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ABSTRACT 

One of the major outcomes of kinetic theory is the accurate estimation of the velocity slip coefficient, which has been 
studied extensively in the case of single monoatomic gases. However, in most applications we deal with gas mixtures, 
where in general, the velocity slip in addition to the viscous and thermal slips also depends on the diffusion slip 
coefficient. The complexity of the problem is significantly increased since new parameters such as the molar 
concentratios, the masses and the diameters of  each of the two species of the mixture are involved in the estimation of 
the coefficients. Here, we concentrate only on the estimation of the viscous slip coefficient of binary gas mixtures. By 
solving the McCormack kinetic model equation subject to Maxwell diffuse-specular scattering boundary conditions, we 
provide results of the viscous slip coefficient for the binary gas mixtures of Ne-Ar, He-Ar and He-Xe. The kinetic 
equations are solved, by using a semi-analytical version of the discrete ordinates method. For each binary gas mixture 
the results are presented in table form for many values of the molar concentration of the species and the 
accommodation coefficients. It is found that the viscous slip coefficient strongly depends on the properties of the 
mixture (molar concentration, molecular mass ratios, accommodation coefficients) and some of the conclusions are 
generalized for other binary gas mixtures. It is also seen that the well-known Maxwell analytical result as well as the 
corresponding results of the complete solution of the kinetic equations for single gases are not valid. The results of the 
present work can be used for the effective implementation of the Navier-Stokes equations with slip boundary conditions 
when the flow of binary mixtures in the slip regime is investigated.  
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1. INTRODUCTION 

During the last years there is an intensive effort by the research community in microfluidics to extend the 
applicability of the Navier Stokes equations into the slip regime by coupling them with first and second order 
slip boundary conditions [Karniadakis & Beskok, 2001]. The validity and the accuracy of such an approach 
highly depend on the proper implementation and estimation of boundary conditions. In all types of slip 
boundary conditions the velocity slip on the wall is proportional to the velocity slip coefficients, which can 
be estimated theoretically only via kinetic theory [Kennard, 1938; Williams & Loyalka, 1991]. 
 
 If we consider a semi-infinite half space  occupied by a gas mixture flowing parallel to a flat 
boundary located at , then the velocity of the gas mixture on the wall is expressed as [Sharipov & 
Kalempa, 2003; 2004] 
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Equation (1) is in dimensional form, 'x  and  are the spatial coordinates normal and parallel to the wall, 
 is the velocity of the gas mixture tangential to the wall, 

'y
( )' 0u ρ , ,  and C  are the local density, 

pressure, temperature and concentration of the gas, 
P T

μ  is the gas viscosity at temperature T ,  is the 
Boltzmann constant,  is the mean molecular mass and finally 

k
m Pσ , Tσ  and Dσ  are the so-called viscous, 

thermal and diffusion slip coefficients. 
 
 It is seen that the velocity slip is consisting of three separate velocity slips. The first is proportional to 
the velocity gradient normal to the wall and it is known as the viscous slip. The second and third parts of the 
velocity slip are proportional to the temperature and concentration gradients respectively parallel to the wall 
and are known as the thermal and diffusion slips. In all three cases the velocity slips are also proportional to 
the corresponding slip coefficient. Therefore, in the quantitative description of a flow configuration in the 
slip regime the slip coefficients are equally important to the transport coefficients.  
 
 Here, we focus our attention only on the viscous slip coefficient (VSC). In the case of single gases 
Maxwell has provided the first rough kinetic estimation of VSC, more than one hundred years ago, in the 
form [Kennard, 1938] 

 2
2P
π ασ
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= , (2) 

where  is the accommodation coefficient. Over the years this estimation has been improved by 
solving the complete kinetic problem, based on the linear Boltzmann equation or reliable kinetic model 
equations. It has been found that, depending upon the implemented kinetic model, the VSC for 

[ ]0,1α ∈

1α =  (purely 
diffuse scattering) varies in the range of [Sharipov & Seleznev, 1998] 
 ( )0.9624 1 1.019Pσ≤ ≤ , (3) 
while the dependency on the accommodation coefficient α  can be encounted by using the expression 
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ασ α σ α

α
−

= ⎡ − − ⎤⎣ ⎦ . (4) 

Overall, it has been concluded that for single gases the implemented kinetic model and intermolecular 
potential do not influence strongly the VSC, which highly depends on the type on gas-surface interaction. It 
has been recently shown that this conclusion holds also in binary gas mixtures [Sharipov & Kalempa, 2003]. 
 
