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Abstract

The need of developing advanced micro-electro-mechanical systems (MEMS) has motivated the
study of fluid-thermal flows in devices with micro-scale geometries. In many MEMS applications the
Knudsen number varies in the range from 10−2 to 102. This flow regime can be treated neither as a
continuum nor as a free molecular flow. In order to describe these flows it is necessary to implement
the Boltzmann equation (BE) or simplified kinetic model equations.

The aim of the present work is to propose an efficient methodology for solving internal flows
of binary gaseous mixtures in rectangular channels due to small pressure gradients over the whole
range of the Knudsen number. The complicated collision integral term of the BE is substituted by
the kinetic model proposed by McCormack for gaseous mixtures. The discrete velocity method is
implemented to solve in an iterative manner the system of the kinetic equations. Even more the
required computational effort is significantly reduced, by accelerating the convergence rate of the
iteration scheme. This is achieved by formulating a set of moment equations, which are solved jointly
with the transport equations.

The velocity profiles and the flow rates of three different binary mixtures (He–Ar, Ne–Ar and
He–Xe) in 2D micro-channels of various height to width ratios are calculated. The whole formulation
becomes very efficient and can be implemented as an alternative methodology to the classical method
of solving the Navier–Stokes equations with slip boundary conditions, which in any case is restricted
by the hydrodynamic regime.
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1. Introduction

The development of technologies in micro-electro-mechanical systems (MEMS) has
motivated the study of fluid flows in devices with micro or meso-scale geometries [1].
In MEMS the Knudsen number, which is defined as the ratio of the mean free pathλ

of the fluid molecules to a typical geometric dimensionH of the device(K n = λ/H ),
varies in the range from 10−2 to 102. In this range known as the transition regime, the
continuum hypothesis, which is the basic one for the Navier–Stokes equations breaks down
and the implementation of the Boltzmann equation (BE) or simplified kinetic equations is
required [2]. In general, these equations are more difficult to solve than the hydrodynamic
equations. For that reason in many occasions the continuum equations are applied even in
the transition regime coupled with appropriate slip boundary conditions [3]. It is evident
however, that approaches based on kinetic theory are more suitable to handle this type
of problem, since the whole range of gas rarefaction can be studied in a unique manner.
Nowadays, it is possible to solve directly the model kinetic equation and the BE itself due
to the availability of parallel high speed computers and due to the significant advancement
of numerical methods in kinetic theory made during the last years. A number of complex
problems concerning multi-dimensional flows of rarefied gases have been solved in an
accurate and computationally efficient manner [4, 5]. This outcome explains the renewed
interest in kinetic approaches and makes researchers optimistic for solving continuum
problems based on kinetic type (mesoscopic) approaches [6].

The aim of the present work is to provide an efficient methodology for solving internal
flows of binary gaseous mixtures through rectangular channels, over the whole range of
the Knudsen number. The corresponding single gas problem has been extensively studied
over the last forty years in 1D [2, 7] and recently in 2D [8, 9]. In spite of the great practical
importance of the internal flows of gaseous mixtures there are very few articles in the
literature concerning this topic. Practically all of them deal with plane and axi-symmetric
geometric configurations [10–16].

In the present work we consider a flow of binary gaseous mixture through 2D channels
caused by a small longitudinal pressure gradient. The McCormack kinetic model [17] is
applied to substitute the complicated collision integral of the BE. This model satisfies the
conservation laws, the H-theorem and provides the correct expressions of all transport
coefficients. The discrete velocity method (DVM) [7] is applied to solve the coupled
kinetic equations in an iterative manner. The DVM is simple, easy to implement and
highly parallelized. However, at the continuum limit, which is of practical interest in
MEMS, its convergence rate becomes very slow. An optimization of the DVM, based
on the idea of using the continuum solution in numerical calculations of rarefied gas
flows has been proposed in [18] and as a result the required number of spatial grid
points has been reduced significantly. The required number of the iterations however,
remains high. The methodology used in the present work allows us to reduce significantly
the number of the iterations introducing a set of diffusion synthetic equations by taking
moments of the kinetic equations [19]. Then the kinetic equations and their moments
are solved jointly and the convergence rate of the scheme improves dramatically [9]. As
a result the proposed kinetic type approach becomes more attractive and promising for
multidimensional problems with complex boundaries. Numerical results for the flow rates
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and the velocity profiles are provided for the binary mixtures of He–Ar, Ne–Ar and He–Xe
in rectangular channels with various height to width (aspect) ratios, for the whole range of
gas rarefaction. Finally, the efficiency of the new accelerated scheme is compared with the
typical DVM by estimating the required computational time of the two schemes imposing
the same convergence criteria.

