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Abstract

An analytical version of the discrete-ordinates method (the ADO method) is used to establish concise and particularly accurate
solutions to the viscous-slip and the half-space thermal-creep problems for a binary gas mixture. The kinetic equations used
to describe the flow are based on the McCormack model for mixtures. In addition to a computation of the viscous-slip and
thermal-slip coefficients, for the case of Maxwell boundary d@ors for each of the two species, the velocity, heat-flow and
shear-stress profiles are established for both types of particles. Numerical results are reported for three binary mixtures (Ne—Ar,
He—Ar and He—Xe) with various molar concentrations. The complete solution requires only a (matrix) eigenvalue/eigenvector
routine and the solution of a system of linear algebraic equations, and thus the algorithm is considered especially easy to
use. The developed (FORTRAN) code requires typically less than 0.1 seconds on a 1.2 GHz Pentium-based PC to solve both
problems.

0 2003 Elsevier SAS. All rights reserved.

1. Introduction

The study of slip phenomena in gas flows over plane boundaries is of major importance in gas dynamics, especially when
the flow is in the transition or in the slip regimes [1,2]. In the transition regime the application of the Boltzmann equation (BE)
or of kinetic model equations is necessary to describe the thermal creep and the mechanocaloric effects. In addition, in the slip
regime the determination of the apprigte slipboundary conditions to be coupled witie hydrodynamic cdimuum equations
should be obtained from the solution of kinetic type equations (BE or suitable models). The fundamental theoretical significance
and the great practical importance of the slip coefficients easily justify the interest in this area of research. Most work in this
regard has been focused on the case of a single gas [3—6]; however, the case of gas mixtures has also received some significant
attention [7—12]. Efforts are now being made [13-18] to extend early work on gas mixtures in order to solve complicated binary
gas problems in an efficient and accurate manner. This is achieved by adapting well-developed techniques for single-component
gases to gas mixtures. The renewed interest in these problems is justified by the basic need of a thorough understanding of
micro and mesoscale transport phenomena in mixtures due to an increasing number of technological applications [19,20].

One of the major difficulties in dealing with gas mixtures is the large number of parameters (concentration ratios, molecular
masses and diameters, gas-surface accommodation coefficients, intermolecular laws and forces), which are involved in the
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calculations. Some of these parameters are deduced from modeling, while others are obtained from experimental data. Thus
it is important to develop methodologies able to handle all these parameters with a modest computational effort. To deal with
this kind of problem Ivchenko, Loyalka and Tompson [16,17] have developed general and convenient expressions for the slip
coefficients of various binary gases. These authors compared their results with experimental work [21,22] and concluded that
there was good agreement when the theoretical results are obtained through a second-order Chapman-Enskog approximation.
Sharipov and Kalempa [14,15] have recentlgaged solutions of the velocity-slip and thermal-slip problems for three different

gas mixtures based on the McCormack model equation [23]. Sharipov and Kalempa implemented the discrete-velocity method
to solve the coupled equations, and they reported that they found good agreement with results [16,17] deduced from the
Boltzmann equation. We consider that Sharipov and Kalempa [13-15] have demonstrated the merits of the McCormack kinetic
model for describing binary gas flows.

During the last few years, an analytical version of thecdite-ordinates (ADO) method has been developed [24] and
established as a simple, efficient and highly accurate methodology for solving problems in rarefied gas dynamics. A large
number of a single-gas flow and thermal problems has been solved in a unified manner [25-27], while the method has also
been used to solve [28,29] problems for mixtures described by the Hamel model [30]. In the present work the ADO method
is used to solve the half-space viscous-slip (or the Kramers’) and thermal-slip (or the half-space thermal-creep) binary-gas
flow problems defined by the McCormack model, with specdifitse boundary conditions. Owbjective here is to provide
concise and accurate solutions (to the considered problems) that define what we consider to be a high standard of accuracy. In
addition to defining good numerical resultsese new solutions are valid for wall cations described by a general specular-
diffuse scattering law, and the solutions can be implemented at a computational cost much less, we believe, than the cost of
evaluating basic quantities of interest with strictly numerical solutions. Finally, we note that our numerical results are reported
on a species-specific basis so that various ways (that could depend on a specific application) of defining the velocity, heat-flow
and shear-stress profiles for the binary mixture can be used. While we report, in this work, the viscous-slip and thermal-slip
coefficients, we also establish velocity, heat-flow and shear-stress profiles.