 In the case of binary gas mixtures the complexity of the kinetic problem is significantly increased, since 
in the estimation of the VSC, new parameters such as the molar concentrations, as well as the molecular 
mass and diameter ratios of the two species of the mixture are also involved. Recently, the VSC of binary gas 
mixture has been estimated by using the McCormack kinetic model, which has been solved by the discrete 
velocity method [Sharipov & Kalempa, 2003] and the analytical discrete ordinates method [Siewert & 
Valougeorgis, 2004]. Based on the latter approach, in the present work we examine the dependency of the 
VSC for three different binary gas mixtures on the accommodation coefficients of the mixture and of each 
species separately. The results may be used in the proper implementation of the slip boundary conditions in 
order to extend the validity of the Navier Stokes equations into the slip regime in the case of gas mixtures. 
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2. FORMULATION OF THE VISCOUS SLIP PROBLEM 

The estimation of the VSC is achieved by solving the so-called viscous slip problem for binary gas mixtures. 
The formulation of the problem and the solution of the governing equations is similar to those of the 
corresponding problem for single gases (Kramers problem), which over the years has been tackled 
analytically and numerically implementing several kinetic model equations (e.g. BGK, S, ES) as well as the 
linearized Boltzmann equation [Ferziger & Kaper, 1972; Cercignani, 1988].  
 
 Here, the objective is to find the distribution function of the binary gas mixture, which fills the half 
space  bounded by a physical wall in the plane ' 0x > ' 0x = . The pressure, temperature and concentration of 
the gas over the whole half space are constants and equal to their equilibrium values ,  and  
respectively. The molar concentration of the light species is defined as 

0P 0T 0C
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, (5) 

where , , are the equilibrium number densities of the two species, with molecular masses  and 
 respectively. The indeces  and , always refer to the light and heavy species respectively. Also, 

the mass densities of the two species are 

0bn 1,2b = 1m

2m 1b = 2b =

1 1 0m n 1ρ =  and 2 2m n02ρ = , while the mass density of the mixture is 

1 2ρ ρ ρ= + . In addition, the mean molecular mass of the mixture is 
 ( )0 1 0 21m C m C m= + − . (6) 
The binary gas mixture is non-uniform because there is a velocity gradient along the 'x  axis in the  
component of the macroscopic velocity, which is the only non-zero component. This gradient becomes 
constant as . Then, the velocity slip at the wall becomes 
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 It is convenient to introduce the characteristic quantities 0 02RTυ = , with /R k m=  and 0 0 / P0λ μυ= , 
which correspond to the most probable molecular velocity and to the mean free path of the mixture 
molecules respectively. Next, we define the non-dimensional quantities 
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where  and  are the dimensional and non-dimensional molecular velocities of species  and pξ pc 1,2p =
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is the constant non-dimensional velocity gradient at infinity. Since condition (9) holds far from the wall it is 
reasonable to assume that 1κ << . Based on the above, the non-dimensional macroscopic velocity at the wall 
( ) and far from the wall (0x = x→∞ ) is given by the expressions  
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respectively. It is noted that (11) is valid only outside the Knudsen layer ( 0'x λ>>  or ). The flow 
configuration of the viscous slip problem is drawn in Fig.1. 