2. Statement of the problem and input equations

Consider a flow of a binary gaseous mixture through a long micro-channel of a constant
rectangular cross section. The transverse directions are along thex′ and y′ axis, with
− W

2 ≤ x′ ≤ W
2 and− H

2 ≤ y′ ≤ H
2 , while the ratio of the heightH to the widthW

is the aspect ratio. Without loss of generality the height is taken less than or equal to the
width of the channel(H ≤ W). The flow in the longitudinal directionz is caused by a
small pressure gradient

υ = H

P

∂ P

∂z′ |υ| � 1 (1)

where P is the pressure of the mixture in a given cross section. The end effects are
neglected by assuming the channel lengthL to be much longer than its widthW. Thus,
the flow may be considered as fully developed and we solve only for the longitudinal
component of the hydrodynamic (bulk) velocity vector.

The molar concentration of each species in the mixture is

Cα = nα

n1 + n2
, α = 1, 2 (2)

wherenα is the equilibrium number density of speciesα andC1+C2 = 1. Here, we choose
to denoteC1 = C and consequentlyC2 = 1 − C. Then the mean molecular mass of the
mixture is defined as

m = Cm1 + (1 − C)m2 (3)

wheremα is the molecular mass of speciesα. The rarefaction parameter is given by

δ = H P

µ

( m

2kT

)1/2
(4)

whereµ is the viscosity of the mixture,T is its temperature andk is the Boltzmann
constant. Considering that the viscosity is proportional to the molecular mean free pathλ,
one can see that the rarefaction parameterδ is proportional to the inverse Knudsen number
defined asK n = λ/H .

For the further derivations it is convenient to introduce the dimensionless space variables

x = x′

H
, y = y′

H
, z = z′

H
. (5)

The distribution function of each speciesα is linearized as

fα(x, y, z, cα) = f (0)
α (cα)[1 + υz + hα(x, y, cα)] (6)

wherecα = (cαx, cαy, cαz) is the dimensionless molecular velocity,hα(x, y, cα) is the
perturbation function and
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f (0)
α = nα

( mα

2πkT

)3/2
e−c2

α (7)

is the absolute Maxwellian equilibrium function. Then the system of the kinetic Boltzmann
equations for the unknown perturbation functions, in dimensionless form, reads [14]

cαx
∂hα

∂x
+ cαy

∂hα

∂y
= dα

2∑
β=1

Lαβhα − cαz, α = 1, 2. (8)

The complicated linearized collision term is substituted, by the kinetic model proposed
by McCormack [17]. For the isothermal problem under consideration the density and
temperature departures from their corresponding equilibrium values are zero and the
McCormack linearized collision term becomes [14]

Lαβhα = −γαβhα + 2

√
mα

m

[
γαβuα − ν

(1)
αβ (uα − uβ) − 1

2
ν

(2)
αβ

(
qα − mα

mβ

qβ

)]
cαz

+ 4[(γαβ − ν
(3)
αβ )Παxz + ν

(4)
αβ Πβxz]cαzcαx

+ 4[(γαβ − ν
(3)
αβ )Παyz + ν

(4)
αβ Πβyz]cαzcαy

+ 4

5

√
mα

m

[
(γαβ − ν

(5)
αβ )qα + ν

(6)
αβ

√
mβ

mα

qβ − 5

4
ν

(2)
αβ (uα − uβ)

]
cαz

×
(

c2
α − 5

2

)
,

where

uα(x, y) = 1

π3/2

(
m

mα

)1/2 ∫
hα(x, y, cα)cαze−c2

α dcα (9)

qα(x, y) = 1

π3/2

(
m

mα

)1/2 ∫
hα(x, y, cα)cαz

(
c2
α − 5

2

)
e−c2

α dcα (10)

and

Παiz(x, y) = 1

π3/2

∫
hα(x, y, cα)cαzcαi e−c2

α dcα, i = x, y. (11)

