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Abstract

An analytical version of the discrete-ordinates method (the ADO method) is used to establish concise and particularly
solutions to the problems of Poiseuille flow, thermal-creep flow and diffusion flow for a binary gas mixture confined b
parallel walls. The kinetic equations used to describe the floware based on the McCormack model for mixtures. The analysis
yields, for the general (specular-diffuse) case of Maxwell boundary conditions for eachof the two species, the velocity, hea
flow and shear-stress profiles for both types of particles. Numerical results are reported for two binary mixtures (Ne
He–Xe) with various molar concentrations. The complete solution requires only a (matrix) eigenvalue/eigenvector rou
a solver of a system of linear algebraic equations, and thus the algorithm is considered especially easy to use. The
(FORTRAN) code requires typically less than a second on a 2.2 GHz Pentium IV machine to solve all three problems.
 2004 Elsevier SAS. All rights reserved.

1. Introduction

Internal flows of rarefied gaseous mixtures caused by pressure, temperature and density (or concentration) gradients,
known as the Poiseuille, the thermal-creep and the diffusion-flow problems respectively, are of major importance in
applications in physics and engineering. However, compared to the huge amount of work done for the case of a s
(see, for example, the books by Chapman and Cowling [1], Cercignani [2], Williams [3], Bird [4] and Ferziger and Kaper [5
as well as Sharipov and Seleznev’s [6] review article), the available literature for the case of gas mixtures is not e
Early work for gaseous mixtures was concentrated on the estimation of the slip coefficients defined by semi-infin
space problems [7–11]. This strong interest in the estimation of the slip coefficients is justified by the fundamental th
significance and the practical importance of these coefficients. One of the major difficulties in dealing with gas mixtur
large number of parameters which are involved in the calculations. To deal with this situation, Ivchenko et al. [12,13] ha
developed general and convenient expressions for the slip coefficients of various binary gases. More advanced ca
based on the McCormack model [14] and on the linearized Boltzmann equation for rigid-sphere interactions, have been
recently [15–19]. Additional numerical results based on a variational method for internal, rarefied mixture flows were obtain
in Ref. [20]. The problem of Couette flow for a gas mixture in a plane channel has been solved [21] by a discrete velocity
and in terms of an analytical discrete ordinates method [22]. However, the mentioned work was based on model equa
one degree of freedom, and as a result correct expressions are provided only for one transport coefficient at a time. Thi
was improved by Sharipov and Kalempa in a work [23] where the flow of a gaseous mixture through a tube is studie
on the McCormack kinetic model [14]. Numerical results based on the McCormack model have been reported [15–17
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in general, other linearized kinetic models for mixtures satisfy the conservation laws and the H theorem, the McCorma
for mixtures satisfies these two conditions and, at the same time, provides correct expressions for the transport co
(viscosity, thermal conductivity, diffusion and thermal diffusion). In addition, recent work [15–18,23,24] with the McCormack
model has suggested that this kinetic model can be considered a valid alternative (especially when the cost of com
implementation is noted) to the linearized Boltzmann equations for gas mixtures.

During the last few years, an analytical version of the discrete-ordinates (ADO) method has been developed [25]
established as a simple, efficient and highly accurate methodology for solving problems in rarefied gas dynamics
number of a single-gas flow and thermal problems has been solved in a unified manner [26–28], while the method
been used [22,29] to solve problems for mixtures described by the Hamel model [30]. In the present work the ADO m
used to solve in an efficient and accurate manner the McCormack model equations applied to the flow of binary gas
(between two parallel plates) driven by gradients of pressure, temperature and density. Our objective here is to provide con
and accurate solutions (to the considered problems) that define what we consider to be a high standard of accuracy.
to defining good numerical results, the new solutions are valid for wall conditions described by a general specular-diffu
scattering law, and the solutions can be implemented at a computational cost much less, we believe, than the cost of
basic quantities of interest with strictly numerical solutions. Finally, we note that our numerical results are report
species-specific basis so that various ways (that could depend on a specific application) of defining the velocity, heat
shear-stress profiles for the binary mixture can be used.

2. The McCormack model

In this work we base our analysis of a binary gas mixture on the McCormack model as introduced in an importa
[14] published in 1973. While much of the formulation we use here was given in Ref. [18], we repeat some of that m
since now we must account explicitly for the pressure gradient, the temperature gradient and the densitygradients that drive the
flow. It is convenient to linearize our problem about local (ratherthat absolute) Maxwellian distributions, and so we start wit
the basic distribution functions written as

f1(x, z,v) = f1,0(v)
{
1+ [(

λ1v2 − 5/2
)
KT +KP + (n2/n)KC

]
z + h1(x,v)

}
(1a)

and

f2(x, z,v) = f2,0(v)
{
1+ [(

λ2v2 − 5/2
)
KT +KP − (n1/n)KC

]
z + h2(x,v)

}
, (1b)

where

fα,0(v) = nα(λα/π)3/2 e−λαv2
, λα = mα/(2kT0). (2)

Herek is the Boltzmann constant,mα andnα are the mass and the equilibrium density of theα-th species,x is the spatial
variable in the transverse, or cross-channel, direction,z is the spatial variable in the longitudinal direction (both measured
example, in cm),v, with componentsvx, vy, vz and magnitudev, is the particle velocity, andT0 is a reference temperatur
We note that the constantsKT ,KP , andKC define respectively measures of the temperature, pressure and density gr
that drive the flow (in thez direction). Since the components of Eqs. (1) due to the gradients of the number densities
been normalized in a special way, we note explicitly how this wasdone. We consider that the spatial variations of the num
densities are given as

nα(z) = nα(1+ kαz), α = 1,2, (3)

wheren1 andn2, along withk1 andk2, are constants. Now, sincen1(z) + n2(z) = n, wheren = n1 + n2 is the total (constant
density, it follows that

n1k1 + n2k2 = 0. (4)

We thus find it convenient to introduce the (arbitrary) normalization

k1 = (n2/n)KC (5)

to obtain the forms given in Eqs. (1). This normalization requires only the ratio of number densities (as is the case else
the formulation of the problem), and this normalization is convenient since the limiting cases ofn1 or n2 approaching zero ar
in clear evidence.
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It follows from McCormack’s work [14] that the perturbations satisfy the coupled equations

n be

locity
Sα(c) + cx
∂

∂x
hα(x, c) + ωαγαhα(x, c) = ωαγαLα{h1, h2}(x, c), α = 1,2, (6)

wherec, with componentscx, cy , cz and magnitudec, is a dimensionless velocity variable,

ωα = [
mα/(2kT0)

]1/2 (7)

and the collision frequenciesγα are to be defined. Here we write the integral operators as

Lα{h1, h2}(x, c) = 1

π3/2

2∑
β=1

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−c′2
hβ(x, c′)Kβ,α(c′, c)dc′

x dc′
y dc′

z, (8)

where the kernelsKβ,α(c′, c) are listed explicitly in Appendix A. In addition, we find that the source terms in Eq. (6) ca
written as

S1(c) = cz

[(
c2 − 5/2

)
KT +KP + (n2/n)KC

]
(9a)

and

S2(c) = cz

[(
c2 − 5/2

)
KT +KP − (n1/n)KC

]
. (9b)

We note that in obtaining Eq. (6) from the form given by McCormack [14], we have introduced the dimensionless vec
differently in the two equations, i.e., for the caseα = 1 we used the transformationc = ω1v, whereas for the caseα = 2 we
used the transformationc = ω2v. As we wish to work with a dimensionless spatial variable, we introduce

τ = x/l0, (10)

where

l0 = µv0

P0
(11)

is the mean-free path (based on viscosity) introduced by Sharipov and Kalempa [15]. Here,following Ref. [15], we write

v0 = (2kT0/m)1/2, (12)

where

m = n1m1 + n2m2

n1 + n2
. (13)

As in Ref. [18], we express the viscosity of the mixture in terms of the partial pressuresPα and the collision frequenciesγα as

µ = P1/γ1 + P2/γ2, (14)

where

Pα

P0
= nα

n1 + n2
, (15)

γ1 = [
Ψ1Ψ2 − ν

(4)
1,2ν

(4)
2,1

][
Ψ2 + ν

(4)
1,2

]−1 (16a)

and

γ2 = [
Ψ1Ψ2 − ν

(4)
1,2ν

(4)
2,1

][
Ψ1 + ν

(4)
2,1

]−1
. (16b)

Here definitions from Ref. [18] and listed in Appendix A of this work are being used,

Ψ1 = ν
(3)
1,1 + ν

(3)
1,2 − ν

(4)
1,1 (17a)

and

Ψ2 = ν
(3)
2,2 + ν

(3)
2,1 − ν

(4)
2,2. (17b)

Finally, to compact our notation we introduce

σα = γαωαl0 (18)
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σα = γα
n1/γ1 + n2/γ2

n1 + n2
(mα/m)1/2, (19)

and so we rewrite Eq. (6) in terms of theτ variable as

Sα(c) + cx
∂

∂τ
hα(τ, c) + σαhα(τ, c) = σαLα{h1, h2}(τ, c), (20)

where now

S1(c) = cz

[(
c2 − 5/2

)
kT + kP + (n2/n)kC

]
(21a)

and

S2(c) = cz

[(
c2 − 5/2

)
kT + kP − (n1/n)kC

]
, (21b)

with

kA = l0KA, A = P,T ,C. (22)

Note that we now use the upper-case subscripts {P,T ,C} to label the problems driven respectively by gradients in press
temperature and density.