1x >>

 The velocity profile inside the Knudsen layer, [ )0,x∈ ∞ , is obtained by solving the two coupled 
linearized Boltzmann equations 
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for the unknown perturbed distribution functions ( ), , ,b b xb yb zbh h x c c c= , with 1,2b = . At the wall we use the 

Maxwell boundary conditions, viz., 
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Figure 1: The viscous slip problem 
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for  and . The first and second terms in (13) correspond to the diffusive and specular 
part of the gas-surface interaction, while 

0xbc > ,yb zbc c−∞ < < ∞

bα  denotes the accommodation coefficient of each of the two 
species. Once the kinetic problem is solved the perturbed macroscopic velocities of each species are 
computed by  
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which then are combined properly to deduce the perturbed macroscopic velocity of the mixture 
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In addition, using (11) and the fact that the overall and perturbed velocities are related by the expression 
 ( ) ( )u x u x x= + , (16) 
it is readily seen that 
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 The above analysis is general and can be applied to any binary gas mixture. The interaction of the 
mixture with the wall can be modeled separately for each gas by taking 1α α≠  or either by assuming an 
average accommodation coefficient for the mixture 1α α α2= = . It is quite interesting to note that the VSC, 
which is used to estimate the slip velocity at the wall in the hydrodynamic problem, is obtained by the 
asymptotic solution of the kinetic problem as x→∞ . This behavior, although may seems strange, it is easily 
justified by the fact that the thickness of the Knudsen layer is considered as very thin at the macroscopic 
continuum level and very thick at the mesoscopic kinetic level. 

3. THE ANALYTICAL DISCRETE ORDINATES SOLUTION 

The solution of the two-coupled kinetic equations (12) may be obtained by replacing the complicated 
collision Boltzmann operator by the one proposed by McCormack [McCormack, 1973], which satisfies all 
three collision invariants, the H-theorem and provides correct expressions for all transport coefficients. The 
reliability of the McCrmack model to provide very accurate in less computational time compared to the 
Boltzmann equation has been demonstrated in a series of works [Naris et al., 2004; 2005]. Also, by taking 
the two species of the mixture identical to each other, the linearized S model kinetic equation suitable for 
simulation of single gases is recovered [Valougeorgis, 2003].  
 
 The two recent works, which handle the VSC problem for binary gas mixtures, described by the 
McCormack model include a computational approach based on the discrete velocity (DVM) [Sharipov & 
Kalempa, 2003] and an analytical one based on the analytical discrete ordinates (ADO) [Siewert & 
Valougeorgis, 2004] methods. The latter one is an elegant semi-analytical approach, which in the case of 
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one-dimensional slab, axisymmetric as well as half space kinetic problems provides, in a very 
computationally efficient manner, results of benchmark quality. The ADO method has common 
characteristics to the method of elementary solutions [Chandrasekhar, 1950]. In general, the solution is 
expressed in terms of homogeneous and particular parts. The resulting homogeneous equation identifies an 
eigenvalue problem, which leads to a solution representation as a summation of elementary solutions. Once 
the eigenvalue problem is solved we have the separation constants and the elementary solutions. Finally, the 
coefficients of the expansion approximating the homogeneous solution are determined from the boundary 
conditions by solving a linear algebraic system. 
 
 In both approaches the continuum spectrum of molecular velocitites is substituted by a properly chosen 
set of discrete velocities. The big advantage of the ADO method compared to the typical DVM (or any other 
numerical scheme) of solving linear kinetic type integro-differential equations is the fact that the solution in 
the spatial variable is treated continuously without any discretization. Therefore, in the ADO method the 
discretization is limited only to the molecular velocity space. The mathematical manipulation is quite 
complicated at least for the non-familiar user but the outcome is rewarding. A detailed overview of the 
method is out of the scope of the present work and the interested reader may consider several recent papers 
on this topic [Siewert & Valougeorgis, 2001; Valougeorgis, 2003; Siewert & Valougeorgis, 2004]. Upon 
proper implementation, the ADO method solves the half space viscous slip problem, consisting of equations 
(12), supplemented by the McCormack model and the boundary conditions (13) and (11), for one set of 
parameters, in less than 1 second on a Pentium PC. The results including the velocity profile and the VSC are 
accurate within 5 to 6 significant figures.  

