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The nonequilibrium flow of a gas in a two-dimensional grooved channel, due to the motion of the
wall of the channel, is investigated based on kinetic theory. The presence of the rectangular grooves
that are placed periodically on the stationary wall results in a two-dimensional flow pattern. The
problem is modeled by the linearized Bhatnagar-Gross-Krook �BGK� and S-model kinetic
equations, which are solved for the corresponding perturbed distribution functions by the discrete
velocity method. Maxwell diffuse type reflecting boundary conditions are used to model the
gas-surface interaction, while periodic boundary conditions are imposed at the inlet and outlet of the
channel. The computed macroscopic quantities of practical interest include velocity profiles,
contours of pressure, density, and temperature, as well as the flow rate and the heat flux through the
channel and the drag coefficient along the moving boundary. The results are valid in the whole range
of the Knudsen number, from the free molecular regime through the transition and slip regimes up
to the hydrodynamic limit, for various values of the depth and the width of the groove and the
periodic length of the channel. A comparison between the BGK and S-model results is performed.
Several interesting flow patterns and characteristics are examined in terms of the geometrical
parameters of the flow configuration, including an unexpected behavior of the velocity profile across
the channel at large Knudsen numbers. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2739414�

I. INTRODUCTION

The field of nonequilibrium flows is considered as one of
the most challenging frontiers in fluid mechanics and trans-
port phenomena, with many applications in nano- and mi-
crodevices, vacuum technology, and high altitude
aeronautics.1 Whether the flow is in equilibrium is deter-
mined by the Knudsen number, which is defined as the ratio
of the mean free path over a characteristic macroscopic
length of the problem.

One of the nonequilibrium flow configurations, which is
very common in several engineering and technological
fields, is the flow of a rarefied gas through a grooved chan-
nel. This type of flow may be considered as a prototype flow
for more complicated flow patterns, and its detailed investi-
gation is a topic of recent interest. In microfluidics, a two-
dimensional boundary-driven flow in a grooved channel has
been considered in order to model the flow complexity in
micromotors and microbearings or the coolant flow over cir-
cuit boards in electronic microdevices.2,3 In an effort to en-
hance mixing in microchannels, various patterned grooved
configurations have been investigated in Ref. 4. In other oc-
casions, the effect of the surface roughness in microchannel
flows has been modeled by placing grooves of several shapes
and sizes along the surfaces.5,6 In vacuum systems, modeling
of pumps operating at very low densities requires the solu-
tion of rarefied flows through grooved channels, where the

grooved plate corresponds to the spiral grooved stator and
the flat plate to the rotor.7–9 Finally, in aeronautics, surface
microgrooves have been used in several high-speed applica-
tions including near-wall exergy and flow control with appli-
cations to aircraft intake deicing.10

In all previously mentioned work, the flow is simulated
by implementing the Navier-Stokes equations subject to slip
boundary conditions2 or by the direct simulation Monte
Carlo �DSMC� method.11 The first approach is limited by the
continuum assumption, which is not valid as we depart far
enough from equilibrium.12 The second statistical type ap-
proach, although in most cases is a powerful computational
tool, in the case of flows characterized by low Mach and
Reynolds numbers may deduce inaccurate results due to sta-
tistical noise.

An alternative and very reliable approach for solving
nonequilibrium flows in the whole range of the Knudsen
number is the kinetic approach based on the Boltzmann
equation or alternatively on reliable kinetic model
equations.13–16 During recent years it has been shown that
kinetic solutions based on the corresponding linearized
model equations, which are solved by implementing up-
graded versions of the discrete velocity method,17,18 are par-
ticularly suitable for slow flows providing very accurate re-
sults with modest computational effort.19–21

The investigation of rarefied gas flows through grooved
channels via kinetic theory is limited. In an effort to model a
pump without moving parts, known as the Knudsen pump,
the gas flow through a grooved channel caused by a periodic
wall temperature distribution has been studied in Ref. 22 and
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more recently in Refs. 23 and 24. Also, the flow of a rarefied
gas through a grooved channel due to pressure and tempera-
ture gradients in the longitudinal direction has been investi-
gated by the BGK model in Ref. 25 and by the S model in
Ref. 26. For boundary-driven flow of a rarefied gas in a
grooved channel, as far as we are aware, the only kinetic
type investigation has been reported very recently in an ef-
fort to model the Holweck vacuum pump.27 In that work, the
main objective was the estimation of certain design param-
eters of the pump and therefore only the overall quantities of
the flow rate and the drag coefficient are reported without a
detailed description of the flow patterns and characteristics,
as well as of the macroscopic distributions, such as velocities
and pressures.

Overall, it is noted that the boundary-driven flow of a
rarefied gas in a grooved channel, over the whole range of
the Knudsen number, which is of particular interest in sev-
eral fields, has not been thoroughly investigated and more
detailed work is needed. In addition to their practical appli-
cations, nonequilibrium grooved flows contain several flow
and transport phenomena of theoretical interest. In con-
tinuum �equilibrium� fluid mechanics, this type of flow has
been extensively investigated.28,29

In the present work, a detailed investigation is provided
for the two-dimensional steady-state flow of a rarefied gas in
a periodically grooved channel, based on the linearized BGK
and S equations. The flow is due to the motion of the smooth
wall of the channel. A methodology recently introduced in
the solution of the nonequilibrium cavity problem30 is ex-
tended to solve numerically the present flow configuration.
The approach is applicable in the whole range of gas rarefac-
tion, deducing accurate results from the free molecular re-
gime through the transition and slip regimes up to the hydro-
dynamic limit, for various values of the aspect ratio of the
groove and the periodic length of the channel. Due to the
applied linearization, the analysis is valid for small Mach
and Reynolds numbers.

II. FORMULATION OF THE PROBLEM

A. Flow configuration

The geometry of the periodically grooved channel to be
considered, with the coordinate system and its origin, is
shown in Fig. 1. The channel consists of two parallel plates,
assumed infinite in extent in the x� and z� directions and
separated by a distance H, measured in the y� direction. The
upper plate is flat, while the lower one has a series of rect-

angular grooves uniformly distributed. The cross section of
each groove is W�D, where W and D denote the width and
the depth of the groove, respectively. It is assumed that the
geometry repeats itself with a period L.