For the considered problems, the flow in a channel defined byτ ∈ [−a, a] is symmetric about the centerline, and so we s
solutions of Eq. (20) that satisfy

hα(−τ,−cx, cy , cz) = hα(τ, cx , cy , cz) (23)

for all τ and allc. Note that

hα(τ, c) ⇔ hα(τ, cx , cy , cz). (24)

In addition to Eq. (23), we wish our solutions to satisfy the Maxwell (specular/diffuse) boundary condition at the walls. Beca
of the imposed symmetry condition, we need consider only

hα(−a, cx , cy, cz) = (1− aα)hα(−a,−cx , cy, cz) + aαI{hα}(−a), (25)

for cx > 0 and allcy andcz. Note that we usea1 anda2 to denote two accommodation coefficients (which need not be
same). In addition, we have used

I{hα}(τ) = 2

π

∞∫
−∞

∞∫
−∞

∞∫
0

e−c′2
hα(τ,−c′

x , c′
y, c′

z)c
′
x dc′

x dc′
y dc′

z (26)

to denote the diffuse term in Eq. (25). In this work we seek to compute the velocity profiles

uα(τ) = 1

π3/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−c2
hα(τ, c)cz dcx dcy dcz, (27a)

the shear-stress profiles

pα(τ) = 1

π3/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−c2
hα(τ, c)cxcz dcx dcy dcz (27b)

and the heat-flow profiles

qα(τ) = 1

π3/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−c2
hα(τ, c)

(
c2 − 5/2

)
cz dcx dcy dcz (27c)

for τ ∈ [−a, a]. It follows that we can obtain these quantities from “moments” of Eq. (20). To this end, we first multiply Eq
by

φ1(cy , cz) = (1/π)e−(c2
y+c2

z )
cz (28)
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and integrate over allcy and allcz. We then repeat this procedure using
φ2(cy , cz) = (1/π)e−(c2
y+c2

z )(
c2
y + c2

z − 2
)
cz. (29)

Defining

g2α−1(τ, cx) =
∞∫

−∞

∞∫
−∞

φ1(cy, cz)hα(τ, c)dcy dcz (30a)

and

g2α(τ, cx) =
∞∫

−∞

∞∫
−∞

φ2(cy, cz)hα(τ, c)dcy dcz, (30b)

we find from these projections four coupled balance equations which we write (in matrix notation) as

S(ξ) + ξ
∂

∂τ
G(τ, ξ) + ΣG(τ, ξ) = Σ

∞∫
−∞

ψ(ξ ′)K(ξ ′, ξ)G(τ, ξ ′)dξ ′, (31)

where the components ofG(τ, ξ) aregα(τ, ξ), for α =1, 2, 3 and 4, where we now useξ in place ofcx and where

Σ = diag{σ1, σ1, σ2, σ2} (32)

and

ψ(ξ) = π−1/2 e−ξ2
. (33)

In addition, we find that the inhomogeneous source term in Eq. (31) can be written as

S(ξ) =




(1/2)[kP + (n2/n)kC + kT (ξ2 − 1/2)]
kT

(1/2)[kP − (n1/n)kC + kT (ξ2 − 1/2)]
kT


 . (34)

We note that the elementski,j (ξ ′, ξ) of the kernelK(ξ ′, ξ) in Eq. (31) are listed here in Appendix B.
So, if we can solve Eq. (31), subject to the stated symmetry and boundary conditions, wecan compute thequantities of

interest from

uα(τ) =
∞∫

−∞
ψ(ξ)g2α−1(τ, ξ)dξ, (35a)

pα(τ) =
∞∫

−∞
ψ(ξ)g2α−1(τ, ξ)ξ dξ (35b)

and

qα(τ) =
∞∫

−∞
ψ(ξ)

[(
ξ2 − 1/2

)
g2α−1(τ, ξ) + g2α(τ, ξ)

]
dξ. (35c)

We require symmetry and boundary conditions for the “G problem,” and so we project Eqs. (23) and (25) againstφ1(cy, cz)

andφ2(cy, cz) to find the symmetry condition

G(−τ,−ξ) = G(τ, ξ), (36)

for all τ and allξ , and the boundary condition

G(−a, ξ) = SG(−a,−ξ), ξ ∈ (0,∞), (37)

subject to which we must solve Eq. (31). Here

S = diag{1− a1,1− a1,1− a2,1− a2}. (38)
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In addition to the species-specific velocity and heat-flow profiles listed in Eqs. (27), we intend to compute the mass and heat-flow

t we can
)

er
rates defined for each species (α = 1,2) by

Uα = 1

2a2

a∫
−a

uα(τ)dτ and Qα = 1

2a2

a∫
−a

qα(τ)dτ, (39a,b)

with which we can use Eqs. (35) once theG problem has been solved.

3. Generalized Onsager relations

As we are dealing with scattering laws that satisfy “time reversal” symmetry, there are Onsager relations [31–34] tha
use in this work. We can establish these relations in the current setting, i.e. from ourG problem, as follows: we write Eq. (31
for two (different) source terms as

S1(ξ) + ξ
∂

∂τ
G1(τ, ξ) + ΣG1(τ, ξ) = Σ

∞∫
−∞

ψ(ξ ′)K(ξ ′, ξ)G1(τ, ξ ′)dξ ′ (40)

and

S2(−ξ) − ξ
∂

∂τ
G2(τ,−ξ) + ΣG2(τ,−ξ) = Σ

∞∫
−∞

ψ(ξ ′)K(ξ ′,−ξ)G2(τ, ξ ′)dξ ′. (41)

Now, we multiply Eq. (40) byψ(ξ)GT
2(τ,−ξ)X, multiply Eq. (41) byψ(ξ)GT

1(τ, ξ)X, integrate both resulting equations ov
all ξ and subtract the results, one from the other, to obtain

∞∫
−∞

ψ(ξ)
[
GT

2(τ,−ξ)XS1(ξ) − GT
1(τ, ξ)XS2(−ξ)

]
dξ + d

dτ

∞∫
−∞

ψ(ξ)GT
2(τ,−ξ)XG1(τ, ξ)ξ dξ = L(τ). (42)

Here the superscript T denotes the matrix transpose operation,

X = diag{x1, x2, x3, x4}, (43)

is a constant and

L(τ) =
∞∫

−∞

∞∫
−∞

ψ(ξ)ψ(ξ ′)GT
2(τ,−ξ)

[
XΣK(ξ ′, ξ) − KT(ξ, ξ ′)ΣX

]
G1(τ, ξ

′)dξ dξ ′. (44)

Noting from Appendix B that the elements ofK(ξ ′, ξ) are such that if

X = diag
{
2n1m

−1/2
1 , n1m

−1/2
1 ,2n2m

−1/2
2 , n2m

−1/2
2

}
, (45)

then we can show that

XΣK(ξ ′, ξ) = KT(ξ, ξ ′)ΣX, (46)

and soL(τ) = 0. Now, considering thatGα(−τ,−ξ) = Gα(τ, ξ) and that

Gα(−a, ξ) = SGα(−a,−ξ), ξ > 0, (47)

we can integrate Eq. (42) overτ from −a to a to find

a∫
−a

∞∫
−∞

ψ(ξ)
[
GT

2(τ,−ξ)XS1(ξ) − GT
1(τ, ξ)XS2(−ξ)

]
dξ dτ = 0. (48)

Consider the special case:

S1(ξ) = (1/2)kP




1
0
1
0


 + (1/2)kC




n2/n

0
−n1/n

0


 (49)
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and  
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e thus

olution.
S2(ξ) = kT


(1/2)(ξ2 − 1/2)

1
(1/2)(ξ2 − 1/2)

1

 , (50)

with

G1(τ, ξ) = GP (τ, ξ) + GC(τ, ξ) and G2(τ, ξ) = GT (τ, ξ). (51a,b)

For this special case, we find from Eq. (48) that

kT

[
x1(QP,1 + QC,1) + x3(QP,2 + QC,2)

] = x1
[
kP + (n2/n)kC

]
UT,1 + x3

[
kP − (n1/n)kC

]
UT,2, (52)

where, in general,

UA,α = 1

2a2

a∫
−a

uA,α(τ)dτ and QA,α = 1

2a2

a∫
−a

qA,α(τ)dτ (53a,b)

for A = P,T ,C andα = 1,2. For the special casekC = 0, Eq. (52) yields

kT (x1QP,1 + x3QP,2) = kP (x1UT,1 + x3UT,2), (54)

while for the special casekP = 0, Eq. (52) yields

kT (x1QC,1 + x3QC,2) = kC

[
x1(n2/n)UT ,1 − x3(n1/n)UT ,2

]
. (55)

For the casekT = 0, Eq. (52) yields only a tautology 0= 0; however, if we go back and use

S1(ξ) = (1/2)kP




1
0
1
0


 and S2(ξ) = (1/2)kC




n2/n

0
−n1/n

0


 (56a,b)

along with

G1(τ, ξ) = GP (τ, ξ) and G2(τ, ξ) = GC(τ, ξ), (57a,b)

we can deduce from Eq. (48) that

kC

[
x1(n2/n)UP,1 − x3(n1/n)UP,2

] = kP (x1UC,1 + x3UC,2). (58)

It is clear that Eqs. (54), (55) and (58) can be used to express some of the quantities we wish to establish in term
quantities we also seek. When not used in this way, these expressions can be used as checks on computation work.

4. Particular solutions

Since the three problems we consider here differ only in the driving or source term in our balance equation, we dev
solutions to these three problems all at once. As mentioned earlier in this work, we seek a solution, valid for allτ ∈ (−a, a),
of Eq. (31) where the inhomogeneous source term is given by Eq. (34). We note that the elementary solutions of our
ordinates version of Eq. (31) were developed and reported in our previous work [18], and we will use these elementary
to solve theG problem, but we also require a particular solution of Eq. (31) to account for the inhomogeneous term. W
seek a particular solutionGp(τ, ξ) that can be used with solutions of the homogeneous equation to define the complete s
Considering thatS(ξ) has two basic types of elements, one we can associate withkP andkC and the other withkT , we propose
a particular solution of the form

Gp(τ, ξ) = G
(1)
p (τ, ξ) + G

(2)
p (τ, ξ), (59)

where

G
(1)
p (τ, ξ) = Aτ2 + Bτξ + Cξ2 + D (60)
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and  2 

r discrete-
blems.
G
(2)
p (τ, ξ) = 

E(ξ − 1/2− sw)

2E

F(ξ2 − 1/2− rw)

2F

 . (61)

After some algebra we find we can express the constants required in Eq. (60) as

A =




a1σ2
1

0
λa1σ2

2
0


 , B =




−2a1σ1
0

−2λa1σ2
0


 , C =




c1
0
c3
0


 and D =




d1
2c1 − 4a1

0
2c3 − 4λa1


 , (62a–d)

where the remaining constants are defined by the linear system

M




a1
c1
c3
d1


 =




[kP + (n2/n)kC]/σ1
[kP − (n1/n)kC]/σ2

0
0


 . (63)