4. RESULTS AND DISCUSSION 

The calculations have been carried out for the noble binary gas mixtures of Neon-Argon, Helium-Argon and 
Helium-Xenium. Since we are reporting the VSC only for the case of rigid spheres the McCormack model 
requires, only the molecular mass ( ) and diameter ( ) ratios of the species of the mixture, which 
are given in Table 1 [Kestin et al., 1984]. Thus, in an effort to define the VSC of binary gas mixtures of a 
wide range of molecular mass ratios, our study includes three mixtures with species having small (Ne-Ar), 
moderate (He-Ar) and large (He-Xe) molecular mass ratios. 

2 /m m1

2 1/m m 2 1/d d

2 1/d d

 
 

Mixture
Ne-Ar 1.979 1.406 
He-Ar 9.981 1.665 
He-Xe 32.80 2.226 

 
Table 1:  Molecular mass and diameter ratios of Ne-Ar, He-Ar and He-Xe. 

 
 
 As it has been pointed out earlier the VSC of single gases and binary gas mixtures is actually insensitive 
to the implemented kinetic equation and intermolecular potential. Therefore, we are using the McCormack 
model rather than with the Boltzmann equation and the rigid sphere model rather than a more advanced 
intermolecular potential. From the other hand, the required effort in the formulation and the solution of the 
problem is significantly reduced, while the results are in very good agreement with previous results obtained 
by the moment method applied to the Boltzmann equation [Ivchenko, 1997; 2002]. It is pointed out however, 
that the methodology may be applied in a straightforward manner for any intermolecular potential including 
the Leonard – Jones potential. 
 
 The accommodation coefficient α , which indicates the percentage of diffuse-specular interaction 
between the gas and the surface, depends on the chemical composition of the gas and the mechanical 
properties of the surface. Thus, in binary gas mixtures the interaction of each gas of the mixture with the 
surface is different and should be modeled by its own accommodation coefficient , [ ]0,1b ∈α 1,2b = . 
However, in order to reduce the number of parameters involved and to deduce some coclusions of the VSC 
in terms of the diffuse – specular behavior of the mixture in Tables 2, 3 and 4 we present results of the VSC 
by assuming 1 2α α α= = , which may be considered as an overall accommodation coefficient of the mixture. 
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Then, in Tables 5, 6 and 7, we provide more detailed results for 1α α2≠ . It is notes that extensive results 
predicting in detail the dependency of the VSC of gas mixtures on the molar concentration and the 
accommodation coeffient are presented as far as we are aware of for first time in the literature. 
 So, in Tables 2, 3 and 4 we tabulate the estimated values of the VSC of Neon-Argon, Helium-Argon and 
Helium-Xenium mixtures respectively in terms of the molar concentration of the light species of the mixture 
and the gas-surface accommodation coefficient. The concentration  is defined in (5) and varies from zero 
to one. As mentioned before, the index 1 denotes always the light species of the mixture. Based on the above 
and after a thorough study of the results in Tables 2, 3 and 4, the following remarks for the VSC can be 
deduced: 

0C

i. In all cases, when  or  (first and last line in each table), the results are reduced to the 
results for a single gas obtained by the S model for the corresponding value of the accommodation 
coefficient 

0 0C = 0 1C =

α . 
ii. When the molecular mass ratio of the mixture is increased, then for the same  and 0C α  the value of 

the VSC is also increased. For example, for 0 0.5C =  and 0.9α =  the values of the VSC for the Ne-
Ar, He-Ar and He-Xe are 1.25, 1.39 and 1.51 respectively. 

iii. When the molecular mass ratio is large even a small concentration of the heavy species is adequate to 
increase the value of the VSC significantly. For example, in the He-Xe mixture with  (He: 
95%, Xe: 5%) the VSC is increased about 30%. 

