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A mesoscale kinetic-type approach is proposed to solve shear driven micro flows of binary gas mix-
tures in MEMS. The coupled linear integro-differential equations, which formally describe the flow,
are solved using the discrete velocity method. The complicated collision integral term is approxi-
mated by the McCormack model. The proposed approach is applied in one and two dimensions,
solving the Couette and the driven cavity problems respectively, for two binary gas mixtures (Ne–Ar
and He–Xe). Numerical results are presented for a wide range of the rarefaction and for various
molar concentrations. It is demonstrated that the formulation is very efficient and can be imple-
mented as an alternative to classical approaches, such as Navier Stokes solvers with slip boundary
conditions.
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1. INTRODUCTION

Fluid mechanics and transport phenomena at microscale
level are very important in the detailed design of micro-
electromechanical devices and equipment.1�2 In most cases
these problems have been studied by implementing the
continuum conservation equations, supplemented by the
appropriate slip boundary conditions.

It is argued however, that for various reasons related to
the physics as well as to the numerics involved, an alter-
native promising approach is to treat the problem at the
mesoscopic level via a kinetic type scheme.3–5 For exam-
ple, it is evident that a solution at the macroscopic level
is valid only for moderate gas rarefaction. Also, the accu-
rate estimation of the slip coeffients, which are required
for the efficient implementation of the slip boundary con-
ditions depend on the solution of the Boltzmann equa-
tion. In addition, in many occasions, simulation of gas
micro flows in MEMS components require a coupling of
a DSMC code with a Navier Stokes solver. This is a com-
plicated task, which can be avoided when a mesoscale
approach is followed. Finally recent developments in com-
putational kinetic theory facilitates the efficient solution
of even multi-dimensional flow configurations based on
kinetic equations.6

Gaseous flows of a single gas in the whole range of
rarefaction, has been extensively studied over the years
and a number of interesting phenomena, which vanish at
the continuum limit, have been revealed.7 In spite of the
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great practical importance, the corresponding gaseous mix-
ture rarefied flows have received much less attention.8 The
main problem is that the computational effort is signifi-
cantly increased when we move from a single gas to a
gas mixture. Moreover, in mixtures new phenomena arise
due to the concentration gradient. Recently, the case of
a binary gas mixture flow in half space and in slab and
axisymmetric geometry has been examined, based on the
McCormack model,9 in a more detailed and systematic
manner.10–13 In addition, the flow of gaseous mixtures in
a 2-D rectangular duct due to a pressure gradient in the
longitudinal direction has been solved.14�15

Here, this latter work with the McCormack model is
modified accordingly to study shear driven flows of binary
gas mixtures. The proposed methodology is demostrated
by solving in one and two dimensions, the Couette and
driven cavity problems respectively. Existing work for
these two prototype problems is very limited. The binary
Couette flow problem has been solved in Refs. [16–18],
by using the Hamel model19 and very recently by applying
the McCormack model.20 The micro cavity problem has
been studied only for a single gas,2�21�22 while for a binary
gas mixture, as far as the authors are aware of, there are
no available results in the literature.

2. FORMULATION

The molar concentration of each species in the mixture is

C� =
n0�

n01 +n02

� �= 1�2 (1)

Sensor Lett. 2006, Vol. 4, No. 1 1546-198X/2006/4/001/007 doi:10.1166/sl.2006.004 1



R
E

S
E

A
R

C
H

A
R

T
IC

L
E

Shear Driven Micro-Flows of Gaseous Mixtures Naris and Valougeorgis

where n0���= 1�2� is a reference number density of
species � and C1 +C2 = 1. Here, we choose to denote
C1 =C and consequently C2 = 1−C. The mean molecular
mass of the mixture is defined as

m= Cm1 + �1−C�m2 (2)

where m� is the molecular mass of species �. The rarefac-
tion parameter is given by

�= HP0

�

(
m

2kT0

)1/2

(3)

where H is the characteristic length of the problem, P0 is
a reference pressure, � is the viscosity of the mixture at
temperature T0 and k is the Boltzmann constant. Consider-
ing that the viscosity is proportional to the molecular mean
free path �, one can see that the rarefaction parameter �
is proportional to the inverse Knudsen number defined as
Kn= �/H .