Next, consider the flow of a rarefied gas between the two
plates of the channel, where the lower plate is stationary
while the upper one is moving with constant velocity U0.
The flow is considered as unbounded in the z� direction and
end effects in that direction are neglected. It is obvious that
there is a resemblance, in terms of the driving mechanism
and the expecting flow characteristics and properties, to the
classical one-dimensional Couette flow problem. However,
here the presence of the rectangular grooves that are placed
periodically along the stationary wall results in a two-
dimensional flow pattern. The flow depends on both x� and
y�, with x� being the streamwise direction. Due to the im-
posed periodicity, only one section with length L of the
grooved channel may be considered.25,27 The flow domain
under investigation is bounded by the flow inlet and outlet
boundaries at x�=−L /2 and L /2, respectively, and by the top
and bottom walls. All the walls are considered isothermal
with temperature T0. By taking the distance H between the
plates as the characteristic length of the problem, the nondi-
mensional spatial variables are x=x� /H, y=y� /H, and z
=z� /H.

B. Basic equations

The basic parameter of this nonequilibrium flow is the
Knudsen number. For practical purposes, however, we
choose to present our methodology and results in terms of
the so-called gas rarefaction parameter, which is defined as

� =
HP0

�0v0
=

��

2

1

Kn
. �1�

Here, H is the characteristic macroscopic length, P0 is the
reference pressure, considered at the inlet of the channel, �0

is the gas viscosity at temperature T0, and v0=�2RT0 is the
characteristic molecular velocity, with R=k /m denoting the
gas constant �k is the Boltzmann constant and m is the mo-
lecular mass�. As is seen, the rarefaction parameter � is de-
fined in terms of measurable quantities and it is proportional
to the inverse Knudsen number.

The flow under consideration is stationary and does not
depend on the spanwise z direction. Since a kinetic approach
is followed, the basic unknown is the distribution function
f = f�x ,y ,c�, where x and y have been defined earlier and

FIG. 1. Grooved channel geometry.
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c= �cx ,cy ,cz� is the nondimensional molecular velocity vec-
tor, while the macroscopic quantities are obtained by the mo-
ments of f . The gas pressure, density, and temperature are
related by the equation of state P�x ,y�=n�x ,y�RT�x ,y�. The
equilibrium state is perturbed by the motion of the upper
wall with velocity U0�v0. Then, the flow may be linearized
by introducing the relation

f = f0�1 + h
U0

v0
� , �2�

where h=h�x ,y ,c� is the new unknown function and

f0 =
n0

�2�RT0�3/2e−c2
�3�

is the global �absolute� equilibrium distribution function de-
fined at the reference number density n0 and temperature T0.

We intend to find the unknown distribution function h
=h�x ,y ,c� by implementing both the BGK and the S kinetic
models. Usually the BGK equation is used in isothermal
flows, while the S model, due to its ability to provide simul-
taneously correct expressions for both the viscosity and the
thermal conductivity coefficients, is used in nonisothermal
flows. In the present case, although the walls are isothermal,
there is a temperature variation in the field. Therefore, we
implement both models in order to compare the correspond-
ing solutions and to decide on their applicability and validity
in this particular problem. In addition, the S-model solution
will be useful, when the present flow configuration will be
extended in future work to the case of binary gas mixtures.
To distinguish the two solutions, we denote the unknown
distribution functions by h�k�, with k=1 and 2 denoting the
solutions of the BGK and S models, respectively.

The flow may be described by the two-dimensional
steady-state BGK31,32 and S33 kinetic equation given by

cx
�h�1�

�x
+ cy

�h�1�

�y
+ �h�1�

= ����1� + 2cxux
�1� + 2cyuy

�1� + ��1��c2 −
3

2
	� �4�

and

cx
�h�2�

�x
+ cy

�h�2�

�y
+ �h�2�

= ����2� + 2cxux
�2� + 2cyuy

�2� + ��2��c2 −
3

2
	

+
4

15
�cxqx

�2� + cyqy
�2���c2 −

5

2
	� , �5�

respectively. The nondimensional perturbed macroscopic dis-
tributions of number density, velocity, temperature, and heat
flux on the right-hand side of Eqs. �4� and �5� are deduced by
the moments of h�k�, with k=1,2 according to

��k��x,y� =
1

�3/2

−�

�

h�k�e−c2
dc , �6�

u�k��x,y� =
1

�3/2

−�

�

ch�k�e−c2
dc , �7�

��k��x,y� =
1

�3/2

−�

� �2

3
c2 − 1	h�k�e−c2

dc , �8�

and

q�k��x,y� =
1

�3/2

−�

�

c�c2 −
5

2
	h�k�e−c2

dc , �9�

respectively, where �−�
� �¯�dc=�−�

� �−�
� �−�

� �¯�dcxdcydcz.
Other macroscopic quantities of some interest for this prob-
lem are the nondimensional shear stress given by

	�k��x,y� =
1

�3/2

−�

�

cxcyh
�k�e−c2

dc �10�

and the nondimensional pressure defined as

p�k��x,y� =
P�k� − P0

P0
= ��k� + ��k�. �11�

Equation �11� is the linearized equation of state.
It turns out, as discussed in Sec. IV, that in this flow

configuration the temperature perturbation is one order of
magnitude less compared to the density and pressure pertur-
bations, which are of the same order, and therefore it may be
neglected. However, this is not known from the beginning
and must be examined. In addition, the analysis is more com-
plete and accurate and more easily extended to the noniso-
thermal grooved channel flow.

Finally, we define the following three overall macro-
scopic quantities. First, by integrating the shear stress, given
by Eq. �10�, along the top flat plate we estimate the drag
coefficient,

Cd
�k� =

2

L



−L/2H

L/2H

	�k��x,1�dx �12�

at the upper boundary. Second, by integrating across the inlet
of the channel the x component of the velocity profile, given
by Eq. �7�, we find the nondimensional flow rate,

G�k� = 2

0

1

ux
�k��−

L

2H
,y	dy . �13�

It is obvious that integrating at any cross section of the chan-
nel, the corresponding x component of the velocity profile
will result in the same flow rate. Third, by integrating the x
component of the heat flux, given by Eq. �9�, over the whole
computational domain, we compute the nondimensional av-
erage heat flux,

Q�k� = 2
H

L

 
 qx

�k��x,y�dydx . �14�

It is noted that the average heat flux at each cross section of
the channel is not constant and therefore we choose to com-
pute the average heat flux Q in the whole channel.