0 0.95C =

iv. For each  and for all three mixtures the values of the VSC are increased monotonically as the values 
of the accommodation coefficient 

0C
α  are decreased. Even more, the VSC, for [ ]1,0.5α ∈  is increased 

linearly (about 20% each time that α  is increased by an increment of 0.1) and then exponentially for 
. [ ]0.4,0.1α ∈

v. The dependency of the VSC on the accommodation coefficient α  is similar for all three mixtures 
independent of the molecular mass ratio. 

vi. The dependency of the VSC on  is significant only when the molecular mass ratio is large. In 
particular it is less that 5% in Ne-Ar, about 20% in He-Ar and more than 40% in He-Xe. In all cases 
the dependency is taken with respect to the corresponding values of a single gas. 

0C

vii. The maximum values of the VSC for all the values of α  occur in the Ne-Ar,  He-Ar and He-Xe 
mixtures at about 0 0.6C = ,  and 0 0.8C = 0 0.8C =  respectively. 

 
 

 
α  

0C  
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.0 1.01837 1.22990 1.49094 1.82262 2.26010 2.86670 3.76905 5.26255 8.23345 17.1129
0.01 1.01901 1.23065 1.49182 1.82366 2.26135 2.86823 3.77097 5.26511 8.23727 17.1204
0.1 1.02446 1.23704 1.49934 1.83256 2.27200 2.88124 3.78740 5.28708 8.27003 17.1851
0.2 1.02980 1.24332 1.50673 1.84130 2.28249 2.89406 3.80360 5.30874 8.30237 17.2489
0.3 1.03424 1.24854 1.51288 1.84860 2.29124 2.90478 3.81715 5.32689 8.32950 17.3026
0.4 1.03759 1.25249 1.51754 1.85413 2.29789 2.91293 3.82749 5.34075 8.35026 17.3437
0.5 1.03963 1.25489 1.52039 1.85752 2.30198 2.91796 3.83389 5.34937 8.36322 17.3695
0.6 1.04008 1.25544 1.52104 1.85832 2.30297 2.91921 3.83551 5.35161 8.36666 17.3765
0.7 1.03862 1.25373 1.51906 1.85599 2.30019 2.91585 3.83130 5.34604 8.35844 17.3604
0.8 1.03486 1.24932 1.51386 1.84985 2.29284 2.90686 3.81997 5.33090 8.33588 17.3160
0.9 1.02831 1.24161 1.50478 1.83906 2.27989 2.89101 3.79989 5.30400 8.29563 17.2363
0.95 1.02380 1.23630 1.49851 1.83162 2.27094 2.88003 3.78596 5.28529 8.26759 17.1807
0.99 1.01954 1.23127 1.49257 1.82455 2.26243 2.86957 3.77268 5.26744 8.24080 17.1275
1.0 1.01837 1.22990 1.49094 1.82262 2.26010 2.86670 3.76905 5.26255 8.23345 17.1129

 
Table 2:  VSC of Ne-Ar vs. molar concentration of light species and accommodation coefficient. 
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α  

0C  
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.0 1.01837 1.22990 1.49094 1.82262 2.26010 2.86670 3.76905 5.26255 8.23345 17.1129
0.01 1.02086 1.23289 1.49455 1.82700 2.26551 2.87354 3.77800 5.27499 8.25284 17.1531
0.1 1.04375 1.26039 1.52773 1.86738 2.31536 2.93649 3.86043 5.38965 8.43161 17.5235
0.2 1.07010 1.29208 1.56599 1.91396 2.37289 3.00920 3.95569 5.52224 8.63846 17.9524
0.3 1.09715 1.32464 1.60531 1.96187 2.43212 3.08411 4.05391 5.65906 8.85209 18.3956
0.4 1.12434 1.35738 1.64491 2.01017 2.49188 3.15975 4.15320 5.79749 9.06842 18.8450
0.5 1.15059 1.38904 1.68324 2.05696 2.54985 3.23323 4.24976 5.93229 9.27937 19.2837
0.6 1.17386 1.41714 1.71731 2.09864 2.60156 3.29888 4.33619 6.05315 9.46882 19.6783
0.7 1.19002 1.43673 1.74114 2.12788 2.63797 3.34526 4.39744 6.13909 9.60395 19.9607
0.8 1.19034 1.43725 1.74193 2.12904 2.63965 3.34771 4.40107 6.14472 9.61366 19.9827
0.9 1.15387 1.39337 1.68895 2.06452 2.55992 3.24691 4.26893 5.96071 9.32640 19.3867
0.95 1.10620 1.33590 1.61938 1.97957 2.45469 3.11352 4.09364 5.71599 8.94345 18.5903
0.99 1.04056 1.25668 1.52340 1.86229 2.30930 2.92912 3.85114 5.37724 8.41305 17.4866
1.0 1.01837 1.22990 1.49094 1.82262 2.26010 2.86670 3.76905 5.26255 8.23345 17.1129