Here the elements of the coefficient matrixM are given by

m1,1 = 2+ 4η
(2)
1,2

(
1− r3λ

)
, m1,2 = −η

(1)
1,2 − (5/2)η

(2)
1,2, (64a,b)

m1,3 = rη
(1)
1,2 + (5/2)r3η

(2)
1,2, m1,4 = −2η

(1)
1,2, (64c,d)

m2,1 = 2λ + 4η
(2)
2,1

(
λ − s3)

, m2,2 = sη
(1)
2,1 + (5/2)s3η

(2)
2,1, (64e,f)

m2,3 = −η
(1)
2,1 − (5/2)η

(2)
2,1, m2,4 = 2sη

(1)
2,1, (64g,h)

m3,1 = −4+ (16/5)
(
β1 + λη

(6)
1,2

)
, m3,2 = 2(1− β1) + (1/2)η

(2)
1,2, (64i,j)

m3,3 = −2η
(6)
1,2 − (r/2)η

(2)
1,2, m3,4 = η

(2)
1,2, (64k,l)

m4,1 = (16/5)η
(6)
2,1 + [

(16/5)β2 − 4
]
λ, m4,2 = −2η

(6)
2,1 − (s/2)η

(2)
2,1, (64m,n)

m4,3 = 2(1− β2) + (1/2)η
(2)
2,1 and m4,4 = −sη

(2)
2,1. (64o,p)

In writing the elements of theM matrix we have used

r = (m1/m2)1/2, s = (m2/m1)1/2 (65a,b)

and other quantities defined in Ref. [18] and listed in Appendix A, along with

λ = s(σ1/σ2)2, (66)

whereσ1 andσ2 are given by Eq. (18). Continuing, we find, in regard to Eq. (61), that

w = (5/4)r
ν
(2)
1,2

ν
(1)
1,2

(67)

and that the constantsE andF are solutions of the linear system

N

[
E

F

]
= kT

2

[
1/σ1
1/σ2

]
, (68)

where the elements of the coefficient matrixN are given by

n1,1 = −Φ1 + (5/8)
[
η
(2)
1,2

]2
/η

(1)
1,2, n1,2 = η

(6)
1,2 − (5/8)r3[

η
(2)
1,2

]2
/η

(1)
1,2, (69a,b)

n2,1 = η
(6)
2,1 − (5/8)s3[

η
(2)
2,1

]2
/η

(1)
2,1 and n2,2 = −Φ2 + (5/8)

[
η
(2)
2,1

]2
/η

(1)
2,1, (69c,d)

with

Φ1 = η
(5)
1,1 + η

(5)
1,2 − η

(6)
1,1 and Φ2 = η

(5)
2,2 + η

(5)
2,1 − η

(6)
2,2. (70a,b)

Since the required particular solutions have been established, we can use them with the elementary solutions of ou
ordinates version of the homogeneous equation to define the complete solution, and so we are ready to solve the pro
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5. Complete solutions

s of our
and

ementary

version

ote

of linear
ities
In Ref. [18] the ADO method was developed for the McCormack model, and in that process the elementary solution
discrete-ordinates version of Eq. (31) were established and subsequently used to solve the half-space viscous-slip problem
the thermal-creep problem for mixtures. In order to avoid much repetition, we do not repeat a development of these el
solutions here, but a brief review of these solutions is given in Appendix C. And so we express our solution to theG problem as

G(τ,±ξi ) = Gp(τ,±ξi ) + A1G+ +
4N∑
j=2

Aj

[
Φ(νj ,±ξi)e−(a+τ )/νj + Φ(νj ,∓ξi )e−(a−τ )/νj

]
, (71)

where the constantsA1 and {Aj } are to be determined so that the result given by Eq. (71) satisfies a discrete-ordinates
of the boundary condition, viz.,

G(−a, ξi ) = SG(−a,−ξi ) (72)

for i = 1,2, . . . ,N . Here our “half-range” quadrature scheme usesN weights and nodes{wi, ξi}. Again, the elementary
solutionsG+ and Φ(νj ,±ξi ), as well as the separation constants{νj }, are used here as previously [18] introduced. N
that the solution listed as Eq. (71) already satisfies the symmetry condition

G(τ, ξ) = G(−τ,−ξ). (73)

To complete the solution listed as Eq. (71), we substitute that expression into Eq. (72) and solve the resulting system
algebraic equations to establish the constantsA1 and {Aj }. It follows that we can now compute the species-specific quant
uα(τ), pα(τ) andqα(τ) from discrete-ordinates versions of Eqs. (35). In this way, we find

u1(τ) = A1 − swE + a1(σ1τ)2 + (1/2)c1 + d1 +
4N∑
j=2

AjNu,1(νj )
[
e−(a+τ )/νj + e−(a−τ )/νj

]
, (74a)

u2(τ) = sA1 − rwF + λa1(σ2τ)2 + (1/2)c3 +
4N∑
j=2

AjNu,2(νj )
[
e−(a+τ )/νj + e−(a−τ )/νj

]
, (74b)

p1(τ) = −a1σ1τ +
4N∑
j=2

AjNp,1(νj )
[
e−(a+τ )/νj − e−(a−τ )/νj

]
, (75a)

p2(τ) = −λa1σ2τ +
4N∑
j=2

AjNp,2(νj )
[
e−(a+τ )/νj − e−(a−τ )/νj

]
, (75b)

q1(τ) = (5/2)(E + c1) − 4a1 +
4N∑
j=2

AjNq,1(νj )
[
e−(a+τ )/νj + e−(a−τ )/νj

]
(76a)

and

q2(τ) = (5/2)(F + c3) − 4λa1 +
4N∑
j=2

AjNq,2(νj )
[
e−(a+τ )/νj + e−(a−τ )/νj

]
. (76b)

In Eqs. (74–76) we have used the normalization integrals

Nu,α(νj ) = FT
α

N∑
k=1

wkψ(ξk)
[
Φ(νj , ξk) + Φ(νj ,−ξk)

]
, (77a)

Np,α(νj ) = FT
α

N∑
k=1

wkψ(ξk)ξk
[
Φ(νj , ξk) − Φ(νj ,−ξk)

]
(77b)

and

Nq,α(νj ) =
N∑

k=1

wkψ(ξk)F
T
q,α(ξk)

[
Φ(νj , ξk) + Φ(νj ,−ξk)

]
, (77c)
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where        

compute
find

ep flow,
(63) and
the

nalytical

0,1]. In
aripov and
ical work
ee ratios:

t particle)

) is
ree
F1 = 
1
0
0
0

 , F2 = 
0
0
1
0

 , F q,1(ξ) = 
ξ2 − 1/2

1
0
0

 and F q,2(ξ) = 
0
0

ξ2 − 1/2
1

 . (78a–d)

In addition to the species-specific velocity, shear-stress, and heat-flow profiles listed as Eqs. (74)–(76), we intend to
the mass and heat-flow rates defined for each species (α = 1,2) by Eqs. (39), and so we can integrate Eqs. (74) and (76) to

U1 = 1

a

[
A1 − swE + (1/2)c1 + d1 + (1/3)a1(σ1a)2

] + 1

a2

4N∑
j=2

Ajνj Nu,1(νj )
[
1− e−2a/νj

]
, (79a)

U2 = 1

a

[
sA1 − rwF + (1/2)c3 + (1/3)λa1(σ2a)2

] + 1

a2

4N∑
j=2

AjνjNu,2(νj )
[
1− e−2a/νj

]
, (79b)

Q1 = 1

a

[
(5/2)(E + c1) − 4a1

] + 1

a2

4N∑
j=2

AjνjNq,1(νj )
[
1− e−2a/νj

]
(80a)

and

Q2 = 1

a

[
(5/2)(F + c3) − 4λa1

] + 1

a2

4N∑
j=2

AjνjNq,2(νj )
[
1− e−2a/νj

]
. (80b)

To be clear, we note that Eqs. (74)–(76), (79) and (80) are valid for all three problems: Poiseuille flow, thermal-cre
and flow driven by density gradients, and so for any one of the problems some terms involving solutions to Eqs.
(68) will vanish. As our solutions are complete, we proceed to implement the algorithms to establish numerical results for
problems of interest.

6. Numerical results

The first thing to note in regard to our numerical work is the way we defined the quadrature scheme for the a
discrete-ordinates method used in this work. To keep matters simple, we used the transformation

v(ξ) = e−ξ (81)

to mapξ ∈ [0,∞) ontov ∈ [0,1], and we then used the Gauss-Legendre scheme mapped (linearly) onto the interval [
order to evaluate the merits of the solutions developed here, we have elected to use two data cases defined by Sh
Kalempa [15]. These data cases refer to a mixture of the species: (i) Ne–Ar and (ii) He–Xe. As we are reporting numer
only for the case of rigid-sphere interactions, we can see that the McCormack model requires, for this case, only thr
the mass ratio(m1/m2), the diameter ratio(d1/d2) and the density ratio(n1/n2).