For the boundary-driven problem, the drag coefficient is
considered as a direct effect, while the flow rate and the heat
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flux are considered as cross effects. In Sec. IV, we estimate
these three quantities for the present flow configuration and
then we compare them with the corresponding ones for the
classical one-dimensional Couette flow problem in order to
have an overall quantitative description of the effect of the
groove in the flow.

C. Reduced BGK kinetic equations

For the problem under consideration, taking advantage
of the two-dimensionality of the flow, the cz component of
the molecular velocity vector may be eliminated from both
model equations by following the well-known projection
procedure. Equations �4� and �5� are multiplied successively

by 1
��

ecz
2

and by 1
��

�cz
2− 1 
 2 �ecz

2
and the resulting equations

are integrated over all −��cz��. Of course, by doing that
we obtain for each model a set of two equations. However,
the deduced equations after the projection do not contain the
variable cz, and the computational effort associated with the
implemented discrete velocity method, discussed in the next
section, is significantly reduced.

Even more, for computational purposes it is convenient
to express the two remaining components cx and cy of the
particle velocity in terms of polar coordinates. The two-
component dimensionless molecular velocity vector is now
defined by its magnitude � and its polar angle � given by

� = �cx
2 + cy

2 and � = tan−1� cy

cx
	 , �15�

respectively, where 0��� and 0�2�. In addition,
using polar coordinates in the molecular velocity space, we
may write the linear differential operator acting on the dis-
tribution functions on the left-hand side of Eqs. �4� and �5� in
the more convenient form

cx
�

�x
+ cy

�

�y
= ��cos �

�

�x
+ sin �

�

�y
� = �

d

ds
. �16�

Here s denotes the direction of the characteristic defined by
the polar angle � of the molecular velocity vector.

Based on the above discussion, we define the reduced
distribution functions

��k��x,y,�,�� =
1

��



−�

�

h�k��x,y,�,�,cz�e−cz
2
dcz �17�

and

��k��x,y,�,�� =
1

��



−�

�

h�k��x,y,�,�,cz��cz
2 −

1

2
	e−cz

2
dcz,

�18�

with k=1,2, and we operate accordingly on Eqs. �4� and �5�
to deduce, after some routine manipulation, the reduced
model equations. In particular, the BGK model is described
by

�
d��1�

ds
+ ���1� = ����1� + 2��ux

�1� cos � + uy
�1� sin ��

+ ��1���2 − 1�� �19�

and

�
d��1�

ds
+ ���1� = �

��1�

2
, �20�

while the S model is described by

�
d��2�

ds
+ ���2� = ����2� + 2��ux

�2� cos � + uy
�2� sin ��

+ ��2���2 − 1� +
4

15
�cxqx

�2� + cyqy
�2��

���2 − 2�� �21�

and

�
d��2�

ds
+ ���2� = �� ��2�

2
+

2

15
�cxqx

�2� + cyqy
�2��� . �22�

Finally, by applying the corresponding reduction proce-
dure to the nondimensional macroscopic quantities, given by
Eqs. �6�–�10�, we find

��k��x,y� =
1

�



0

2� 

0

�

��k��e−�2
d�d� , �23�

ux
�k��x,y� =

1

�



0

2� 

0

�

��k��2e−�2
cos �d�d� , �24�

uy
�k��x,y� =

1

�



0

2� 

0

�

��k��2e−�2
sin �d�d� , �25�

��k��x,y� =
1

�



0

2� 

0

� 2

3
���2 − 1���k� + ��k���e−�2

d�d� ,

�26�

qx
�k��x,y� =

1

�



0

2� 

0

�

���2 − 2���k� + ��k��

��2e−�2
cos �d�d� , �27�

qy
�k��x,y� =

1

�



0

2� 

0

�

���2 − 2���k� + ��k��

��2e−�2
sin �d�d� , �28�

and

	�k��x,y� =
1

�



0

2� 

0

�

��k��3e−�2
sin � cos �d�d� , �29�

with k=1,2.
The reduced model equations �19�–�22�, with the associ-

ated integral expressions �23�–�28�, are solved by a compu-
tational scheme, which is described in Sec. III.
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D. Boundary conditions

We close our discussion on the formulation of the prob-
lem by determining the boundary conditions associated with
the governing equations. Boundary conditions are imposed
for the unknown distributions h�k�=h�k��x ,y ,c�, k=1,2, at the
inlet and the outlet of the flow domain as well as along the
lower and upper plates �see Fig. 1�, yielding a well-posed
elliptic type problem.

The flow field is periodic in the x direction with period
L. Then, the periodic boundary conditions at the inlet and the
outlet of the flow field imply that

h�k��−
L

2H
,y,c	 = h�k�� L

2H
,y,c	 . �30�

On the wall boundaries, the gas-surface interaction is mod-
eled by the Maxwell diffuse reflection condition. Applying
linearization, we deduce

h�k�+ = nw
�k�, c · n � 0 �31�

along the stationary wall and

h�k�+ = nw
�k� + 2cx, cy � 0 �32�

along the moving wall. The superscript + denotes distribu-
tions leaving from the boundaries and the vector n is defined
as the unit vector normal to the surfaces and pointing toward
the flow. The parameters nw

�k� are estimated by satisfying the
well-known impermeability condition u ·n=0 along the walls
of the channel. The second term on the right-hand side of Eq.
�32� is due to the motion of the upper wall and it is the only
nonhomogeneous term in the problem producing the flow.
The velocity U0 does not appear due to the imposed linear-
ization �Eq. �2�� and also due to the fact that all quantities are
in nondimensional form.

