermo-
lecular potential is very weak. Actually, for L /R�1 the re-
sults are in most cases identical and if in some cases there are
differences, they are within the numerical error ��1% �. For
L /R=10 and large �, there is some influence of the intermo-
lecular potential on W but it is small and the maximum
variation is 5.3%. It can be concluded that for all values
of L /R and � examined, the dependency of the results
on the model describing the intermolecular potential is

, - - -�, and outlet �x=L /R, -·-·-� of the tube for characteristic combinations
/ �2R�
insignificant.
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D. Flow field

The distributions of the dimensionless axial velocity, pres-
sure, and temperature along the symmetry axis r=0 and −2
�x�L /R+4 are shown in Fig. 6 for �=1 and 102 and vari-
ous values of L /R. In all cases, as x is increased, the axial
velocity is increased, while the pressure and the temperature
are decreased. It is seen that the velocity is rapidly increased
just before the inlet and after the outlet of the tube, while
inside the tube it is also increased but with a smaller pace.
This behavior is more clearly demonstrated at L /R=5 and
10. The maximum value of the axial velocity along the sym-
metry axis occurs far downstream and it is independent of
the ratio L /R. However, it depends on � and it is significantly
higher for �=102 compared to the one for �=1. As expected,
the pressure and temperature distributions qualitatively have
the inverse behavior compared to the axial velocities.

The effect of the rarefaction parameter � on the same
quantities as above is shown in detail in Fig. 7 by plotting
these distributions for L /R=0.5 and 5 and for various values
of �. It is seen that the results for ��1 and for ��102 are
very close to the corresponding ones at the free-molecular
limit ��=0� and at the continuum limit ��=2000�, respec-
tively. This is in agreement with the tabulated dimensionless
flow rates in Table I, where, as it has been pointed out, W

FIG. 10. Dimensionless pressure isolines in the region around and inside
remains almost the same at small and large � and it is sig-
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nificantly increased in the range 1���102. It is interesting
to note that for large �, the rapid increase in the velocity
before and after the tube is about the same, while in the case
of small �, the increase in the velocity at the outlet of the
tube is significantly higher than the one at the inlet of the
tube. This is clearly demonstrated at L /R=5. Again, the be-
havior of the pressure and temperature distributions is in-
versely proportional to the one of the velocity.

Profiles of the dimensionless axial velocity at the inlet
�x=0�, middle �x=L / �2R��, and outlet �x=L /R� of the tube
are shown in Fig. 8 for various values of L /R and �. The
corresponding pressure profiles are shown in Fig. 9. The
combinations L /R=0.5, �=1 and L /R=5, �=102 may be
considered as indicative for the cases when both L /R and �
are small and large, respectively, while the other two, i.e.,
L /R=0.5, �=102 and L /R=5, �=1, are representative for the
cases when one of the two parameters is small and the other
is large. For each of the four cases, the presented profiles are
characteristic for the flow evolution �velocity acceleration
and pressure drop of the gas� along the tube.

We close our discussion by presenting a more complete
picture of the flow field in Figs. 10 and 11, where isolines of
the dimensionless pressure and Mach number are plotted in
the region around and inside the tube for L /R=0.1 and 10

be for L /R=0.1 and 10 and �=1 �top�, 10 �middle�, and 1000 �bottom�.
the tu
and �=1, 10, and 1000. Based on these results, it is obvious
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that when � is kept constant and L /R is changed from 0.1 to
10, the flow field is significantly modified both qualitatively
and quantitatively. In addition, when L /R is kept constant
and � is changed from 1 to 10 and then to 1000, the
magnitude of the macroscopic quantities is altered, while
the qualitative characteristics of the flow field remain the
same.

V. CONCLUDING REMARKS

The DSMC method has been applied to study the rarefied
gas flow into vacuum through a short tube. The gas-surface
interaction is simulated by using both the diffuse and the
Cercignani-Lampis scattering kernels. The intermolecular
potentials are estimated using the HS and the VHS models.
The nonequilibrium effects at the inlet and outlet of the tube
have been considered by including in the computational do-
main large volumes of the upstream and downstream reser-
voirs. Dimensionless results for the flow rate and the macro-
scopic distributions of the flow �velocity, pressure, and
temperature� are presented in the whole range of gas rarefac-
tion �0���2�103� and for various length to radius ratios
�0�L /R�10�. For specific flow configurations, the numeri-
cal results are found to be in very good agreement with avail-
able experimental results. It is deduced that modifying the

FIG. 11. Isolines of local Mach number in the region around and inside th
�bottom�.
JVST A - Vacuum, Surfaces, and Films
parameters L /R as well as � has a significant impact on the
magnitude of the flow quantities. However, the qualitative
characteristics of the flow field alter significantly only when
the length of the tube is changed, while they remain almost
insensitive when the rarefaction parameter is changed. In ad-
dition, the dependency of the results on the gas-surface in-
teraction law is significant only for L /R�1, while their de-
pendency on the intermolecular potential model is, in
general, modest.
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