The linearized form of the model equations, proposed
by McCormack9 to describe the stationary state of a binary
gas mixture is

c� ·��� =
2∑
�=1

L���� �= 1� 2 (4)

where ���r� c�� are the unknown perturbation functions,
r = �x� y� z� and c� = �cx� cy� cz� are the dimensionless
position vector and molecular velocity respectively, while
the linearized collision operator is given by

L���c�� = −�����+�����

+2

{
���u�i−

[
u�i−

(
m�
m�

)1/2

u�i

]
�
�1�
��

−
[
q�i−

(
m�
m�

)3/2

q�i

]
�
�2�
��

}
c�i

+
[
���T�−2

m��

m�
�T�−T����1���

](
c2
�−

3
2

)

+2�����−��3���� �ij+��4��� �ij "c�ic�j

+ 8
5

{
����−��5����q�i+��6���q�i

−5
8

[
u�i−

(
m�
m�

)1/2

u�i

]
�
�2�
��

}
c�i

(
c2
�−

5
2

)

(5)

Closed form expressions for the collision frequencies ���
and the parameters ��� in Eq. (5), are given in Refs.
[9, 10]. The quantities ��, u�i, q�i, T�, and  �ij are the
dimensionless departures of density, hydrodynamic veloc-
ity, heat flux, temperature and stresses of the species �
from their corresponding reference values. Finally the sub-
scripts i� j = x� y� z denote repeated tensor indices.

For the particular problems under consideration, �� is a
function only of two spatial variables, say x and y, while
the temperature perturbation is assumed equal to zero.
In addition, the z-component of the molecular velocity,
can be eliminated by introducing the reduced distribution
functions

h��x� y� c�x� c�y�=
1√
$

∫ �

−�
��e

−c2
�z dc�z (6)

and

'��x� y� c�x� c�y�=
1√
$

∫ �

−�
��

(
c2
�z−

1
2

)
e−c

2
�z dc�z

(7)

Then operating accordingly on Eq. (5) the following two
kinetic equations are obtained:

c�x
(h�
(x

+ c�y
(h�
(y

+d���h�

=
√
m�
m
d�

{
����+2

[
��u�i− �u�i−u�i���1���

−
(
q�i−

m�
m�
q�i

)
�
�2�
��

]
c�i+

[
���−��3���

+��4��� −��3���� �ii+��4���
√
m�

m�
 �ii

]
c2
�i

+
[
���−��3��� +��4��� −��3���� �zz

+��4���
√
m�

m�
 �zz

]
+4

[
���−��3��� +��4���

−��3���� �xy+��4���
√
m�

m�
 �xy

]
c�xc�y

+8
5

[
���−��5��� +��6��� −��5����q�i

+��6���
√
m�

m�
q�i−

5
8
�u�i−u�i���2���

]

× c�i�c2
�x+ c2

�y−2�
}

(8)

and

c�x
('�
(x

+ c�y
('�
(y

+d���'�

= d�
√
m�
m

{
���−��3��� +��4��� −��3���� �zz

+��4���
√
m�

m�
 �zz+

8
10

[
���−��5��� +��6���

−��5����q�i+��6���
√
m�

m�
q�i

−5
8
�u�i−u�i���2���

]
c�i

}
(9)
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In Eqs. (8, 9), �, � = 1, 2 with � 	= �, �� = ���+���,
i = x� y,

d� = �
(
C

��
+ 1−C

��

)√
m�
m

(10)

and the macroscopic quantities are given by moments of
the reduced distribution functions according to

�� =
1
$

√
m

m�

∫ �

−�

∫ �

−�
h�e

−c2
�x−c2

�ydc�xdc�y (11)

u�i =
1
$

√
m

m�

∫ �

−�

∫ �

−�
c�ih�e

−c2
�x−c2

�ydc�xdc�y (12)

q�i =
1
$

√
m

m�

1
2

∫ �

−�

∫ �

−�
c�i��c

2
�x+ c2

�y−2�h�+'�"

× e−c2
�x−c2

�ydc�xdc�y (13)