The boundary conditions for the reduced kinetic equa-
tions �19�–�22� are obtained in a straightforward manner. The
projection procedure is applied to Eqs. �30�–�32� followed by
the change of the microscopic velocity variables from Carte-
sian to polar coordinates. Then, the periodic boundary con-
ditions are

��k��−
L

2H
,y,�,�	 = ��k�� L

2H
,y,�,�	 �33�

and

��k��−
L

2H
,y,�,�	 = ��k�� L

2H
,y,�,�	 , �34�

while along the walls of the channel, we have

��k�+ = nw
�k� and ��k�+ = 0, c · n � 0 �35�

on the stationary wall and

��k�+ = nw
�k� + 2� cos � and ��k�+ = 0, cy � 0 �36�

on the moving wall. Again, the superscript + denotes leaving
distributions and the parameters nw

�k� are defined by the no-
penetration condition. In particular, at the three boundaries
parallel to the x axis, we find

nw
�k��x,−

D

H
	 = −

2
��



�

2� 

0

�

��k��x,−
D

H
,�,�	

��2e−�2
sin �d�d� ,

−
W

2H
 x 

W

2H
, �37�

nw
�k��x,0� = −

2
��



�

2� 

0

�

��k��x,0,�,���2e−�2
sin �d�d� ,

�
L

2H
 x  �

W

2H
�38�

and

nw
�k��x,1� =

2
��



0

� 

0

�

��k��x,1,�,���2e−�2
sin �d�d� ,

−
L

2H
 x 

L

2H
, �39�

while at the two boundaries parallel to the y axis we have

nw
�k��−

W

2H
,y	 = −

2
��



3�/2

�/2 

0

�

��k��−
W

2H
,y,�,�	

��2e−�2
cos �d�d�,

−
D

H
 y  0 �40�

and

nw
�k�� W

2H
,y	 =

2
��



�/2

3�/2 

0

�

��k�� W

2H
,y,�,�	

��2e−�2
cos �d�d�,

−
D

H
 y  0. �41�

Therefore, the unknown distribution functions ��k� and
��k� defined by Eqs. �19� and �20� for the BGK model and
Eqs. �21� and �22� for the S model are subject to the bound-
ary conditions �33�–�36�.

III. THE COMPUTATIONAL SCHEME

The computational approach for solving the linear
coupled integro-differential equations �19� and �20� for the
BGK model and �21� and �22� for the S model, supplemented
by the corresponding integral expressions �23�–�28� of the
overall quantities, is presented. The procedure consists of
splitting the initial problem into two subproblems and then
solving the first one in a semianalytical manner, and the sec-
ond one numerically in an iterative manner. Discretization in
the phase space includes the discrete velocity method15,34

and typical finite-difference schemes.
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A. Splitting

The implemented splitting has been applied in the cavity
flow problem.30 This procedure eliminates only the propaga-
tion of the strong discontinuity induced by the motion of the
upper plate, while the weak discontinuities are still there. In
addition, one of the two subproblems is solved analytically
only once. Here, we follow the same splitting procedure and
we find again that it upgrades the whole numerical scheme
producing accurate results free of oscillatory behavior with
less computational effort.

The kinetic equations �19�–�22� are written in the more
compact form,

�
d��k�

ds
+ ���k� = �F�k� �42�

and

�
d��k�

ds
+ ���k� = �Y�k�, �43�

with k=1,2, where F�k� and Y�k� are functionals representing
the corresponding right-hand sides of the kinetic equations.
Then, the unknown distributions ��k� are decomposed into
two parts, namely

��k� = �1
�k� + �2

�k�. �44�

Such a decomposition procedure is not necessary for the ��k�

functions due to the fact that the associated boundary condi-
tions are homogeneous and they do not contain source terms.
Equation �44� is substituted into Eqs. �42� and the associated
boundary conditions to yield the following two subproblems:

The first one is for �1
�k�, described by the differential

equation

�
d�1

�k�

ds
+ ��1

�k� = 0 �45�

and the boundary conditions

�1
�k�+ = 0 �46�

at the stationary walls and

�1
�k�+ = 2� cos � �47�

at the moving wall �the + sign denotes outgoing flux�. This
problem is solved analytically by integrating along the char-
acteristics to yield

�1
�k��x,y,�,�� = �1

�k�+e−�s0/�, �48�

where s0 is the distance along the characteristic line, in the
direction opposite to that of the molecular velocity �� ,��,
from the point �x ,y� to the boundary point where the char-
acteristic is crossing the boundary �see Fig. 2�. It is noted
that Eq. �48� does not carry any discontinuity when it is
applied in the main stream �0�y�1� but it does carry the
strong discontinuity due to the motion of the upper plate
when it is applied inside the groove �−D /H�y�0�.

The second subproblem is for �2
�k� and it is described by

the integro-differential equation

�
d�2

�k�

ds
+ ��2

�k� = �F�k� �49�

with the boundary conditions

�2
�k�+ = nw

�k� �50�

at all surfaces �stationary and moving�. The parameters nw
�k�

are defined at the corresponding wall, by Eqs. �37�–�41�.
Once the geometry of the problem is fixed, the distribu-

tions �1
�k� are estimated by Eq. �48� in a semianalytical man-

ner. Then, the distributions �2
�k� and ��k� are computed by

solving numerically, in an iterative manner, the coupled ki-
netic equations �49� and �43�. In particular, the macroscopic
equations on the right-hand side of the kinetic equations are
assumed known and then the kinetic equations are solved for
the unknown distributions �2

�k� and ��k�. Based on these esti-
mates and on the estimate of �1

�k�, which already has been
obtained, the macroscopic quantities are computed from the
integral expressions and they are plugged back at the right-
hand side of the kinetic equations. The iteration process is
considered completed when the termination criteria imposed
on the convergence of the overall quantities are satisfied. The
discretization scheme is described in the next section.

B. Discretization in the phase space

The phase space consists of the molecular velocity and
physical spaces. In the molecular velocity space, the discreti-
zation is performed by choosing a suitable set of discrete
velocities ��m ,�n�, defined by 0�m�� and 0�n2�,
with m=1,2 , . . . ,M and n=1,2 , . . . ,N. The resulting set
consists of M �N discrete velocities. The discretization in
the physical space �x ,y� is performed by dividing the flow
domain in square elements and creating a typical physical
grid. The nodes of the grid are denoted by �i , j�, with i
=1,2 , . . . , I and j=1,2 , . . . ,J.