For the sake of our computations we consider that the data

m2 = 39.948, m1 = 20.183, d2/d1 = 1.406 (Ne–Ar mixture)

and

m2 = 131.30, m1 = 4.0026, d2/d1 = 2.226 (He–Xe mixture)

are exact. We tabulate our results for these two cases in terms of the molar concentration defined (in terms of the firs
as

C = n1/n2

1+ n1/n2
. (82)

The case of Poiseuille flow (the flow is driven by a pressure gradient) is defined bykT = 0 andkC = 0, and we use the
normalizationkP = 1. The case of thermal-creep flow (the flow is driven by a temperature gradient) is defined bykP = 0 and
kC = 0, and we use the normalizationkT = 1. Similarly, the diffusion problem (the flow is driven by density gradients
defined bykP = 0 andkT = 0, and we use the normalizationkC = 1. In Tables 1–18 we list some typical results for the th
considered problems. Although we have computed all the basicquantitiesuα(τ), qα(τ) andpα(τ), we have (for economy
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Table 1
Poiseuille flow: flow and heat-flow rates for the casea = a = 1.0 andC = 0.1

08
33(–1)
19(–1)
77(–1)
12(–1)
70(–1)
35(–1)
06(–2)

77
36(–1)
25(–1)
47(–1)
65(–1)
57(–1)
94(–1)
80(–2)

99
93(–1)
60(–1)
29(–1)
92(–1)
12(–1)
86(–1)
01(–2)

98
09
18
70
60
728(–1)
027(–1)
382(–2)
1 2

Ne–Ar mixture He–Xe mixture

2a −UP,1 −UP,2 QP,1 QP,2 −UP,1 −UP,2 QP,1 QP,2

1.0(–2) 3.13154 3.04727 1.29186 1.24409 3.20579 3.06987 1.33690 1.255
1.0(–1) 2.03927 2.04260 7.58314(–1) 7.31284(–1) 2.00315 2.06850 7.80915(–1) 7.430
5.0(–1) 1.49107 1.62938 4.69652(–1) 4.62701(–1) 1.26587 1.66420 4.63446(–1) 4.766
1.0 1.35397 1.57617 3.65900(–1) 3.65355(–1) 9.96783(–1) 1.61843 3.44238(–1) 3.802
2.0 1.31671 1.64325 2.71804(–1) 2.73769(–1) 7.78403(–1) 1.69631 2.37146(–1) 2.887
5.0 1.53137 2.05580 1.63348(–1) 1.63311(–1) 6.19341(–1) 2.13058 1.25825(–1) 1.752
1.0(1) 2.06527 2.85384 9.91237(–2) 9.75227(–2) 6.51489(–1) 2.95526 7.09569(–2) 1.056
1.0(2) 1.29100(1) 1.81574(1) 1.19141(–2) 1.14534(–2) 3.27297 1.86619(1) 7.99528(–3) 1.251

Table 2
Poiseuille flow: flow and heat-flow rates for the casea1 = a2 = 1.0 andC = 0.5

Ne–Ar mixture He–Xe mixture

2a −UP,1 −UP,2 QP,1 QP,2 −UP,1 −UP,2 QP,1 QP,2

1.0(–2) 3.10616 3.02370 1.27762 1.22908 3.24528 3.16046 1.35344 1.294
1.0(–1) 2.03930 2.05770 7.50236(–1) 7.23678(–1) 2.06546 2.23164 7.98472(–1) 7.984
5.0(–1) 1.53186 1.70422 4.67838(–1) 4.60551(–1) 1.36343 1.96756 4.83707(–1) 5.536
1.0 1.42127 1.68809 3.66210(–1) 3.63662(–1) 1.11366 2.02467 3.65903(–1) 4.645
2.0 1.41820 1.80091 2.73030(–1) 2.71089(–1) 9.15792(–1) 2.24341 2.58665(–1) 3.724
5.0 1.69784 2.29897 1.63915(–1) 1.59459(–1) 7.90925(–1) 2.95106 1.42778(–1) 2.404
1.0(1) 2.31504 3.21022 9.90113(–2) 9.43089(–2) 8.70636(–1) 4.11144 8.25396(–2) 1.491
1.0(2) 1.45191(1) 2.04217(1) 1.18150(–2) 1.09753(–2) 4.37688 2.49728(1) 9.56954(–3) 1.813

Table 3
Poiseuille flow: flow and heat-flow rates for the casea1 = a2 = 1.0 andC = 0.9

Ne–Ar mixture He–Xe mixture

2a −UP,1 −UP,2 QP,1 QP,2 −UP,1 −UP,2 QP,1 QP,2

1.0(–2) 3.06548 2.98686 1.25474 1.20534 3.22483 3.29990 1.33689 1.347
1.0(–1) 2.03919 2.08230 7.37124(–1) 7.11311(–1) 2.12216 2.61950 7.95867(–1) 9.065
5.0(–1) 1.59350 1.81866 4.64202(–1) 4.55308(–1) 1.54903 2.84528 4.99178(–1) 7.216
1.0 1.52076 1.85450 3.65685(–1) 3.58724(–1) 1.38238 3.28422 3.90486(–1) 6.491
2.0 1.56409 2.02776 2.73859(–1) 2.65133(–1) 1.28765 4.05510 2.89944(–1) 5.544
5.0 1.93129 2.63930 1.64001(–1) 1.53337(–1) 1.34787 5.88585 1.72930(–1) 3.805
1.0(1) 2.66694 3.71165 9.83806(–2) 8.97607(–2) 1.65613 8.44365 1.04733(–1) 2.423
1.0(2) 1.68991(1) 2.37707(1) 1.16178(–2) 1.03415(–2) 8.86120 5.06357(1) 1.26896(–2) 3.018

Table 4
Thermal-creep flow: flow and heat-flow rates for the casea1 = a2 = 1.0 andC = 0.1

Ne–Ar mixture He–Xe mixture

2a UT,1 UT,2 −QT,1 −QT,2 UT,1 UT,2 −QT,1 −QT,2

1.0(–2) 1.29775 1.24317 6.96161 6.71756 1.34069 1.25267 7.15929 6.763
1.0(–1) 7.79481(–1) 7.27975(–1) 4.23995 4.03660 7.95118(–1) 7.33994(–1) 4.30012 4.074
5.0(–1) 5.04030(–1) 4.57327(–1) 2.52515 2.37304 4.88947(–1) 4.60391(–1) 2.44517 2.400
1.0 3.99784(–1) 3.60059(–1) 1.86238 1.73625 3.72120(–1) 3.62534(–1) 1.74832 1.758
2.0 2.97975(–1) 2.69678(–1) 1.27311 1.17488 2.63133(–1) 2.72174(–1) 1.15883 1.192
5.0 1.73993(–1) 1.61647(–1) 6.68158(–1) 6.07544(–1) 1.42890(–1) 1.64410(–1) 5.91896(–1) 6.18
1.0(1) 1.02298(–1) 9.70265(–2) 3.71913(–1) 3.35234(–1) 8.06819(–2) 9.94462(–2) 3.26921(–1) 3.42
1.0(2) 1.18387(–2) 1.14651(–2) 4.08923(–2) 3.65350(–2) 8.98868(–3) 1.18784(–2) 3.58120(–2) 3.73
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Table 5
Thermal-creep flow: flow and heat-flow rates for the casea = a = 1.0 andC = 0.5

18
36
81
35
60
918(–1)
855(–1)
661(–2)

50
35
59
73
56
803(–1)
218(–1)
465(–2)
1 2

Ne–Ar mixture He–Xe mixture

2a UT,1 UT,2 −QT,1 −QT,2 UT,1 UT,2 −QT,1 −QT,2

1.0(–2) 1.28163 1.22344 6.88967 6.63068 1.35640 1.27783 7.24044 6.898
1.0(–1) 7.64126(–1) 7.04136(–1) 4.18048 3.94394 8.09649(–1) 7.34418(–1) 4.40281 4.149
5.0(–1) 4.88714(–1) 4.31182(–1) 2.47924 2.28308 5.03756(–1) 4.38798(–1) 2.56176 2.414
1.0 3.85468(–1) 3.36569(–1) 1.82280 1.65557 3.87730(–1) 3.39538(–1) 1.85988 1.756
2.0 2.86396(–1) 2.52285(–1) 1.24092 1.11026 2.78850(–1) 2.56857(–1) 1.25439 1.184
5.0 1.67929(–1) 1.53812(–1) 6.47569(–1) 5.68856(–1) 1.55811(–1) 1.65810(–1) 6.54556(–1) 6.13
1.0(1) 9.94318(–2) 9.37173(–2) 3.59328(–1) 3.12663(–1) 8.98271(–2) 1.07456(–1) 3.65585(–1) 3.39
1.0(2) 1.16145(–2) 1.12574(–2) 3.93864(–2) 3.39620(–2) 1.02813(–2) 1.40614(–2) 4.04933(–2) 3.71

Table 6
Thermal-creep flow: flow and heat-flow rates for the casea1 = a2 = 1.0 andC = 0.9

Ne–Ar mixture He–Xe mixture

2a UT,1 UT,2 −QT,1 −QT,2 UT,1 UT,2 −QT,1 −QT,2

1.0(–2) 1.25578 1.19217 6.77376 6.49261 1.33803 1.28883 7.16542 6.988
1.0(–1) 7.40521(–1) 6.68298(–1) 4.08628 3.80237 8.00111(–1) 6.87816(–1) 4.40249 4.100
5.0(–1) 4.68744(–1) 3.97808(–1) 2.41260 2.16110 5.06387(–1) 3.50078(–1) 2.64206 2.255
1.0 3.69472(–1) 3.10763(–1) 1.76955 1.55441 3.97993(–1) 2.62194(–1) 1.96132 1.590
2.0 2.76059(–1) 2.37272(–1) 1.20082 1.03502 2.96442(–1) 2.19562(–1) 1.35617 1.045
5.0 1.64271(–1) 1.49916(–1) 6.23307(–1) 5.26476(–1) 1.76612(–1) 1.90699(–1) 7.27836(–1) 5.30
1.0(1) 9.81307(–2) 9.29254(–2) 3.44642(–1) 2.88381(–1) 1.06568(–1) 1.47813(–1) 4.11585(–1) 2.91
1.0(2) 1.15422(–2) 1.12988(–2) 3.76349(–2) 3.12260(–2) 1.28394(–2) 2.24585(–2) 4.60515(–2) 3.15

Table 7
Diffusion problem: flow and heat-flow rates for the casea1 = a2 = 1.0 andC = 0.1

Ne–Ar mixture He–Xe mixture

2a −UC,1 UC,2 QC,1 −QC,2 −UC,1 UC,2 QC,1 −QC,2

1.0(–2) 2.77607 2.98111(–1) 1.14822 1.21229(–1) 2.87606 3.01165(–1) 1.20310 1.23030(−1)

1.0(–1) 1.66666 1.77893(–1) 6.34270(–1) 6.22830(–2) 1.76520 1.82902(–1) 7.02941(–1) 6.53392(−2)

5.0(–1) 9.58818(–1) 1.03044(–1) 3.36170(–1) 2.73719(–2) 1.05070 1.10047(–1) 4.16128(–1) 3.08142(−2)

1.0 6.87238(–1) 7.45597(–2) 2.29570(–1) 1.56476(–2) 7.71775(–1) 8.20853(–2) 3.07005(–1) 1.84960(−2)