These moments of the perturbation function are related to the hydrodynamic velocity, the
heat flux and the shear stress tensor of each species, respectively. It is worth noting that
in the transition regime, even under the isothermal conditions, there is a heat flux due
to the pressure gradient, which disappears in the continuum limit. This phenomenon is
known as the mechanocaloric effect [20]. The expressions of the parametersγαβ andν

(i )
αβ

are explicitly given in theAppendix. Finally, using Eq. (4) and the expressions of the
Appendix, it is easily seen that

dα = δ

[
C

γ1
+ 1 − C

γ2

]√
mα

m
, (12)

where the collision frequenciesγ1 = γ11 + γ12 andγ2 = γ21 + γ22.
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Our objective here is to efficiently solve Eq. (8) for the whole range of rarefaction, based
on the proposed accelerated version of the DVM. In order to demonstrate the methodology
in a more clear and precise manner, we choose to implement, due to their simplicity and
clarity, the diffuse Maxwell boundary conditions. It is noted however, that the present
formulation can be extended to include more complicated and advanced conditions at
the walls, such as the diffuse-specular boundary conditions and the Cercignani–Lampis
model.

The dimensionless quantities of our interest include the mean velocity of the mixture,
which is a function of the two transverse directions and the volumetric flow rate
given by

w(x, y) = Cu1(x, y) + (1 − C)u2(x, y) (13)

and

J = C J1 + (1 − C)J2 (14)

respectively, where the dimensionless flow rate of each species is

Jα = −2
H

W

∫ W/2H

−W/2H

∫ 1/2

−1/2
uα(x, y) dx dy, α = 1, 2. (15)

In Section 5, numerical results are presented for the volumetric flow rateJ of the mixture
and the hydrodynamic (bulk) velocitiesuα(x, y) for three different binary gas mixtures
over a wide range of the rarefaction parameterδ and for various aspect ratiosW/H , on the
basis of the kinetic equations (8).

3. The discrete velocity method

The well known DVM has been used extensively over recent years to solve the BE or
model kinetic equations [7]. So, its description is omitted here. Only the key issues related
to the present formulation are presented for completeness and clarity.

Since the flow is considered as fully developed in the longitudinal directionz, thecαz

component of the molecular velocity is eliminated, by introducing the reduced functions

Φα(x, y, cαx, cαy) = 1√
π

∫
hα(x, y, cα)cαze−c2

αzdcαz (16)

Ψα(x, y, cαx, cαy) = 1√
π

∫
hα(x, y, cα)c3

αze
−c2

αzdcαz. (17)

Eq. (8) is multiplied by 1√
π

cαze−c2
αz and 1√

π
c3
αze

−c2
αz successively and the resulting

equations are integrated with respect tocαz, to obtain

cαx
∂Φα

∂x
+ cαy

∂Φα

∂y
+ γαdαΦα

= −1

2
+ dα

2∑
β=1

{√
mα

m

[
γαβuα − ν

(1)
αβ (uα − uβ) − 1

2
ν

(2)
αβ

(
qα − mα

mβ

qβ

)]
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+ 2[(γαβ − ν
(3)
αβ )Παxz + ν

(4)
αβ Πβxz]cαx + 2[(γαβ − ν

(3)
αβ )Παyz + ν

(4)
αβ Πβyz]cαy

+ 2

5

√
mα

m

[
(γαβ − ν

(5)
αβ )qα + ν

(6)
αβ

√
mβ

mα

qβ − 5

4
ν

(2)
αβ (uα − uβ)

]

× (c2
αx + c2

αy − 1)

}
(18)

and

cαx
∂Ψα

∂x
+ cαy

∂Ψα

∂y
+ γαdαΨα

= −3

4
+ dα

2∑
β=1

{
3

2

√
mα

m

[
γαβuα − ν

(1)
αβ (uα − uβ) − 1

2
ν

(2)
αβ

(
qα − mα

mβ

qβ

)]

+ 3[(γαβ − ν
(3)
αβ )Παxz + ν

(4)
αβ Πβxz]cαx + 3[(γαβ − ν

(3)
αβ )Παyz + ν

(4)
αβ Πβyz]cαy

+ 3

5

√
mα

m

[
(γαβ − ν

(5)
αβ )qα + ν

(6)
αβ

√
mβ

mα

qβ − 5

4
ν

(2)
αβ (uα − uβ)

]

× (c2
αx + c2

αy)

}
. (19)