 �ii=
1
$

√
m

m�

∫ �

−�

∫ �

−�
1
3

[(
2c2
�i−c2

�j−
1
2

)
h�−'�

]

×e−c2
�x−c2

�ydc�xdc�y� i=x�y� j=x�y� i 	= j
(14a)

 �zz=
1
$

√
m

m�

∫ �

−�

∫ �

−�
1
3
�−�c2

�x+c2
�y−1�h�+2'�"

e−c
2
�x−c2

�ydc�xdc�y (14b)

and

 �xy =
1
$

√
m

m�

∫ �

−�

∫ �

−�
c�xc�yh�e

−c2
�x−c2

�ydc�xdc�y

(15)

In the present work both the Couette and the cavity
flow problems are solved using Eqs. (8, 9) coupled with
Eqs. (11–15) and the corresponding boundary conditions.
For the Couette flow problem, since the flow is consid-
ered fully developed and one-dimensional, periodic bound-
ary conditions are implemented in the x-direction, which
is taken parallel to the plates. In the transverse direc-
tion Maxwell diffuse boundary conditions are considered,
resulting to

h�

(
x�

−1
2
�c�x�c�y

)
=
√
m�
m
��

(
x�

−1
2

)
−c�x c�y >0

(16a)

h�

(
x�

1
2
�c�x�c�y

)
=
√
m�
m
��

(
x�

1
2

)
+c�x c�y <0

(16b)

and

'�

(
x�

−1
2
�c�x�c�y

)
='�

(
x�

1
2
�c�x�c�y

)
=0

(16c)

In the square cavity flow problem, the reduced distribu-
tions functions at the stationary and moving walls are:

h��x�0� c�x� c�y�=
√
m�
m
���x�0��

'��x�0� c�x� c�y�= 0 c�y > 0 (17a)

h��0� y� c�x� c�y�=
√
m�
m
���0� y��

'��0� y� c�x� c�y�= 0 c�x > 0 (17b)

h��1� y� c�x� c�y�=
√
m�
m
���H�y��

'��1� y� c�x� c�y�= 0 c�x < 0 (17c)

h��x�1� c�x� c�y�=
√
m�
m
���x�H�+2c�x�

'��x�1� c�x� c�y�= 0 c�y > 0 (17d)

In the present work, the macroscopic quantities under
investigation include the mean velocity and the stress ten-
sor of the mixture given by

u�x� y�= Cu1�x� y�+ �1−C�u2�x� y� (18)

and

 �x� y�= C
√
m1

m
 1xy�x� y�+ �1−C�

√
m2

m
 2xy�x� y�

(19)
respectively.

3. NUMERICAL SCHEME

Equations (8, 9) are discretized first in the velocity space
�c�x� c�y� and then in the physical space �x� y�. A Gauss
integration scheme of order N is chosen to define the set
of discrete velocities for each component of the particle
velocity yielding a total number of N 2 discrete veloci-
ties. The discretization in the physical space is performed
using the so-called diamond-difference scheme, which is a
second order scheme.23 The overall quantities at the right
hand side of Eqs. (8, 9), are estimated from Eqs. (11–15),
using Gauss quadrature. The iterative solution of the dis-
cretized version of Eqs. (8, 9) is known as the discrete
velocity method (DVM) and it is consisting of the follow-
ing steps: (i) Assume ��, u�i, q�i,  �xx,  �yy ,  �zz, and
 �xy and compute h� and '� from Eqs. (8, 9), (ii) Estimate
the new values of ��, u�i, q�i,  �xx,  �yy ,  �zz, and  �xy
from Eqs. (11–15), and (iii) Go back to step (i) and use the
updated values of ��, u�i, q�i,  �xx,  �yy ,  �zz, and  �xy
to compute the updated h� and '�. The iterative procedure
is ended when the imposed convergence criterion on the
overall quantities is satisfied.

4. RESULTS AND DISCUSSION

The calculations have been carried out over a wide range
of the rarefied parameter �. The gas mixtures of Ne–Ar
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Fig. 1. Velocity profiles of the Couette flow, for Ne–Ar �C = 0,5� and
various values of �.

and He–Xe have been examined with molar concentrations
C = 0,1, 0.5, and 0.9. The molecular masses are mNe =
20,1797, mAr = 39,948, mHe = 4,0026, mXe = 131,29 in
atomic units. Thus the study includes one mixture with
particles of about equal masses and another one with par-
ticles of very different masses. The parameters ��� have
been calculated using the expressions given in Ref. [24] at
temperature T = 300 K, which have been obtained based
on experimental data for the transport coefficients.