Based on the above discretization, the unknown continu-
ous functions ��k��x ,y ,� ,�� and ��k��x ,y ,� ,�� are substi-
tuted by the discretized quantities ��k��xi ,yj ,�m ,�n�
=�i,j,m,n

�k� =�1,i,j,m,n
�k� +�2,i,j,m,n

�k� and ��k��xi ,yj ,�m ,�n�=�i,j,m,n
�k� ,

FIG. 2. Definition of distance s0.
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respectively. The first part of the ��k� functions can be readily
deduced by discretizing accordingly the closed form expres-
sion �48�. The estimation of �1,i,j,m,n

�k� requires only the com-
putation of the distances s0 at each grid point �xi ,yj� and for
each discrete polar angle �n. For this reason, we consider this
solution as semianalytical. The estimation of �2,i,j,m,n

�k� and
�i,j,m,n

�k� is achieved numerically by implementing the above
described iteration scheme on the discretized equations. The
integro-differential equations �49� and �43� are discretized
first in the velocity space ��m ,�n�. By doing that, Eqs. �49�
and �43� are deduced to a set of ordinary differential equa-
tions of the form

�m

d�2,m,n
�k�

ds
+ ��2,m,n

�k� �x,y� = �F�k��x,y� �51�

and

�m

d�m,n
�k�

ds
+ ��m,n

�k� �x,y� = �Y�k��x,y� , �52�

respectively. Then, the system of ordinary differential equa-
tions �51� and �52� is discretized at each grid point �i , j� in
the physical space yielding a set of algebraic equations. To
achieve that, the first-order derivatives with respect to s in
Eqs. �51� and �52� are approximated by a finite-difference
first-order upwind scheme. For example, working in the first
quadrant of the discrete molecular velocity space, with 0
��n�� /2, we write

dgm,n

ds
=

gi,j,m,n − gA,m,n

�sA
, when 0 � �n � tan−1�hy

hx
	
�53�

and

dgm,n

ds
=

gi,j,m,n − gB,m,n

�sB
, when tan−1�hy

hx
	 � �n �

�

2
,

�54�

where g denotes any of the two unknown distributions. The
points A and B, with corresponding distances �sA and �sB,
for a typical computational cell hx�hy are shown in Fig. 3.
Then, the quantities at the points A and B are substituted by
the corresponding quantities at the two adjacent grid points
using linear interpolation. This approach can be easily ex-
tended for values of the polar angles �n at the remaining

three quadrants. For each of the two models under investiga-
tion, there are 2�M �N equations at each of the I�J nodes.

As has been pointed out, the whole problem is solved in
an iterative manner between the kinetic equations and the
integral expressions for the macroscopic quantities. How-
ever, at each iteration the system of algebraic equations can
be solved by a marching scheme. For each discrete velocity
��m ,�n� the distribution functions at each node are computed
explicitly marching through the physical domain. Following
this procedure, no matrix inversion is required. The macro-
scopic quantities, at each physical node �i , j�, are computed
by numerical integration. The Gauss-Hermite quadrature is
used in the � variable and the trapezoidal rule in the � vari-
able. The iterative procedure is ended when the imposed ter-
mination criteria on the convergence of the overall quantities
are satisfied. Following the above procedure, supplemented
by a reasonable dense grid and an adequate large set of dis-
crete velocities, we are able to obtain grid-independent re-
sults with modest computational effort.

IV. RESULTS AND DISCUSSION

The solution depends on the rarefaction parameter �,
which defines the rarefaction of the flow and on the ratios
D /H, W /H, and L /H, which define the geometry of the
grooved channel. The effect of all these quantities on the
solution of the problem has been investigated by carrying out
detailed calculations for 0�10, with D /H
=0,0.1,0.3,0.5,1, W /H=1,2, and L /H=2.5,4. The results
for D /H=0 correspond to the one-dimensional Couette flow
problem.

The accuracy of the results depends on the discretization
in the phase space �physical and molecular velocity spaces�.
In general, in rarefied atmospheres �small �� we need a large
number of discrete velocities, while the physical grid may be
coarse. On the other hand, in continuum atmospheres �large
�� the required number of discrete velocities may be reduced,
but dense physical grids are important to achieve good accu-
racy. Depending upon the value of � and the geometry, the
discretization has been progressively refined to ensure grid-
independent results up to several significant figures. The pre-
sented results are with hx=hy =5�10−3 in all cases, while the
number of discrete velocities M �N is 64�400 for �1,
16�400 for 1���10, and 16�200 for �=10. Also, the

FIG. 3. Finite differencing of the first-order derivatives
along a characteristic.
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termination criterion on the convergence of the iterative pro-
cess is set equal to 10−7.

Tabulated results for the drag coefficient Cd
�k� and the

flow rate G�k� for five characteristic values of � and for vari-
ous values of D /H, with W /H=1 and L /H=2.5, are pre-
sented in Tables I and II based on the BGK and S models,
respectively. The two models provide for these quantities
identical results up to three significant figures. When the
comparison is extended to the values of the heat flux Q�k�,
then the agreement is not as good. Overall, we have seen that
both models provide identical results for the distributions of
density, velocity, and shear stress and the overall quantities
of drag coefficient and flow rate. When temperatures and
heat fluxes are computed, then there is a departure in the
results obtained by the two models, and in these cases, based
on previous experience, the S-model results may be consid-
ered to be more accurate.

The results in the last column of Tables I and II �D /H
=0�, which have been obtained by implementing the present

two-dimensional formulation and code, correspond to the so-
lution of the one-dimensional Couette flow problem. They
are in excellent agreement with the well known Couette flow
results obtained by a typical one-dimensional discrete veloc-
ity code. This fact may be considered as a good benchmark
regarding the accuracy of the present work.