The quantities given by Eqs. (9)–(11), are now expressed viaΦα andΨα as

uα(x, y) = 1

π

(
m

mα

)1/2 ∫ ∞

−∞

∫ ∞

−∞
Φαe−c2

αx−c2
αy dcαxdcαy (20)

qα(x, y) = 1

π

(
m

mα

)1/2 ∫ ∞

−∞

∫ ∞

−∞

[
Ψα +

(
c2
αx + c2

αy − 5

2

)
Φα

]
× e−c2

αx−c2
αy dcαxdcαy (21)

and

Παiz(x, y) = 1

π

∫ ∞

−∞

∫ ∞

−∞
Φαcαi e

−c2
αx−c2

αy dcαx dcαy, i = x, y. (22)

Eqs. (18)–(22) are discretized first in the velocity space(cαx, cαy) and then in the
physical space(x, y). The roots of the Hermite polynomial of orderN is chosen
to define the set of discrete velocities for each component of the particle velocity
(ck

αx, cl
αy), k, l = 1, 2, . . . , N, yielding a total number ofN2 discrete velocities. The

discretization in the physical space is performed using the so-called diamond-difference
scheme, which is a second order difference scheme [21]. The overall quantities at the
right hand side of Eqs. (18) and (19) are estimated from Eqs. (20)–(22) using a double
Gauss–Hermite quadrature scheme of orderN. The iterative solution of the discretized
version of Eqs. (18) and (19) is known as the DVM and it consists of the following
steps:

(i) Assumeuα , Παiz andqα and computeΦα andΨα from Eqs. (18) and (19).

(ii) Estimate the new values ofuα , Παiz andqα from Eqs. (20)–(22).
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(iii) Go back to step (i) and use the updated values ofuα , Παiz andqα to compute the
new Φα andΨα. The iterative procedure is ended when the imposed convergence
criterion on the overall quantities is satisfied.

It is noted that by considering purely diffuse Maxwell boundary conditions [2] at the
walls, the reduced functionsΦα andΨα are known and the algorithm is applied only in
the interior nodes. It is easily deduced that the reduced functions at the four walls of the
rectangular channel are:

Φα(x,−1
2, cαx, cαy) = Ψα(x,−1

2, cαx, cαy) = 0,

cαx ∈ (−∞,∞), cay ∈ [0,∞) (23)

Φα(x,+1
2, cαx, cαy) = Ψα(x,+1

2, cαx, cαy) = 0,

cαx ∈ (−∞,∞), cay ∈ (−∞, 0] (24)

Φα

(
− W

2H
, y, cαx, cαy

)
= Ψα

(
− W

2H
, y, cαx, cαy

)
= 0,

cαx ∈ [0,∞), cay ∈ (−∞,∞) (25)

Φα

(
+ W

2H
, y, cαx, cαy

)
= Ψα

(
+ W

2H
, y, cαx, cαy

)
= 0,

cαx ∈ (−∞, 0], cay ∈ (−∞,∞). (26)

Researchers implementing the DVM are well aware however, of its slow convergence
particularly when the continuum regime is approached (K n ≤ 0.1 or δ ≥ 10). In
these cases a large number of iterations is required and the calculations are amenable to
accumulated round off error. Special attention is needed to sustain acceptable accuracy.
Furthermore when 2D and 3D physical systems are examined, the computational effort
and the CPU time are drastically increased. In the next section, this pitfall is circumvented,
by introducing an accelerated version of the classical DVM.

4. Formulation of the accelerated scheme

In the field of neutron and radiative transport fast iterative algorithms have been well
developed and effectively applied to speed up the iterative convergence of the discrete
ordinate method in optically thick regions with low absorption and isotropic or anisotropic
scattering [19]. These transport phenomena are modelled with linear integro-differential
equations, which are similar to those implemented in kinetic theory of gases. Thus it is
reasonable to expect that the acceleration schemes developed for the neutron and radiative
transport can be extended with certain modifications to speed up the convergence rate of the
DVM. Based on this idea in a recent work, a new fast iterative DVM has been introduced
and its efficiency has been demonstrated by solving the flow of a single gas through a
rectangular channel [9].