The presented non-dimensional results are based on a
64-point Gauss quadrature scheme to simulate the velocity
space. The relative convergence criterion of the iteration
scheme is 10−6.

First the results of the Couette flow problem are pre-
sented. In Figures 1 and 2, the mean velocity profiles are
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Continuum
limitδ = 10
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δ = 0.1

u

y

Fig. 2. Velocity profiles of the Couette flow, for He–Xe �C = 0,5� and
various values of �.

10–2 10–1 100 101 102
0

0.1

0.2

0.3

0.4

0.5

u

δ

Ne-Ar

He-Xe

Fig. 3. Mixture velocities at the upper wall of the Couette flow, for
Ne–Ar and He–Xe �C = 0,5�, in terms of �.

shown for the Ne–Ar and the He–Xe mixtures respectively,
for C = 0,5 and �= 0,1, 1, and 10. It is seen that for the
same �, the absolute velocities of the Ne–Ar mixture are
higher than those of the He–Xe mixture. In Figure 3, the
wall velocities in terms of the rarefaction parameter � are
plotted for both mixtures with C = 0,5. It is seen that for
all values of �, the velocity slip at the wall is larger for
the He–Xe mixture. The dependence of the results on the
molar concentration C is shown in Figure 4 where the wall
velocities for the He–Xe mixture are plotted for C = 0,1
and 0.9. It is seen that the maximum difference between
the wall velocities for the two different concentrations is
about 10%. It is also noted that the corresponding results
for the Ne–Ar mixture are much closer. It is concluded that
for the Couette flow problem the dependence of the results

10–2 10–1 100 101 102
0

0.1

0.2

0.3

0.4

0.5

C=0.1

C=0.9

u

δ

Fig. 4. Mixture velocities at the upper wall of the Couette flow, for
He–Xe (C = 0,1 and 0.9), in terms of �.
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Fig. 5. Streamlines of the cavity flow for Ne–Ar �C = 0,5� and various
values of �.
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Fig. 6. Streamlines of the cavity flow for He–Xe �C = 0,5� and various
values of �.
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Fig. 7. Velocity profiles at the two cross sections through the center of
the vortex for Ne–Ar �C = 0,5� and various values of �.

on the molar concentration C is important only for mix-
tures with particles of different molecular masses. Finally,
it is pointed out that the stress in the Couette flow prob-
lem depends only on C and �, and it is independent of the
transverse direction y. The fact that the stress is constant
across the channel is used successfully, as a benchmark,
to test the accuracy of the results.

Next, some preliminary results for the square cavity flow
problem with C = 0,5 are presented. In Figures 5 and 6,
the streamlines of the Ne–Ar and the He–Xe mixtures are
plotted for �= 0,1, 1, and 10. Although the corresponding
flow patterns of the two mixtures are similar, there are dif-
ferences regarding the location of the vortex center and the
corresponding mass flux between the center of the vortex
and the moving plate. Velocity components along the ver-
tical and horizontal cross sections passing from the center
of the vortex are shown in Figures 7 and 8 for �= 0,1, 1,
and 10.
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δ = 1

Fig. 8. Velocity profiles at the two cross sections through the center of
the vortex for He–Xe �C = 0,5� and various values of �.

5. CONCLUSIONS

A kinetic-type approach has been applied to solve two typ-
ical shear driven micro flows of binary gas mixtures. The
solution is complete in the sence that it is accurate for
the whole range of rarefaction. Numerical results are pre-
sented for two binary mixtures of noble gases for various
molar concentrations. It is concluded that gas mixtures can
be substituted by a single gas having the mean molecular
mass of the mixture, only when the molecular ratio of the
species is small. It is demonstrated that the formulation is
very efficient and can be implemented as an alternative to
classical approaches, such as Navier Stokes solvers with
slip boundary conditions.
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