2.0 4.51661(–1) 4.96839(–2) 1.42297(–1) 7.29034(–3) 5.23605(–1) 5.70182(–2) 2.08176(–1) 8.98932(−3)

5.0 2.23628(–1) 2.50935(–2) 6.53257(–2) 1.89775(–3) 2.70765(–1) 3.06436(–2) 1.06166(–1) 2.16380(−3)

1.0(1) 1.20528(–1) 1.36674(–2) 3.39294(–2) 6.14453(–4) 1.49135(–1) 1.72958(–2) 5.77571(–2) 4.90125(−4)

1.0(2) 1.28532(–2) 1.47192(–3) 3.49800(–3) 2.77607(–5) 1.62130(–2) 1.92839(–3) 6.19865(–3)−1.56646(−5)

Table 8
Diffusion problem: flow and heat-flow rates for the casea1 = a2 = 1.0 andC = 0.5

Ne–Ar mixture He–Xe mixture

2a −UC,1 UC,2 QC,1 −QC,2 −UC,1 UC,2 QC,1 −QC,2

1.0(–2) 1.52411 1.47110 6.28995(–1) 5.95086(–1) 1.61549 1.53930 6.76630(–1) 6.29938(−1)

1.0(–1) 9.05666(–1) 8.68490(–1) 3.43509(–1) 2.97828(–1) 1.00297 9.45379(–1) 3.99354(–1) 3.35877(−1)

5.0(–1) 5.11142(–1) 4.93657(–1) 1.80443(–1) 1.25672(–1) 6.10823(–1) 5.77758(–1) 2.41260(–1) 1.58585(−1)

1.0 3.60950(–1) 3.52082(–1) 1.23476(–1) 7.08475(–2) 4.56056(–1) 4.35149(–1) 1.80938(–1) 9.57294(−2)

2.0 2.32691(–1) 2.30210(–1) 7.73296(–2) 3.34738(–2) 3.15372(–1) 3.05408(–1) 1.25262(–1) 4.73118(−2)

5.0 1.12430(–1) 1.13339(–1) 3.63830(–2) 9.96489(–3) 1.66792(–1) 1.65831(–1) 6.55315(–2) 1.20337(−2)

1.0(1) 5.99349(–2) 6.09516(–2) 1.92098(–2) 3.94041(–3) 9.27885(–2) 9.39011(–2) 3.60561(–2) 2.99756(−3)

1.0(2) 6.33187(–3) 6.48821(–3) 2.01367(–3) 2.91614(–4) 1.01714(–2) 1.04880(–2) 3.90601(–3)−4.06720(−5)
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Table 9
Diffusion problem: flow and heat-flow rates for the casea = a = 1.0 andC = 0.9

39
948(–1)
802(–1)
860(–1)
649(–2)
838(–2)
623(–3)
600(–5)

399(–2)
567(–2)
055(–2)
808(–2)
728(–2)
657(–2)
349(–2)
401(–2)
100(–2)
898(–2)
343(–2)

327(–1)
171(–1)
675(–1)
751(–1)
235(–1)
866(–1)
227(–1)
637(–1)
864(–1)
167(–1)
619(–1)

pecies

correct
ults, we
lts
ve also
1 2

Ne–Ar mixture He–Xe mixture

2a −UC,1 UC,2 QC,1 −QC,2 −UC,1 UC,2 QC,1 −QC,2

1.0(–2) 2.98972(–1) 2.59225 1.22938(–1) 1.03952 3.19703(–1) 2.82660 1.33657(–1) 1.152
1.0(–1) 1.74696(–1) 1.50406 6.59906(–2) 4.99395(–1) 2.00530(–1) 1.75516 7.96602(–2) 6.00
5.0(–1) 9.55855(–2) 8.29410(–1) 3.43848(–2) 1.99886(–1) 1.26423(–1) 1.09273 4.97605(–2) 2.69
1.0 6.59043(–2) 5.77961(–1) 2.36762(–2) 1.11651(–1) 9.70626(–2) 8.33313(–1) 3.83033(–2) 1.58
2.0 4.12504(–2) 3.66857(–1) 1.50483(–2) 5.45420(–2) 6.94549(–2) 5.92313(–1) 2.73154(–2) 7.75
5.0 1.92891(–2) 1.74230(–1) 7.26398(–3) 1.89020(–2) 3.83153(–2) 3.24434(–1) 1.47310(–2) 2.05
1.0(1) 1.01565(–2) 9.22516(–2) 3.88994(–3) 8.63507(–3) 2.17493(–2) 1.83512(–1) 8.18979(–3) 5.86
1.0(2) 1.06251(–3) 9.69010(–3) 4.13152(–4) 7.85573(–4) 2.42765(–3) 2.04040(–2) 8.93524(–4) 8.78

Table 10
Poiseuille flow: species-specific velocity and heat-flow profiles for the case 2a = 0.1, a1 = a2 = 1.0, andC = 0.5

Ne–Ar mixture He–Xe mixture

τ/a −uP,1(τ ) −uP,2(τ ) qP,1(τ ) qP,2(τ ) −uP,1(τ ) −uP,2(τ ) qP,1(τ ) qP,2(τ )

0.0 1.08046(–1) 1.09405(–1) 4.05101(–2) 3.93117(–2) 1.08919(–1) 1.18242(–1) 4.27822(–2) 4.31
0.1 1.07888(–1) 1.09236(–1) 4.04328(–2) 3.92311(–2) 1.08773(–1) 1.18068(–1) 4.27086(–2) 4.30
0.2 1.07412(–1) 1.08724(–1) 4.01994(–2) 3.89877(–2) 1.08332(–1) 1.17545(–1) 4.24862(–2) 4.28
0.3 1.06607(–1) 1.07859(–1) 3.98046(–2) 3.85761(–2) 1.07586(–1) 1.16660(–1) 4.21100(–2) 4.23
0.4 1.05455(–1) 1.06622(–1) 3.92393(–2) 3.79865(–2) 1.06519(–1) 1.15396(–1) 4.15712(–2) 4.17
0.5 1.03927(–1) 1.04983(–1) 3.84884(–2) 3.72034(–2) 1.05102(–1) 1.13720(–1) 4.08554(–2) 4.09
0.6 1.01978(–1) 1.02892(–1) 3.75284(–2) 3.62022(–2) 1.03293(–1) 1.11583(–1) 3.99401(–2) 3.99
0.7 9.95321(–2) 1.00271(–1) 3.63213(–2) 3.49429(–2) 1.01021(–1) 1.08907(–1) 3.87889(–2) 3.86
0.8 9.64591(–2) 9.69814(–2) 3.47994(–2) 3.33549(–2) 9.81624(–2) 1.05551(–1) 3.73372(–2) 3.70
0.9 9.24736(–2) 9.27205(–2) 3.28163(–2) 3.12844(–2) 9.44487(–2) 1.01209(–1) 3.54453(–2) 3.48
1.0 8.62074(–2) 8.60336(–2) 2.96672(–2) 2.79909(–2) 8.85958(–2) 9.44097(–2) 3.24431(–2) 3.15

Table 11
Poiseuille flow: species-specific velocity and heat-flow profiles for the case 2a = 1.0, a1 = a2 = 1.0, andC = 0.5

Ne–Ar mixture He–Xe mixture

τ/a −uP,1(τ ) −uP,2(τ ) qP,1(τ ) qP,2(τ ) −uP,1(τ ) −uP,2(τ ) qP,1(τ ) qP,2(τ )

0.0 8.00649(–1) 9.61435(–1) 2.17137(–1) 2.20019(–1) 6.16668(–1) 1.14362 2.09771(–1) 2.78
0.1 7.98282(–1) 9.58321(–1) 2.16292(–1) 2.19083(–1) 6.15142(–1) 1.14011 2.09116(–1) 2.77
0.2 7.91138(–1) 9.48927(–1) 2.13736(–1) 2.16250(–1) 6.10529(–1) 1.12955 2.07131(–1) 2.73
0.3 7.79088(–1) 9.33096(–1) 2.09399(–1) 2.11436(–1) 6.02722(–1) 1.11175 2.03758(–1) 2.67
0.4 7.61892(–1) 9.10535(–1) 2.03153(–1) 2.04491(–1) 5.91525(–1) 1.08641 1.98887(–1) 2.59
0.5 7.39162(–1) 8.80774(–1) 1.94794(–1) 1.95172(–1) 5.76621(–1) 1.05302 1.92344(–1) 2.47
0.6 7.10285(–1) 8.43063(–1) 1.83996(–1) 1.83093(–1) 5.57513(–1) 1.01080 1.83853(–1) 2.33
0.7 6.74252(–1) 7.96168(–1) 1.70228(–1) 1.67619(–1) 5.33391(–1) 9.58417(–1) 1.72963(–1) 2.14
0.8 6.29239(–1) 7.37845(–1) 1.52529(–1) 1.47602(–1) 5.02810(–1) 8.93480(–1) 1.58867(–1) 1.90
0.9 5.71200(–1) 6.63082(–1) 1.28776(–1) 1.20483(–1) 4.62612(–1) 8.10637(–1) 1.39794(–1) 1.59
1.0 4.79774(–1) 5.46308(–1) 8.82491(–2) 7.31916(–2) 3.97373(–1) 6.82623(–1) 1.07018(–1) 1.05

of space) omittedpα(τ) from our tabulations, and we report results only for the case of diffuse reflection for both s
(a1 = a2 = 1).