Here, this formulation is extended to the corresponding problem of a binary mixture. To
carry this out first the Hermitian moments ofΦα andΨα are defined as

Uα
mn(x, y) = 1

π

(
m

mα

)1/2 ∫ ∞

−∞

∫ ∞

−∞
Hm(cαx)Hn(cαy)Φαe−c2

αx−c2
αy dcαx dcαy (27)
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and

Qα
mn(x, y) = 1

π

(
m

mα

)1/2 ∫ ∞

−∞

∫ ∞

−∞
Hm(cαx)Hn(cαy)

×
[
Ψα +

(
c2
αx + c2

αy − 5

2

)
Φα

]
e−c2

αx−c2
αy dcαx dcαy (28)

where Hm are the Hermite polynomials of the orderm. Notice that by settingm andn
equal to zero and/or one we have

Uα
00 = uα, Qα

00 = qα, Uα
10 = 2

√
m

mα

Παxz and Uα
01 = 2

√
m

mα

Παyz. (29)

Eqs. (18) and (19) are multiplied by 1√
π

√
m
mα

e−c2
αx−c2

αx and then the resulting equations are

multiplied successively byH0(cax)H0(cay), H1(cax)H0(cay) and H0(cax)H1(cay). After
a double integration with respect tocαx and cαy these equations yield three moment
equations for each transport equation. The moment equations are combined appropriately
and after some mathematical manipulation the following four synthetic moment equations
are obtained:

∂xxU
α
00 + ∂yyU

α
00 − 2d2

α(ν(3)
αα + ν

(3)
αβ − ν(4)

αα )

×
[
ν

(1)
αβ (Uα

00 − Uβ

00) + ν
(2)
αβ

2

(
Qα

00 − mα

mβ

Qβ

00

)]
+ 2dαdβ

√
mβ

mα

ν
(4)
αβ

×
[
ν

(1)
αβ (Uβ

00 − Uα
00) + ν

(2)
αβ

2

(
Qβ

00 − mβ

mα

Qα
00

)]

= −1

2
∂xxU

α
20 − 1

2
∂yyU

α
02 − ∂xyU

α
11 + dα

√
m

mα

[ν(3)
αα + ν

(3)
αβ − ν(4)

αα − ν
(4)
αβ ] (30)

∂xxQα
00 + ∂yyQα

00 + 2d2
α

[
−(ν(5)

αα + ν
(5)
αβ − ν(6)

αα )Qα
00 +

√
mβ

mα

ν
(6)
αβ Qβ

00

−5

4
ν

(2)
αβ (Uα

00 − Uβ

00)

]
+ 2d2

α(γα − ν(3)
αα − ν

(3)
αβ + ν(4)

αα )

×
[
ν

(1)
αβ (Uα

00 − Uβ

00) + ν
(2)
αβ

2

(
Qα

00 − mα

mβ

Qβ

00

)]
+ 2dαdβ

√
mβ

mα

ν
(4)
αβ

×
[
ν

(1)
αβ (Uβ

00 − Uα
00) + ν

(2)
αβ

2

(
Qβ

00 − mβ

mα

Qα
00

)]

= −1

2
∂xxQα

20 − 1

2
∂yyQα

02 − ∂xyQα
11 − dα

√
m

mα

× (γα − ν(3)
αα − ν

(3)
αβ + ν(4)

αα + ν
(4)
αβ ) (31)

with α, β = 1, 2 andα �= β.
The above four equations are the acceleration equations. It is noted however, that only

the zeroth moments ofΦα andΨα are accelerated, while the second moments at the right
hand side of the above equations are estimated from Eqs. (27) and (28). Eqs. (30) and (31)
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are coupled with the transport equations (18) and (19) and they are solved in an iterative
manner. More specifically the accelerated DVM is consisting of the following steps:

(i) AssumeUα
00, Qα

00, Uα
10 andUα

01 and computeΦα andΨα from Eqs. (18) and (19).
(ii) Estimate the second momentsUα

20, Uα
11, Uα

02, Qα
20, Qα

11, Qα
02, which are not

accelerated from Eqs. (27) and (28).
(iii) Solve the system of differential equations (30) and (31) and find the new values of

Uα
00 andQα

00.
(iv) Go back to step (i) and use the accelerated values ofUα

00 and Qα
00 to compute the

new Φα andΨα. The iterative procedure is ended when the imposed convergence
criterion on the overall quantities is satisfied.

Various acceleration schemes may be defined depending upon the number of accelerated
moments. Following the terminology defined in the field of neutron transport theory [19],
since the implemented acceleration equations look like diffusion type equations the present
acceleration scheme is called the “diffusion synthetic acceleration (DSA)” scheme. It is
obvious that the DSA scheme requires a greater computational effort per iteration than the
typical DVM. However, as it is shown in the next section the DSA needs a much smaller
number of iterations and consequently the total computational time is significantly reduced.