 
Table 3:  VSC of He-Ar vs molar concentration of light species and accommodation coefficient.  

 
 
 

 
α  

0C  
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.0 1.01837 1.22990 1.49094 1.82262 2.26010 2.86670 3.76905 5.26255 8.23345 17.1129
0.01 1.02204 1.23431 1.49626 1.82909 2.26809 2.87678 3.78222 5.28085 8.26193 17.1718
0.1 1.05671 1.27597 1.54651 1.89021 2.34350 2.97195 3.90671 5.45378 8.53110 17.7284
0.2 1.09891 1.32671 1.60774 1.96471 2.43545 3.08804 4.05864 5.66491 8.85989 18.4086
0.3 1.14546 1.38270 1.67535 2.04702 2.53711 3.21645 4.22678 5.89874 9.22426 19.1629
0.4 1.19678 1.44447 1.74998 2.13796 2.64950 3.35855 4.41302 6.15796 9.62858 20.0008
0.5 1.25300 1.51222 1.83191 2.23790 2.77315 3.51507 4.61838 6.44417 10.0756 20.9284
0.6 1.31339 1.58507 1.92016 2.34569 2.90674 3.68442 4.84097 6.75491 10.5618 21.9393
0.7 1.37452 1.65898 2.00987 2.45551 3.04314 3.85776 5.06935 7.07453 11.0632 22.9845
0.8 1.42417 1.71924 2.08329 2.54577 3.15571 4.00140 5.25942 7.34173 11.4842 23.8663
0.9 1.41346 1.70678 2.06878 2.52876 3.13556 3.97705 5.22903 7.30161 11.4251 23.7513
0.95 1.32439 1.59941 1.93884 2.37016 2.93916 3.72825 4.90225 6.84570 10.7122 22.2700
0.99 1.11603 1.34783 1.63390 1.99739 2.47686 3.14172 4.13076 5.76783 9.02446 18.7582
1.0 1.01837 1.22990 1.49094 1.82262 2.26010 2.86670 3.76905 5.26255 8.23345 17.1129

 
Table 4:  VSC of He-Xe vs.  molar concentration of light species and accommodation coefficient. 

 
 
 
 Following our reporting on the values of the VSC of the specific three binary gas mixtures we provide 
results in Tables 5, 6 and 7, by takining different accommodation coefficients for each of the two species of 
the mixtures. However, the number of parameters is increased and reporting the VSC for all possible 
combinations is not possible. Since the maximum values of the VSC for all the values of α  compared to the 
corresponding single gas cases is happening at about , 00 6 0 95. C .≤ ≤  we choose to provide results only for 

. In addition, it is expected that light gases experience a more type specular reflection compared to 
heavy gases. Thus, the accommodation coefficients of the light gases will take smaller values than the 
accommodation coeffients of heavy gases (

0 0 8C .=

1a a2≤ ). Based on the above physical arguments in Tables 5, 6 
and 7 we tabulate the corresponding VSC results for 0 0 8C .= , 20 1α≤ ≤  and 2 1 1a α≤ ≤ .  
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        αNe 
αAr  