While we have no definitive proof of the accuracy of our results, we believe that the results listed in our tables are
(within the context of the kinetic model used) to all digits given. To establish some confidence in our numerical res
found stability in the results as we varied the only approximation parameterN from 20 to 100 and we obtained identical resu
from two independently implemented numerical codes: one based on MATLAB and the other on FORTRAN. We ha
seen that our computations confirmed (to many digits) the identity

(n1/n)p1(τ) + (n2/n)p2(τ) + (τ/2)kP = 0, (83)
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Table 12
Poiseuille flow: species-specific velocity and heat-flow profiles for the case 2a = 10.0, a = a = 1.0, andC = 0.5

523(–1)
213(–1)
275(–1)
690(–1)
419(–1)
401(–1)
541(–1)
685(–1)
560(–1)
575(–1)
907(–1)

63(–1)
34(–1)

177(–1)
682(–1)
061(–1)
691(–1)
593(–1)
169(–1)
565(–1)
561(–1)
931(–1)

ld known
We have
as
1 2

Ne–Ar mixture He–Xe mixture

τ/a −uP,1(τ ) −uP,2(τ ) qP,1(τ ) qP,2(τ ) −uP,1(τ ) −uP,2(τ ) qP,1(τ ) qP,2(τ )

0.0 1.52277(1) 2.12248(1) 6.92749(−1) 6.54955(−1) 5.50220 2.68938(1) 5.05395(−1) 1.05334
0.1 1.51222(1) 2.10762(1) 6.89853(−1) 6.52736(−1) 5.47004 2.67121(1) 5.03994(−1) 1.04898
0.2 1.48055(1) 2.06298(1) 6.80843(−1) 6.45782(−1) 5.37333 2.61661(1) 4.99655(−1) 1.03540
0.3 1.42762(1) 1.98837(1) 6.64691(−1) 6.33129(−1) 5.21139 2.52532(1) 4.91946(−1) 1.01104
0.4 1.35322(1) 1.88342(1) 6.39451(−1) 6.12915(−1) 4.98289 2.39687(1) 4.80041(−1) 9.72899(−1)

0.5 1.25693(1) 1.74750(1) 6.01823(−1) 5.81867(−1) 4.68548 2.23042(1) 4.62516(−1) 9.15859(−1)

0.6 1.13804(1) 1.57947(1) 5.46265(−1) 5.34237(−1) 4.31508 2.02450(1) 4.36919(−1) 8.31212(−1)

0.7 9.95246 1.37719(1) 4.63085(−1) 4.59372(−1) 3.86418 1.77647(1) 3.98811(−1) 7.03436(−1)

0.8 8.25779 1.13617(1) 3.33644(−1) 3.35224(−1) 3.31737 1.48083(1) 3.39226(−1) 5.01803(−1)

0.9 6.22296 8.44425 1.13786(−1) 1.04492(−1) 2.63535 1.12324(1) 2.35596(−1) 1.50334(−1)

1.0 3.32971 4.18646 −4.56218(−1) −6.19838(−1) 1.57490 6.05779 −5.02031(−2) −8.29468(−1)

Table 13
Thermal-creep flow: species-specific velocity and heat-flow profiles for the case 2a = 0.1, a1 = a2 = 1.0, andC = 0.5

Ne–Ar mixture He–Xe mixture

τ/a uT,1(τ ) uT ,2(τ ) −qT,1(τ ) −qT,2(τ ) uT ,1(τ ) uT ,2(τ ) −qT,1(τ ) −qT,2(τ )

0.0 4.11780(–2) 3.81342(–2) 2.21263(–1) 2.09360(–1) 4.33375(–2) 3.95768(–2) 2.32017(–1) 2.19
0.1 4.11013(–2) 3.80588(–2) 2.20947(–1) 2.09048(–1) 4.32639(–2) 3.95031(–2) 2.31711(–1) 2.19
0.2 4.08697(–2) 3.78310(–2) 2.19995(–1) 2.08103(–1) 4.30415(–2) 3.92808(–2) 2.30787(–1) 2.18
0.3 4.04780(–2) 3.74459(–2) 2.18384(–1) 2.06505(–1) 4.26655(–2) 3.89047(–2) 2.29224(–1) 2.16
0.4 3.99172(–2) 3.68943(–2) 2.16077(–1) 2.04215(–1) 4.21271(–2) 3.83662(–2) 2.26986(–1) 2.14
0.5 3.91725(–2) 3.61615(–2) 2.13013(–1) 2.01171(–1) 4.14118(–2) 3.76509(–2) 2.24011(–1) 2.11
0.6 3.82208(–2) 3.52244(–2) 2.09094(–1) 1.97278(–1) 4.04975(–2) 3.67365(–2) 2.20208(–1) 2.07
0.7 3.70247(–2) 3.40457(–2) 2.04165(–1) 1.92378(–1) 3.93480(–2) 3.55867(–2) 2.15425(–1) 2.02
0.8 3.55176(–2) 3.25590(–2) 1.97949(–1) 1.86193(–1) 3.78991(–2) 3.41373(–2) 2.09393(–1) 1.96
0.9 3.35556(–2) 3.06203(–2) 1.89851(–1) 1.78123(–1) 3.60121(–2) 3.22488(–2) 2.01534(–1) 1.88
1.0 3.04452(–2) 2.75362(–2) 1.77013(–1) 1.65296(–1) 3.30211(–2) 2.92514(–2) 1.89081(–1) 1.75

Table 14
Thermal-creep flow: species-specific velocity and heat-flow profiles for the case 2a = 1.0, a1 = a2 = 1.0, andC = 0.5

Ne–Ar mixture He–Xe mixture

τ/a uT,1(τ ) uT ,2(τ ) −qT,1(τ ) −qT,2(τ ) uT ,1(τ ) uT ,2(τ ) −qT,1(τ ) −qT,2(τ )

0.0 2.22383(–1) 1.96073(–1) 1.00886 9.20112(–1) 2.19961(–1) 1.96487(–1) 1.01890 9.701
0.1 2.21643(–1) 1.95382(–1) 1.00649 9.17893(–1) 2.19317(–1) 1.95816(–1) 1.01674 9.679
0.2 2.19404(–1) 1.93290(–1) 9.99300(–1) 9.11168(–1) 2.17367(–1) 1.93789(–1) 1.01018 9.61
0.3 2.15606(–1) 1.89742(–1) 9.87072(–1) 8.99716(–1) 2.14057(–1) 1.90352(–1) 9.99031(–1) 9.49
0.4 2.10140(–1) 1.84634(–1) 9.69403(–1) 8.83136(–1) 2.09283(–1) 1.85412(–1) 9.82918(–1) 9.33
0.5 2.02832(–1) 1.77800(–1) 9.45648(–1) 8.60782(–1) 2.02884(–1) 1.78814(–1) 9.61247(–1) 9.10
0.6 1.93405(–1) 1.68979(–1) 9.14786(–1) 8.31636(–1) 1.94603(–1) 1.70318(–1) 9.33081(–1) 8.81
0.7 1.81411(–1) 1.57741(–1) 8.75160(–1) 7.94032(–1) 1.84021(–1) 1.59527(–1) 8.96900(–1) 8.44
0.8 1.66046(–1) 1.43310(–1) 8.23816(–1) 7.44994(–1) 1.70391(–1) 1.45728(–1) 8.49991(–1) 7.95
0.9 1.45540(–1) 1.23973(–1) 7.54308(–1) 6.78006(–1) 1.52080(–1) 1.27346(–1) 7.86458(–1) 7.29
1.0 1.11076(–1) 9.10700(–2) 6.35301(–1) 5.61212(–1) 1.21067(–1) 9.64805(–2) 6.77859(–1) 6.15

with

n = n1 + n2, (84)

and the Onsager identities listed as Eqs. (52), (54), (55) and (58). Finally we have seen that our computations yie
results available from the S-model calculations [35,36] when we allow our data to collapse to the single-species gas.
obtained this reduction to a single gas in three ways: (i)n1 = 0, for which the quantities with subscript 2 yield the single-g
results, (ii)n2 = 0, for which the quantities with subscript 1 yield the single-gas results, and (iii)m1 = m2 andd1 = d2. That we
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Table 15
Thermal-creep flow: species-specific velocity and heat-flow profiles for the case 2a = 10.0, a = a = 1.0, andC = 0.5

30
67
55
17
05
52
89
36
59
50
232(–1)

205(–2)
866(–2)
840(–2)
104(–2)
615(–2)
303(–2)
060(–2)
711(–2)
943(–2)
083(–2)
901(–2)

127(–2)
414(–2)
200(–2)
241(–2)
095(–2)
047(–2)
966(–2)
999(–2)
822(–2)
127(–2)
992(–2)

ormack

ments such
1 2

Ne–Ar mixture He–Xe mixture

τ/a uT,1(τ ) uT ,2(τ ) −qT,1(τ ) −qT,2(τ ) uT ,1(τ ) uT ,2(τ ) −qT,1(τ ) −qT,2(τ )

0.0 5.65810(–1) 5.42597(–1) 1.94997 1.68890 5.01845(–1) 6.38459(–1) 1.98146 1.842
0.1 5.64856(–1) 5.41464(–1) 1.94823 1.68763 5.01158(–1) 6.36539(–1) 1.97945 1.840
0.2 5.61881(–1) 5.37946(–1) 1.94276 1.68362 4.99012(–1) 6.30642(–1) 1.97316 1.835
0.3 5.56522(–1) 5.31659(–1) 1.93274 1.67621 4.95129(–1) 6.20339(–1) 1.96184 1.826
0.4 5.48082(–1) 5.21885(–1) 1.91658 1.66406 4.88974(–1) 6.04843(–1) 1.94400 1.811
0.5 5.35371(–1) 5.07415(–1) 1.89143 1.64479 4.79615(–1) 5.82869(–1) 1.91702 1.787
0.6 5.16359(–1) 4.86245(–1) 1.85221 1.61405 4.65429(–1) 5.52365(–1) 1.87632 1.750
0.7 4.87442(–1) 4.54928(–1) 1.78941 1.56349 4.43472(–1) 5.09935(–1) 1.81340 1.692
0.8 4.41620(–1) 4.06956(–1) 1.68322 1.47524 4.07849(–1) 4.49400(–1) 1.71073 1.593
0.9 3.62373(–1) 3.27281(–1) 1.48305 1.30204 3.44159(–1) 3.56854(–1) 1.52359 1.407
1.0 1.61150(–1) 1.33167(–1) 8.94022(–1) 7.52106(–1) 1.72293(–1) 1.56646(–1) 9.90282(–1) 8.54

Table 16
Diffusion problem: species-specific velocity and heat-flow profiles for the case 2a = 0.1, a1 = a2 = 1.0, andC = 0.5

Ne–Ar mixture He–Xe mixture

τ/a −uC,1(τ ) uC,2(τ ) qC,1(τ ) −qC,2(τ ) −uC,1(τ ) uC,2(τ ) qC,1(τ ) −qC,2(τ )