It is seen, in Tables I and II, that for both computed
quantities there is a departure of the one-dimensional results
when D /H�0. Even more, this departure is small for large
values of � and becomes more significant as � is reduced,
while for each � the largest departure from the one-
dimensional results seems to occur at 0.3D /H0.5. The
qualitative behavior of the drag coefficient in terms of �
remains the same as in the typical Couette flow problem, and
as expected the values of Cd

�k� are reduced as � is increased.
However, the qualitative behavior of the flow rate is different
since now it depends on � and it is not constant and equal to
1 as in the case of the Couette flow. In particular, the values

TABLE I. Drag coefficients and flow rates with the BGK model �W /H=1, L /H=2.5�.

D /H

1.0 0.5 0.3 0.1 0.0

� Cd
�1�

0 0.609 0.621 0.620 0.592 0.564

10−3 0.609 0.620 0.619 0.592 0.564

10−1 5.557 0.567 0.566 0.544 0.522

1 0.346 0.350 0.350 0.344 0.339

10 0.811 �−1� 0.813 �−1� 0.814 �−1� 0.816 �−1� 0.831 �−1�
G�1�

0 0.918 0.901 0.899 0.936 0.100 �1�
10−3 0.918 0.901 0.899 0.936 0.100 �1�
10−1 0.936 0.921 0.920 0.957 0.100 �1�
1 0.986 0.978 0.979 0.995 0.100 �1�
10 0.102 �1� 0.102 �1� 0.102 �1� 0.102 �1� 0.100 �1�

TABLE II. Drag coefficients and flow rates with the S model �W /H=1, L /H=2.5�.

D /H

1.0 0.5 0.3 0.1 0.0

� Cd
�2�

0 0.609 0.621 0.620 0.592 0.564

10−3 0.609 0.620 0.619 0.592 0.564

10−1 0.557 0.567 0.566 0.544 0.522

1 0.346 0.350 0.350 0.344 0.339

10 0.811 �−1� 0.813 �−1� 0.814 �−1� 0.816 �−1� 0.831 �−1�
G�2�

0 0.918 0.901 0.899 0.936 0.100 �1�
10−3 0.918 0.901 0.899 0.936 0.100 �1�
10−1 0.936 0.920 0.920 0.957 0.100 �1�
1 0.986 0.978 0.979 0.995 0.100 �1�
10 0.102 �1� 0.102 �1� 0.102 �1� 0.102 �1� 0.100 �1�
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of G�k� for �1 are less than 1, while for �=10 they are
slightly higher.

Since both the BGK and S models provide identical re-
sults, up to three significant figures for most of the quantities
under investigation, we do not use in the rest of the paper the
superscript �k� in our notation. Also, when results on tem-
peratures and heat fluxes are reported, they are based on the
S model.

A more detailed description of the effect of the groove,
which we will call “groove effect,” on the behavior of the
drag coefficient Cd and of the flow rate G is shown in Figs. 4
and 5, respectively, where the two quantities are plotted in
terms of � for three different geometrical configurations. We
note that in Fig. 4, the drag coefficient Cd has been divided
by the corresponding drag coefficient Cd

C of the one-
dimensional Couette flow. By doing that, it is easier to study
the effect of the presence of the groove on this quantity. Such
a division is not necessary in Fig. 5, since the flow rate GC

=1 for all �. At �=0, the ratio Cd /Cd
C takes its largest value

and it is larger than 1. As � is increased, the ratio of the drag
coefficients is decreased. Depending upon the case, at about
1���5 the ratio becomes equal to 1, while at �=10 it is
always less than 1. The corresponding behavior of G is op-
posite. Overall, in all cases tested, we have found that
Cd�Cd

C and G�1 at small �, while Cd�Cd
C and G�1 at

large �.
From both figures, it is clearly seen that the groove effect

becomes more dominant in rarefied atmospheres as � is de-
creased. In addition, in terms of the width and the length of
the groove, it is seen that the groove effect is increased as the
ratio W /H is increased, while it is decreased as the ratio L /H
is increased. Finally, in terms of the depth of the groove, as
the ratio D /H is increased, first the groove effect is in-
creased, then it reaches a maximum level at about D /H
=0.5, and for D /H�0.5 it is reduced reaching a constant
level at about D /H=1. Increasing further the depth of the
groove has no effect on the values of Cd and G. These find-

FIG. 4. Drag coefficient in terms of � for various D /H with W /H=1,
L /H=2.5 �top�; W /H=2, L /H=2.5 �middle�; and W /H=1, L /H=4
�bottom�. FIG. 5. Flow rate in terms of � for various D /H with W /H=1, L /H=2.5

�top�; W /H=2, L /H=2.5 �middle�; and W /H=1, L /H=4 �bottom�.
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ings have been verified by examining additional grooved
channel flows with other geometric parameters.

In Fig. 6, the heat flux Q through the channel, defined by
Eq. �14�, is plotted in terms of � for the same three geometri-
cal configurations. It is noted that this quantity, in the one-
dimensional Couette flow, is identically equal to zero. In all
cases, the average heat flux has the maximum values at the
free molecular limit and then it is decreased as � is increased.
At the continuum limit as � goes to infinity, Q goes to zero.
In terms of the geometric parameters, we note similar behav-
ior as before with the exception that as the ratio D /H is
increased, the groove effect on Q keeps increasing, reaching
a maximum constant level when D /H�1.

We continue by plotting in Figs. 7–9 velocity streamlines
for several flow configurations. We keep the rarefaction pa-
rameter �=1, while we change the geometric parameters. In
Fig. 7, the width and length ratios are W /H=1 and L /H
=2.5, while the depth ratio is D /H=0.1, 0.3, 0.5, and 1. It is

seen that as D /H is increased, vortices are created at the two
bottom corners of the groove, which grow and merge into a
primary vortex under the main flow. Additional vortices un-
der the primary one may be obtained if the depth of the
groove is increased further. This vortex creation mechanism
has been described in detail recently in Ref. 30 studying the
classical cavity flow problem in the whole range of the
Knudsen number. Here, similar flow patterns and character-
istics are observed inside the groove due to the motion of the
fluid above the groove. For D /H=0.1, the depth of the
groove is very small compared to the distance between the
plates and therefore the effect of the groove on the main flow
is not important. As the depth is increased, the influence of
the groove on the main stream is increased until the two

FIG. 6. Heat flux in terms of � for various D /H with W /H=1, L /H=2.5
�top�; W /H=2, L /H=2.5 �middle�; and W /H=1, L /H=4 �bottom�.