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

1 1.03486 1.19926 1.39142 1.61958 1.89561 2.23725 2.67233 3.24705 4.04415 5.22799 
0.9  1.24932 1.45041 1.69030 1.98217 2.34599 2.83147 3.43825 4.31880 5.65760 
0.8   1.51386 1.76679 2.07644 2.46540 2.97013 3.65353 4.63434 6.16655 
0.7    1.84985 2.17955 2.59721 3.14510 3.89787 5.00081 6.77930 
0.6     2.29284 2.74349 3.34188 4.17770 5.43180 7.53156 
0.5      2.90686 3.56492 4.50148 5.94621 8.47746 
0.4       3.81997 4.88064 6.57115 9.70339 
0.3        5.33090 7.34687 11.3561 
0.2         8.33588 13.7063 
0.1          17.3160 
 
Table 5:  VSC of  Ne-Ar with  0 0 8C .=
 
 

        αHe 
αAr  

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

1 1.19034 1.33126 1.49004 1.67061 1.87816 2.11966 2.40473 2.74701 3.16658 3.69411 
0.9  1.43725 1.60915 1.80578 2.03329 2.30006 2.61784 3.00361 3.48283 4.09557 
0.8   1.68895 1.95746 2.20870 2.50589 2.86361 3.30339 3.85835 4.58225 
0.7    2.06452 2.40885 2.74318 3.15048 3.65867 4.31202 5.18518 
0.6     2.55992 3.02006 3.49008 4.08692 4.87172 5.95256 
0.5      3.34771 3.89888 4.61378 5.58037 6.96349 
0.4       4.40107 5.27858 6.50769 8.35754 
0.3        6.14472 7.77498 10.4061 
0.2         9.61366 13.7164 
0.1          19.9827 
 
Table 6:  VSC of He-Ar with  0 0 8C .=
 
 

        αHe 
αXe  

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

1 1.42417 1.55301 1.69400 1.84913 2.02083 2.21215 2.42695 2.67014 2.94818 3.26958 
0.9  1.71924 1.87540 2.04815 2.24054 2.45637 2.70055 2.97943 3.30144 3.67800 
0.8   2.08329 2.27768 2.49568 2.74221 3.02361 3.34834 3.72778 4.17772 
0.7    2.54577 2.79611 3.08187 3.41158 3.79677 4.25343 4.80435 
0.6     3.15571 3.49290 3.88704 4.35455 4.91889 5.61476 
0.5      4.00140 4.48451 5.06861 5.79021 6.70587 
0.4       5.25942 6.01727 6.98286 8.25734 
0.3        7.34173 8.71857 10.6438 
0.2         11.4842 14.7980 
0.1          23.8663 
 
Table 7:  VSC of He-Xe with  0 0 8C .=
 
 Again, it is seen that if the accommodation of one species is kept constant and the accommodation of the 
other species is reduced the values of the VSC are increased. Overall, it may be argued that the previous 
remarks as well as the results presented in Tables 2-7 are indicative for the VSC of other binary mixtures 
having equivalent characteristics and properties.  
 
 Closing our discussion we point out again that the correct estimate of the VSC in gas mixtures is more 
important for the proper implementation of the slip boundary conditions than in the case of single gases. It is 
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also noted that since the effect of the curvature of the boundary is of second order, the VSC results presented 
here can be applied to first order slip boundary conditions in planar and curved boundaries. 

5.  CONCLUSIONS 

Based on a recent work [Siewert & Valougeorgis, 2004] the values of the viscous slip coefficient 
(VSC) for three binary gas mixtures have been reported in tabulated form. The dependency of the 
VSC on the molecular mass ratio of the two species of the mixture, the molar concentration of the 
light species and the accommodation coefficients between the gases and the surface has been 
investigated in detail. It is hoped that the provided tables of results will facilitate the proper 
implementation of the Navier Stokes equations in the slip regime in the case of binary gas mixtures.  
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