0.0 4.79759(–2) 4.61626(–2) 1.85128(–2) 1.61483(–2) 5.28840(–2) 5.00507(–2) 2.13851(–2) 1.81
0.1 4.79065(–2) 4.60919(–2) 1.84786(–2) 1.61164(–2) 5.28134(–2) 4.99789(–2) 2.13486(–2) 1.80
0.2 4.76967(–2) 4.58785(–2) 1.83753(–2) 1.60199(–2) 5.26000(–2) 4.97619(–2) 2.12384(–2) 1.79
0.3 4.73420(–2) 4.55176(–2) 1.82004(–2) 1.58565(–2) 5.22393(–2) 4.93949(–2) 2.10519(–2) 1.78
0.4 4.68340(–2) 4.50008(–2) 1.79495(–2) 1.56218(–2) 5.17228(–2) 4.88696(–2) 2.07848(–2) 1.75
0.5 4.61592(–2) 4.43146(–2) 1.76158(–2) 1.53092(–2) 5.10369(–2) 4.81721(–2) 2.04300(–2) 1.72
0.6 4.52968(–2) 4.34375(–2) 1.71881(–2) 1.49078(–2) 5.01606(–2) 4.72809(–2) 1.99762(–2) 1.68
0.7 4.42125(–2) 4.23351(–2) 1.66488(–2) 1.44002(–2) 4.90595(–2) 4.61612(–2) 1.94053(–2) 1.62
0.8 4.28463(–2) 4.09464(–2) 1.59663(–2) 1.37557(–2) 4.76728(–2) 4.47512(–2) 1.86853(–2) 1.55
0.9 4.10680(–2) 3.91394(–2) 1.50724(–2) 1.29077(–2) 4.58694(–2) 4.29174(–2) 1.77467(–2) 1.47
1.0 3.82558(–2) 3.62826(–2) 1.36407(–2) 1.15375(–2) 4.30219(–2) 4.00208(–2) 1.62567(–2) 1.32

Table 17
Diffusion problem: species-specific velocity and heat-flow profiles for the case 2a = 1.0, a1 = a2 = 1.0, andC = 0.5

Ne–Ar mixture He–Xe mixture

τ/a −uC,1(τ ) uC,2(τ ) qC,1(τ ) −qC,2(τ ) −uC,1(τ ) uC,2(τ ) qC,1(τ ) −qC,2(τ )

0.0 2.00681(–1) 1.97508(–1) 7.03207(–2) 4.07160(–2) 2.51420(–1) 2.42336(–1) 1.02725(–1) 5.56
0.1 2.00195(–1) 1.96988(–1) 7.01267(–2) 4.06137(–2) 2.50841(–1) 2.41720(–1) 1.02428(–1) 5.54
0.2 1.98722(–1) 1.95412(–1) 6.95368(–2) 4.02998(–2) 2.49086(–1) 2.39854(–1) 1.01528(–1) 5.49
0.3 1.96212(–1) 1.92729(–1) 6.85259(–2) 3.97526(–2) 2.46108(–1) 2.36689(–1) 9.99968(–2) 5.40
0.4 1.92577(–1) 1.88848(–1) 6.70485(–2) 3.89322(–2) 2.41816(–1) 2.32131(–1) 9.77827(–2) 5.27
0.5 1.87674(–1) 1.83622(–1) 6.50306(–2) 3.77734(–2) 2.36065(–1) 2.26030(–1) 9.48029(–2) 5.09
0.6 1.81281(–1) 1.76821(–1) 6.23550(–2) 3.61719(–2) 2.28629(–1) 2.18154(–1) 9.09268(–2) 4.84
0.7 1.73038(–1) 1.68074(–1) 5.88287(–2) 3.39547(–2) 2.19142(–1) 2.08123(–1) 8.59415(–2) 4.52
0.8 1.62306(–1) 1.56725(–1) 5.41044(–2) 3.08067(–2) 2.06951(–1) 1.95260(–1) 7.94663(–2) 4.09
0.9 1.47713(–1) 1.41358(–1) 4.74158(–2) 2.60270(–2) 1.90644(–1) 1.78100(–1) 7.06685(–2) 3.48
1.0 1.22709(–1) 1.15185(–1) 3.49874(–2) 1.61399(–2) 1.63419(–1) 1.49514(–1) 5.54659(–2) 2.31

obtain identical results from these three limiting cases can be attributed, we believe, to the good way the mean-free pathl0 used
in this work is defined [15,18]. We find it especially interesting to see that the S model can be obtained from the McC
model when the data for the gas mixture is reduced to that of a single species.

It can be noted that since we are reporting our results on a species-specific basis, combinations of these basic ele
as

u(τ) = ϕu,1u1(τ) + ϕu,2u2(τ), (85a)

p(τ) = ϕp,1p1(τ) + ϕp,2p2(τ), (85b)
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Table 18
Diffusion problem: species-specific velocity and heat-flow profiles for the case 2a = 10.0, a = a = 1.0, andC = 0.5

een
be made
without

hannel is
eneral form
or
continuous

mpa [17]
by using

ions, the
roblems
hine —

cussions

in regard
1 2

Ne–Ar mixture He–Xe mixture

τ/a −uC,1(τ ) uC,2(τ ) qC,1(τ ) −qC,2(τ ) −uC,1(τ ) uC,2(τ ) qC,1(τ ) −qC,2(τ )

0.0 3.17517(–1) 3.25358(–1) 1.01076(–1) 1.55462(–2) 5.04948(–1) 5.17953(–1) 1.96136(–1) 5.81648(−3)

0.1 3.17424(–1) 3.25239(–1) 1.01062(–1) 1.56345(–2) 5.04484(–1) 5.17355(–1) 1.96014(–1) 6.11153(−3)

0.2 3.17119(–1) 3.24850(–1) 1.01016(–1) 1.59117(–2) 5.03021(–1) 5.15477(–1) 1.95620(–1) 7.01294(−3)

0.3 3.16515(–1) 3.24088(–1) 1.00919(–1) 1.64171(–2) 5.00327(–1) 5.12050(–1) 1.94862(–1) 8.56813(−3)

0.4 3.15428(–1) 3.22733(–1) 1.00729(–1) 1.72216(–2) 4.95951(–1) 5.06554(–1) 1.93555(–1) 1.08495(−2)

0.5 3.13493(–1) 3.20359(–1) 1.00359(–1) 1.84344(–2) 4.89101(–1) 4.98086(–1) 1.91364(–1) 1.39360(−2)

0.6 3.09978(–1) 3.16125(–1) 9.96146(–2) 2.02036(–2) 4.78383(–1) 4.85077(–1) 1.87664(–1) 1.78596(−2)

0.7 3.03330(–1) 3.08275(–1) 9.80389(–2) 2.26772(–2) 4.61242(–1) 4.64701(–1) 1.81252(–1) 2.24509(−2)

0.8 2.89908(–1) 2.92780(–1) 9.44243(–2) 2.57697(–2) 4.32530(–1) 4.31365(–1) 1.69554(–1) 2.68471(−2)

0.9 2.59408(–1) 2.58513(–1) 8.48030(–2) 2.77977(–2) 3.79688(–1) 3.71685(–1) 1.45863(–1) 2.74943(−2)

1.0 1.49282(–1) 1.39944(–1) 3.78699(–2) 4.43067(–3) 2.35273(–1) 2.14858(–1) 7.02409(–2)−5.12899(−3)

and

q(τ) = ϕq,1q1(τ) + ϕq,2q2(τ), (85c)

are readily available once “adaptation coefficients”ϕi,α, i = u,p,q, α = 1,2, are specified. Since these factors have b
defined in several ways in other works [15–17,19,23,24], and since the choice of these factors could conveniently
differently for different applications of the theory, we have developed our solutions and reported our numerical results
specifying these factors.

7. Concluding remarks

To conclude this work, we note that we believe that our solutions to the considered problems, where the flow in a c
driven by pressure, temperature and density gradients, are especially concise and easy to use. We have included a g
of the Maxwell boundary condition in our formulation, and we have reported what we believe to be highly accurate results f
some test cases. It should be noted that our complete, species-specific results for the three considered problems are
in theτ variable and thus are valid for allτ ∈ [−a, a].

In this work we have considered only the case of rigid-sphere interactions, but as pointed out by Sharipov and Kale
the solutions can be used for other scattering laws such as the one defined by the Lennard-Jones potential simply
appropriate definitions of the omega integrals [1,5] mentioned in Appendix A.

Since our solutions require only a matrix eigenvalue/eigenvector routine and a solver of linear algebraic equat
algorithm is especially efficient, fast and easy to implement. In fact, the developed (FORTRAN) code solves all three p
for all quantities of interest with 5 or 6 figures of accuracy in less than a second on a 2.2 GHz mobile Pentium IV mac
which confirms, we believe, the merit of this work.
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Appendix A. Basic elements of the defining equations

Here we list some basic results that are required to define certain elements of the main text of this paper. First of all,
to Eq. (8), we use

r = (m1/m2)1/2, s = (m2/m1)1/2, r∗ = r2

1+ r2
and s∗ = s2

1+ s2
, (A.1a–d)

and so we can write

Kβ,α(c′, c) = K
(1)
β,α(c′, c) + K

(2)
β,α(c′, c) + K

(3)
β,α(c′, c) + K

(4)
β,α(c′, c), α,β = 1,2, (A.2)
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where { [ ] ( )}

K

(1)
1,1(c

′, c) = 1+ 2 1− η
(1)
1,2 − η

(2)
1,2 c′2 − 5/2 c′ · c, (A.3)

K
(2)
1,1(c

′, c) = (2/3)
[
1− 2r∗η

(1)
1,2

](
c′2 − 3/2

)(
c2 − 3/2

)
, (A.4)

K
(3)
1,1(c

′, c) = 2�1
[
(c′ · c)2 − (1/3)c′2c2]

, (A.5)

K
(4)
1,1(c

′, c) = [
(4/5)β1

(
c′2 − 5/2

) − η
(2)
1,2

](
c2 − 5/2

)
c′ · c, (A.6)

K
(1)
2,1(c

′, c) = r
{
2η

(1)
1,2 + η

(2)
1,2

[
r2(c′2 − 5/2

) + c2 − 5/2
]}

c′ · c, (A.7)

K
(2)
2,1(c

′, c) = (4/3)r∗η
(1)
1,2

(
c′2 − 3/2

)(
c2 − 3/2

)
, (A.8)