FIG. 7. Velocity streamlines for �=1, W /H=1, L /H=2.5, and various D /H.

FIG. 8. Velocity streamlines for �=1, D /H=1, and L /H=2.5, with W /H
=1 �left� and W /H=2 �right�.
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corner vortices merge and the main flow is no longer in
touch with the bottom of the groove. In this particular flow
configuration, the separation of the main flow from the bot-
tom wall occurs at 0.3�D /H�0.5. Then, for higher values
of D /H, although additional vortices below the main one
may be created, the influence of the groove on the main flow
is decreased and the flow becomes progressively stratified,
consisting of an upper channel flow and a groove recirculat-
ing vortex flow, with very small interaction between them.
The two flows are distinguished by a thin shear layer. It is
seen that the more drastic effect due to the presence of the
groove on the flow pattern occurs at D /H�0.3, where the
streamlines of the main flow bend and penetrate inside the
cavity.

Velocity streamlines for different width and length ratios
are presented in Figs. 8 and 9, respectively. In Fig. 8, the
width ratio is W /H=1 and 2, while the depth and length
ratios are D /H=1 and L /H=2.5. In Fig. 9, the length ratio is
L /H=2.5 and 4, while the depth and width ratios are D /H
=1 and W /H=1. It is clearly seen that changing the width of
the groove has a much more significant impact on the flow
pattern than changing the periodic length of the channel. By
comparing the results in Figs. 7–9, it may be concluded that
between the geometric parameters of the flow, the one that
most influences the groove effect is the ratio W /H, followed
by the ratio D /H, while the ratio L /H is the less important.
These remarks can also be deduced by comparing the results
in Figs. 4–6.

Velocity streamlines for various values of the rarefaction
parameter �, with D /H=0.5, W /H=1, and L /H=2.5, are
shown in Fig. 10. It is seen that the qualitative differences in
the streamline patterns between the various values of � are
small. In all cases, the groove vortex becomes more well
developed as � is increased.

The above described observations and findings, regard-
ing the groove effect in terms of the rarefaction and the geo-
metric parameters of the flow, agree in a qualitative manner
with the ones found in Ref. 26, where both plates of the
grooved channel were stationary and the flow was due to
pressure and temperature gradients.

Typical contours of the perturbed density, pressure, and
temperature for �=1, with D /H=1, W /H=1, and L /H=2.5,
are shown in Fig. 11. All perturbation profiles are antisym-
metric about x=0, where they vanish. They also vanish at
x= �L /2H, while they are negative at −L /2H�x�0 and
positive at 0�x�L /2H. The pressure and density perturba-
tions have the same order, while the temperature variation is
smaller by at least one order of magnitude. In addition, the
perturbations of all three quantities are very close to zero in

the upper channel flow, while inside the groove they depart
from zero. The most significant deviations from zero are ob-
served along the side �vertical� walls of the groove. In par-
ticular, large negative and positive perturbations occur along
the left and right walls of the groove, respectively, taking
their maximum absolute values at the two top groove edges.
Similar results have been obtained for other values of the
rarefaction and geometric parameters. In general, as � is in-
creased and we are moving from the free molecular to the
continuum regime, the perturbations in density, pressure, and
temperature are reduced. In all cases, the linearized equation
of state, given by Eq. �11�, is fulfilled.

We close this section by providing for a specific geom-
etry plots of ux�x ,y�, which is the x component of the veloc-
ity profile, at several cross sections along the channel. This

FIG. 9. Velocity streamlines for �=1, D /H=1, and
W /H=1, with L /H=2.5 �left� and L /H=4 �right�.

FIG. 10. Velocity streamlines for various �, with D /H=0.5, W /H=1, and
L /H=2.5.
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quantity is symmetric about x=0. Results are presented for
various values of �, while the geometric parameters are
D /H=0.5, W /H=1, and L /H=2.5.

In Fig. 12, the x component of the velocity distribution is
plotted at the inlet x=−L /2H of the channel, for �=10−3,
10−1, 1, and 10. The corresponding velocity profiles for the
one-dimensional Couette flow are also included. For �=10, it
is seen that the profiles with and without groove are very

close. The magnitude of the velocity distribution correspond-
ing to the grooved channel is slightly higher, resulting in a
slightly higher flow rate �see also Table I or Table II and Fig.
5�. This behavior may be explained by taking into account
the fact that in the grooved channel flow, the interface be-
tween the main stream and the cavity may be considered as a
moving boundary, while the corresponding boundary in the
one-dimensional Couette flow is stationary. As the rarefac-
tion is increased and � is decreased, the situation is quite
different. Now, the magnitude of the x component of the
velocity distribution of the grooved channel is smaller than
the corresponding distribution for the one-dimensional Cou-
ette flow, resulting in a smaller flow rate �see also Table I or
Table II and Fig. 5�. In addition, we note that for �=10−1 and
10−3, the velocities at the upper wall �y=1� are lower than
expected. It may be useful to remark that the expected values
of velocity at the upper wall are for �=10−1 well above 0.5
and for �=10−3 about 0.5. Even more interesting is the fact
that for �=10−3 the velocity at the upper moving wall �y
=1� is lower than the velocity at the lower stationary wall
�y=0�. This unexpected finding, which is not consistent with
physical intuition, is due to the rarefaction of the flow com-
bined with the presence of the groove and it is mathemati-
cally and physically justified in the next section.

In order to have a complete picture of the evolution of
the x component of the velocity distribution along the chan-
nel, in Fig. 13 additional profiles are provided at
x=−W /2H and along the symmetry axis of the grooved
channel at x=0.

Before we conclude this section, it is useful to recall that
due to linearization, the whole analysis is valid for slow
flows �low Re and Ma numbers�. Taking into account the
relation Re��Ma, the above restriction implies that for �
1, the condition U0 /v0�1 is adequate, while for ��1 the
required condition becomes �U0 /v0�1.