5. Results

The numerical results presented here, have been performed by the DSA algorithm. To
test the accuracy of the accelerated code in some cases the typical DVM has also been
implemented. For all cases tested, imposing identical velocity and space discretization
schemes and the same convergence criteria, the corresponding results of the two schemes
agree to each other up to at least three significant figures. In addition, by taking particles of
the two species of equal molecular mass and diameter the binary gas problem is reduced
to the corresponding two-dimensional single gas problem, described by the S kinetic
model [8, 9]. Again, the results are in an excellent agreement.

The calculations have been carried out over the wide range of the rarefied parameterδ

from 10−3 up to 402, with the aspect ratioH/W equal to 1, 0.1 and 0.05. The gaseous
mixtures of Ne–Ar, He–Ar and He–Xe have been examined with a molar concentration
C = 0.5. The molecular masses aremHe = 4.0026,mNe = 20.183,mAr = 39.948 and
mXe = 131.30 in atomic units.

To calculate the quantitiesν(i )
αb an intermolecular interaction law must be assumed. As

was shown in [22] the momentum transfer phenomenon is not sensitive to this interaction
law. So, in our calculations the hard sphere molecular model is considered. To carry out the
calculations only the molecular diameter ratios are needed, and they are calculated from
the experimental data on the viscosities of each species [23] at the temperatureT = 300 K.
Finally, the ratios of the diameters have been found equal to 1.406, 1.665 and 2.226 for
Ne–Ar, He–Ar and He–Xe respectively.

All presented results are based on a 128 point Gauss–Hermite quadrature scheme with
respect to each velocity component(cαx, cαy), while the grids in the physical space are
taken 31× 31 for H/W = 1 and 31× 61 for H/W = 0.1 and 0.05. Based on the
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Table 1
Dimensionless volumetric flow rateJ for variousδ andH/W for the Ne–Ar mixture

J
δ H/W = 1 H/W = 0.1 H/W = 0.05

0.001 0.8738 2.063 2.447
0.01 0.8648 1.990 2.317
0.1 0.8298 1.747 1.919
1 0.8009 1.484 1.541

10 1.340 2.638 2.721
40 3.413 7.25 7.49

Table 2
Dimensionless volumetric flow rateJ for variousδ andH/W for the He–Ar mixture

J
δ H/W = 1 H/W = 0.1 H/W = 0.05

0.001 1.291 3.049 3.620
0.01 1.278 2.947 3.438
0.1 1.219 2.563 2.824
1 1.092 1.954 2.028

10 1.464 2.817 2.904
40 3.494 7.38 7.62

Table 3
Dimensionless volumetric flow rateJ for variousδ andH/W for the He–Xe mixture

J
δ H/W = 1 H/W = 0.1 H/W = 0.05

0.001 2.021 4.777 5.674
0.01 2.002 4.629 5.412
0.1 1.906 4.020 4.449
1 1.619 2.806 2.911

10 1.669 3.082 3.173
40 3.595 7.53 7.77

aforementioned discretization, the present numerical results have converged to±1 to the
last significant figure given here.

The dimensionless flow rateJ is given inTables 1–3 for the three gaseous mixtures
under investigation. The variation of the flow rate with respect toδ andH/W is similar to
that for a single gas [8]. For all three mixtures, it has a minimum atδ ∼ 1 and it increases
by increasingδ. For H/W = 1 the minimum is shallow, while for the other two smaller
aspect ratios it is deep.

In Figs. 1–3 some typical velocity profilesuα(x, 0), in the case of the square channel
(H/W = 1) are plotted for the gaseous mixtures of Ne–Ar, He–Ar and He–Xe
respectively. It can be seen that near the hydrodymanic regime(δ = 40) the profiles of
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Fig. 1. Velocity profiles of each speciesuα(x, 0) for the Ne–Ar mixture for various values ofδ (solid line—Ne,
dashed line—Ar).

Fig. 2. Velocity profiles of each speciesuα(x, 0) for the He–Ar mixture for various values ofδ (solid line—He,
dashed line—Ar).

both species are parabolic and equal to each other, which corresponds to the solution of
the Navier–Stokes equations with slip boundary conditions. For the free molecular and the
transition regimes (δ = 1 and 0.1) the velocities of each species are different with the
lighter component having the higher velocity.