K
(3)
2,1(c

′, c) = 2η
(4)
1,2

[
(c′ · c)2 − (1/3)c′2c2]

, (A.9)

K
(4)
2,1(c

′, c) = (4/5)η
(6)
1,2

(
c′2 − 5/2

)(
c2 − 5/2

)
c′ · c, (A.10)

K
(1)
2,2(c

′, c) = 1+ {
2
[
1− η

(1)
2,1

] − η
(2)
2,1

(
c′2 − 5/2

)}
c′ · c, (A.11)

K
(2)
2,2(c

′, c) = (2/3)
[
1− 2s∗η

(1)
2,1

](
c′2 − 3/2

)(
c2 − 3/2

)
, (A.12)

K
(3)
2,2(c

′, c) = 2�2
[
(c′ · c)2 − (1/3)c′2c2]

, (A.13)

K
(4)
2,2(c

′, c) = [
(4/5)β2

(
c′2 − 5/2

) − η
(2)
2,1

](
c2 − 5/2

)
c′ · c, (A.14)

K
(1)
1,2(c

′, c) = s
{
2η

(1)
2,1 + η

(2)
2,1

[
s2(

c′2 − 5/2
) + c2 − 5/2

]}
c′ · c, (A.15)

K
(2)
1,2(c

′, c) = (4/3)s∗η
(1)
2,1

(
c′2 − 3/2

)(
c2 − 3/2

)
, (A.16)

K
(3)
1,2(c

′, c) = 2η
(4)
2,1

[
(c′ · c)2 − (1/3)c′2c2]

(A.17)

and

K
(4)
1,2(c

′, c) = (4/5)η
(6)
2,1

(
c′2 − 5/2

)(
c2 − 5/2

)
c′ · c. (A.18)

Here

�1 = 1+ η
(4)
1,1 − η

(3)
1,1 − η

(3)
1,2, (A.19)

�2 = 1+ η
(4)
2,2 − η

(3)
2,2 − η

(3)
2,1, (A.20)

β1 = 1+ η
(6)
1,1 − η

(5)
1,1 − η

(5)
1,2 (A.21)

and

β2 = 1+ η
(6)
2,2 − η

(5)
2,2 − η

(5)
2,1, (A.22)

where

η
(k)
i,j = ν

(k)
i,j /γi . (A.23)

Following McCormack [14], we write

ν
(1)
α,β = 16

3

mα,β

mα
nβΩ11

α,β, (A.24)

ν
(2)
α,β = 64

15

(
mα,β

mα

)2
nβ

(
Ω12

α,β − 5

2
Ω11

α,β

)
, (A.25)

ν
(3)
α,β = 16

5

(
mα,β

mα

)2 mα

mβ
nβ

(
10

3
Ω11

α,β + mβ

mα
Ω22

α,β

)
, (A.26)
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ν
(4)
α,β = 16

5

(
mα,β

m

)2 mα

m
nβ

(
10

3
Ω11

α,β − Ω22
α,β

)
, (A.27)

simple
α β

ν
(5)
α,β = 64

15

(
mα,β

mα

)3 mα

mβ
nβΓ

(5)
α,β (A.28)

and

ν
(6)
α,β = 64

15

(
mα,β

mα

)3(
mα

mβ

)3/2
nβΓ

(6)
α,β , (A.29)

with

Γ
(5)
α,β = Ω22

α,β +
(

15mα

4mβ
+ 25mβ

8mα

)
Ω11

α,β −
(

mβ

2mα

)(
5Ω12

α,β − Ω13
α,β

)
(A.30)

and, after a correction by Pan and Storvick [37]

Γ
(6)
α,β = −Ω22

α,β + 55

8
Ω11

α,β − 5

2
Ω12

α,β + 1

2
Ω13

α,β . (A.31)

In addition,

mα,β = mαmβ/(mα + mβ) (A.32)

and theΩ functions are the Chapman–Cowling integrals [1,5] which for the case of rigid-sphere interactions take the
forms

Ω12
α,β = 3Ω11

α,β, Ω13
α,β = 12Ω11

α,β and Ω22
α,β = 2Ω11

α,β (A.33a–c)

with

Ω11
α,β = 1

4

(
πkT0

2mα,β

)1/2
(dα + dβ)2. (A.34)

Appendix B. The basic kernels for flow problems

The elements of the kernelK(ξ ′, ξ) required in Eq. (31) are as follows:

k1,1(ξ
′, ξ) = 2�1ξ ′ξ + 1− η

(1)
1,2 − η

(2)
1,2

(
ξ ′2 + ξ2 − 1

)
/2+ 2β1

(
ξ ′2 − 1/2

)(
ξ2 − 1/2

)
/5, (B.1)

k1,2(ξ
′, ξ) = −(1/2)η

(2)
1,2 + 2β1

(
ξ2 − 1/2

)
/5, (B.2)

k1,3(ξ
′, ξ) = 2η

(4)
1,2ξ

′ξ + r
{
η
(1)
1,2 + η

(2)
1,2

[
r2(

ξ ′2 − 1/2
) + ξ2 − 1/2

]
/2

} + 2η
(6)
1,2

(
ξ ′2 − 1/2

)(
ξ2 − 1/2

)
/5, (B.3)

k1,4(ξ
′, ξ) = (1/2)r3η

(2)
1,2 + 2η

(6)
1,2

(
ξ2 − 1/2

)
/5, (B.4)

k2,1(ξ
′, ξ) = −η

(2)
1,2 + 4β1

(
ξ ′2 − 1/2

)
/5, (B.5)

k2,2(ξ
′, ξ) = (4/5)β1, (B.6)

k2,3(ξ
′, ξ) = rη

(2)
1,2 + 4η

(6)
1,2

(
ξ ′2 − 1/2

)
/5, (B.7)

k2,4(ξ
′, ξ) = (4/5)η

(6)
1,2, (B.8)

k3,1(ξ
′, ξ) = 2η

(4)
2,1ξ

′ξ + s
{
η
(1)
2,1 + η

(2)
2,1

[
s2(

ξ ′2 − 1/2
) + ξ2 − 1/2

]
/2

} + 2η
(6)
2,1

(
ξ ′2 − 1/2

)(
ξ2 − 1/2

)
/5, (B.9)

k3,2(ξ
′, ξ) = (1/2)s3η

(2)
2,1 + 2η

(6)
2,1

(
ξ2 − 1/2

)
/5, (B.10)

k3,3(ξ
′, ξ) = 2�2ξ ′ξ + 1− η

(1)
2,1 − η

(2)
2,1

(
ξ ′2 + ξ2 − 1

)
/2+ 2β2

(
ξ ′2 − 1/2

)(
ξ2 − 1/2

)
/5, (B.11)

k3,4(ξ
′, ξ) = −(1/2)η

(2)
2,1 + 2β2

(
ξ2 − 1/2

)
/5, (B.12)
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k4,1(ξ
′, ξ) = sη

(2)
2,1 + 4η

(6)
2,1

(
ξ ′2 − 1/2

)
/5, (B.13)

of the
form

quadrature

s

k4,2(ξ
′, ξ) = (4/5)η

(6)
2,1, (B.14)

k4,3(ξ
′, ξ) = −η

(2)
2,1 + 4β2

(
ξ ′2 − 1/2

)
/5 (B.15)

and

k4,4(ξ
′, ξ) = (4/5)β2. (B.16)

Appendix C. The elementary solutions

While our complete work regarding the elementary solutions is given in Ref. [18], we give here a brief description
way in which these solutions are defined. To start, we look for solutions of the homogeneous version of Eq. (31) of the

G(τ, ξ) = Φ(ν, ξ)e−τ/ν (C.1)

which leads us, after we introduce the discrete-ordinates method, withN nodes and weights{ξk,wk} defined for the integration
interval [0,∞), to the eigenvalue problem

(
1/ξ2

i

)[
Σ2V (νj , ξi ) −

N∑
k=1

wkψ(ξk)K(ξk, ξi )V (νj , ξk)

]
= λj V (νj , ξi). (C.2)

Here

K(ξ ′, ξ) = (ξ/ξ ′)ΣK+(ξ ′, ξ)Σ + Σ2K−(ξ ′, ξ) −
∞∫

0

ψ(ξ ′′)(ξ/ξ ′′)ΣK+(ξ ′′, ξ)ΣK−(ξ ′, ξ ′′)dξ ′′, (C.3)

where

K+(ξ ′, ξ) = K(ξ ′, ξ) + K(−ξ ′, ξ), (C.4a)

K−(ξ ′, ξ) = K(ξ ′, ξ) − K(−ξ ′, ξ) (C.4b)

and where the kernelK(ξ ′, ξ) is defined in Appendix B. Upon solving the eigenvalue problem, we use the eigenvaluesλj and
eigenvectorsV (νj , ξk) to establish the separation constants,

νj = ±λ
−1/2
j

(C.5)

and the vectors

U(νj , ξi) = (νj /ξi)Σ

[
V (νj , ξi) −

N∑
k=1

wkψ(ξk)K−(ξk, ξi)V (νj , ξk)

]
. (C.6)

We now can use

Φ(νj , ξi) = (1/2)
[
U (νj , ξi ) + V (νj , ξi)

]
(C.7a)

and

Φ(νj ,−ξi) = (1/2)
[
U (νj , ξi) − V (νj , ξi )

]
. (C.7b)

We found that one (plus/minus) pair of separation constants appears to become unbounded as the order of our
scheme increases, so we replace the corresponding elementary solutions with the two exact solutions

G+ =




1
0
s

0


 and G−(τ, ξ) =




σ1τ − ξ

0
sσ1(τ − ξ/σ2)

0


 . (C.8a,b)

Finally we can write our ADO general solution to the homogeneous version of Eq. (31) as

G(τ,±ξi ) = A1G+ + B1G−(τ,±ξi ) +
4N∑
j=2

[
AjΦ(νj ,±ξi )e−τ/νj + BjΦ(νj ,∓ξi )eτ/νj

]
, (C.9)

for i = 1,2, . . . ,N . The constantsA1, B1, {Aj ,Bj } in Eq. (C.9) are to be determinedfrom boundary and/or other condition
relevant to a given problem.
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