V. APPROXIMATE ESTIMATION OF THE VELOCITY
AT THE UPPER WALL

It is well known that as the flow becomes more rarefied,
it is dominated by collisions between particles and bound-

FIG. 11. Contours of pressure �top�, density �middle�, and temperature �bot-
tom� for �=1, D /H=1, W /H=1, and L /H=2.5.

FIG. 12. Horizontal velocity profiles ux�x ,y� at x=−L / �2H� for various �,
with D /H=0.5, W /H=1, and L /H=2.5 �2D grooved channel flow, solid
lines; 1D Couette flow, dashed lines�.
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aries, while collisions between particles are rare. In these
cases, the distribution functions of the particles emitted from
the boundaries have a dominant influence on the bulk quan-
tities of the flow, including of course the macroscopic
velocity.

For simplicity and demonstration purposes, let us as-
sume that there is only one groove in the channel and let us
consider the limiting case of free molecular flow ��=0�. This
flow configuration with the coordinate system and its origin
is shown in Fig. 14. Trying to find the x component of the
velocity at any point A, located along the upper moving wall
�see Fig. 14�, we write

ux�A� =
1

�



0

2� 

0

�

��2e−�2
cos �d�d�

=
1

�



0

�

�2e−�2�
p=1

5 

�p

�p+1

�p cos �d�

+ 

�

2�

�6 cos �d��d� . �55�

The angles �p, with �1=0 and �6=�, are shown in Fig. 14,
while �p are the distribution functions defined at each inter-
val ��p=�p+1−�p. It is seen that the distributions �p , p
=1, . . . ,5 defined in the interval �0,�� correspond to par-
ticles arriving at point A, while the distribution �6 defined in
the interval �� ,2�� corresponds to particles departing from
point A. Since we are assuming free molecular flow, the un-
knowns �p , p=1, . . . ,5, are equal to the distributions emitted
by the section of the stationary wall, which is facing the
angle ��p, and we have

�p = nwp p = 1, . . . ,5. �56�

The distribution �6, is known from the boundary condition at
the upper moving wall and it is

�6 = nw6 + 2� cos � . �57�

The parameters nwp, p=1, . . . ,6, are defined at the corre-
sponding walls as indicated in Fig. 14, and they are com-
puted by applying the impermeability condition. We note that
from these parameters, the ones that are defined along the
horizontal walls of the grooved channel �i.e., nw1, nw3, nw5,
and nw6� are very small and they may be assumed identically
equal to zero.

Then, we substitute Eqs. �56� and �57� into Eq. �55�, and
after some manipulation and by taking into account the pre-
vious approximation, we readily find

ux�A� =
1

2
+ K + L , �58�

where

K =
1

4��
nw2�sin �3 − sin �2� and

L =
1

4��
nw4�sin �5 − sin �4� . �59�

Since always nw2�0 and nw4�0, it is deduced from Eq. �59�
that, for any point A along the upper wall, both quantities K
and L are always negative and as a result ux�A��0.5. Next,
we follow exactly the same procedure, with the same as-
sumptions as before, for any point B, at y=0, along the lower

FIG. 13. Horizontal velocity profiles ux�x ,y� at x=−W /2H �top� and x=0
�bottom� for various �, with D /H=0.5, W /H=1, and L /H=2.5.

FIG. 14. Estimation of ux along the upper plate.
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stationary wall. Now, the whole procedure becomes much
simpler since these points are not facing any section of the
groove of the channel. It is readily deduced that ux�B�=0.5.
Therefore, we have shown, in a simplified mathematical
manner, that in the case of free molecular flow, the magni-
tude of the x component of the velocity at the upper moving
wall takes lower values than at the lower stationary wall. It is
useful to recall that in the case of one-dimensional Couette
flow, when �=0, both values are equal to 0.5.

From a physical point of view, one may argue that this
phenomenon occurs due to the negative and positive varia-
tion of the perturbed densities �or pressures� of the gas along
the left and right side walls of the groove, respectively. This
variation, which becomes significant in highly rarefied atmo-
spheres, has a dominant effect on the bulk velocity of the
regions of the flow domain, which, due to geometry, are
directly facing particles emitted from the side walls of the
groove. It is obvious that this is true for the flow region,
which is close to the upper plate, and as a result the bulk
velocities in this region are lower than the flow velocities in
the region close to the lower plate, which again due to ge-
ometry is less affected by the distribution functions of the
particles emitted from the side walls of the grooves.

This analysis, which has been presented for �=0, can be
extended and it is valid for ��0, as long as the flow is
sufficiently rarefied ���1�. As � is further increased and the
flow is dominated by collisions between particles, the distri-
butions of particles emitted at the side walls of the groove
fade out quickly due to collisions and they can never reach
the upper channel flow. As a result, this phenomenon is not
present when the flow is sufficiently dense ���1�. This
analysis is also valid in the case of the periodically grooved
channel.

VI. CONCLUDING REMARKS

The flow of a rarefied gas in a grooved channel due to
the motion of the upper plate has been investigated imple-
menting a kinetic approach. The BGK and S kinetic equa-
tions, associated with suitable boundary conditions, have
been solved by the discrete velocity method. In most cases,
both models provide identical results, while when heat fluxes
are computed, the S model is considered as more accurate.
Detailed results have been computed, in several geometric
configurations of the grooved channel, for the drag coeffi-
cient, the flow rate, and the heat flux. The corresponding
flow patterns have been presented by plotting the velocity
streamlines. Distributions of velocity and shear stress and
contours of pressure, density, and temperature have been pro-
vided as well. The results are valid in the whole range of the
rarefaction parameter �.

By comparing the grooved channel flow with the one-
dimensional Couette flow, the effect of the groove on the
flow quantities and characteristics has been extensively in-
vestigated. It has been found that as the rarefaction of the
flow is increased, the groove effect is also increased. In ad-
dition, between the geometric parameters of the flow it has
been found that altering the width of the groove has the most
significant impact, followed by the depth of the groove and

the periodic length of the channel. In the case of highly rar-
efied flows ���1�, an unexpected phenomenon with regard
to the velocity distributions across the channel has been ob-
served and properly justified.
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