A comparison between the DVM and the proposed DSA scheme in terms of required
number of iterations and total CPU time is demonstrated inFigs. 4and5, respectively. The
required number of iterations to satisfy the convergence criterion in the computed results
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Fig. 3. Velocity profiles of each speciesuα(x, 0) for the He–Xe mixture for various values ofδ (solid line—He,
dashed line—Xe).

Fig. 4. Comparison between the DVM and the DSA method in terms of the number of iterations to satisfy the
convergence criterion forδ = 1 (left) andδ = 40 (right).

is plotted as a function of the convergence criterion inFig. 4. The results are presented
for δ = 1 and 40 and for the case of the square channel. It can be seen that forδ = 1
the number of required iterations is very small and there is no benefit in using the DSA
scheme. Forδ = 40 however, the required number of iterations for the typical DVM is
significantly increased, while for the DSA scheme it remains small. More specifically, for
δ = 40 and for a relative convergence criterion of 10−5 the required iterations for the DSA
scheme are reduced roughly by a factor of 100. It is also noted that the required number
of iterations for the acceleration scheme remains actually constant even when very strict
convergence criteria are applied.

In Fig. 5, the required total CPU time to satisfy the convergence criterion in the
computed results is plotted in terms of the convergence criterion forδ = 40. It can be
seen that the reduction in the overall computational time is of the same order of magnitude
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Fig. 5. Comparison between the DVM and the DSA method in terms of the required CPU time to satisfy the
convergence criterion forδ = 1 (left) andδ = 40 (right).

with the reduction in the required number of iterations. This is easily explained by the
fact that the additional computational effort per iteration is insignificant compared to the
computational gain due to the small number of iterations required. The results have been
obtained on a 2100 MHz, Athlon XP.

Overall, it is clearly seen that the number of required iterations is significantly reduced
when the accelerated scheme is applied and this improvement becomes more important
for small Knudsen numbers. Even more, in this case the typical DVM results suffer from
accumulated round-off error due to the large number of iterations required and thus more
strict convergence criteria does not always assure more accurate results. In general, when
the DSA accelerated scheme is introduced we expect that the computational effort is
reduced, while the accuracy of the results is improved.

6. Conclusions

The 2D flow problem of a gas mixture through a rectangular micro channel due to
a small pressure gradient has been solved based on a mesoscopic approach. Numerical
results for the flow rates and velocity profiles are presented for three different gaseous
mixtures. Although the formulation is based on kinetic model equations the scheme is very
efficient in terms of computational effort and time and accurate results are obtained for a
wide range ofK n numbers. This is achieved by introducing a novel diffusion acceleration
(DSA) scheme to speed up the very slow convergence rate of the discrete velocity method
(DVM) near the hydrodynamic regime.

The proposed approach may be successfully implemented as an alternative, compared
to other classical methods (finite volumes or elements), for simulation of gas flows where
the continuum hypothesis breaks down as it happens in many occasions, in microfluidics
and MEMS applications. In addition, the present work can be used for the estimation
of the slip coefficients, which are commonly used in order to provide suitable boundary
conditions for the Navier–Stokes equations in the slip regime. Recent work in that direction
has shown that a detailed calculation of the slip coefficients, based on advanced kinetic
theory approaches, may extend significantly the range of gas rarefaction, where the
hydrodynamic equations can be applied.
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Appendix. Elements of the McCormack collision term

The collision frequenciesγαβ are proportional to the collision frequency between
the speciesα and β and they appear only in the combinationsγ1 = γ11 + γ12 and
γ2 = γ21 + γ22, where

γα = SαSβ − ν
(4)
αβ ν

(4)
βα

Sβ + ν
(4)
αβ

and

Sα = ν(3)
αα − ν(4)

αα + ν
(3)
αβ .

In the above equationsα = 1, 2 andα �= β. In addition
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and

mαβ = mαmβ

mα + mβ

.

Finally, the Ω i j
αβ are the Chapman–Cowling integrals [24], which for the rigid sphere

interaction read

Ω i j
αβ = ( j + 1)!

2

[
1 − 1 + (−1)i

2(i + 1)

](
πkT

2mαβ

)1/2

(rα + rβ)2

whererα andrβ are the particle radius.
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