2. The McCormack model

In this work we base our analysis of a binary gas mixture on the McCormack model as introduced in an important paper [23]
published in 1973. While we use this model as defined in [23], we use an explicit notation that is appropriate to the analysis
and computations we report here. We consider that the required funétignsv) for the two type of particleso(= 1 and 2)
denote perturbations from Maxwellian distributions for each species, i.e.,

fa(x,v)=fa,0(v)[1+ha(x,v)], 1)

where

3/2
Ao Y Mgy
= — L 2
fa,O(v) ”a( - ) o %To (2
Herek is the Boltzmann constant;, andn, are the mass and the equilibrium density of th¢h speciesx is the spatial
variable (measured, for example, in crm)with components,, vy, v; and magnitude, is the particle velocity, andg is a
reference temperature. It follows from McCormack’s work [#8t the perturbations satisfy (for the case of variations in only
one spatial variable) the coupled equations

0
Cx aha (x,¢) +wgyaha(x,c) = wot)/ot‘ca{hl, ho}(x,¢), a= 12, (3)
where the vectoe, with components,, ¢y, c¢; and magnitude, is a dimensionless variable,
1/2
Mgy
= | — s 4
v [MO] (4)

and the collision frequencies, are to be defined. Here we write the integral operators as

1 2 xS 0 0
Lathigdco=—55 3 [ [ [ e hpt e Kpale o dy o, (5)
=+—00 —00 —00
where the kernelkg (¢, ¢) are listed explicitly in Appendix A of this paper. We note that in obtaining Eq. (3) from the form

given by McCormack [23], we have introduced the dimensionless vedtifferently in the two equations, i.e., for the case
a =1 we used the transformatien= w1v, whereas for the cagse= 2 we used the transformati@n= wyv. It can be noted that
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by changing the independent variabléifferently in the two balance equations, we arrive at the convenient form displayed in
Eqg. (3). As we wish to work with a dimensionless spatial variable, we introduce

== 6
T ©
where
uvg
lp=— 7
0= )
is the mean-free path (based deoosity) introduced by Sharipov and keahpa [14]. Here, following [14], we write
2%Ty 1/2
w=(27)", ®)
m
where
= 1AMy nama ©)
ni+np

Continuing to follow [14], we express the viscosity of the mixture in terms of the partial presgyresd the collision
frequencies/, as

Py P

p=—=+-= (10)
YL 2
where
P
e _fe (11)
Py ni+n2
4 (4 4)7-1
y1=[w1v — v il [ws + i) (12a)
and
4 (@4 4)7-1
ya=[w1vs — v il [wr +v5H] 7 (12b)

Here definitions given in Appendix A have been used,

3 3 4
p = Y (13a)

and

Wy =5+ s — V5. (13b)
Finally, to compact our notation we introduce

O = Ya®@alg (14)

or, more explicitly,

1/2
n +n m
P 1/v1+n2/v2 (_a) ’ (15)
ni+no m
and so we rewrite Eq. (3) in terms of thevariable as
ad
cxaha(l', ¢) +oghy(t,c) =04 Loy{hy, ho}(z,c). (16)

In this work we consider the viscous-slip and thermal-slip problems, and so we will seek solutions of Egs. (16) that are valid
for all r > 0, and we use Maxwell boundary conditions at the wall, viz.,

he (0, cx, Cy, cz) =1 —ag)hy(0, —cy, Cy, cz) +agZ{hy}(0), (17)
for c; > 0 and allcy andc;. Note that

ha(t,€) & ho(T,Cx,Cy,Cz) (18)
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and that we useq andas to denote the two accommodation coefficients. In addition, we have used
o o0 o0
Tihe)(r) = 2 / / /e_c/zha (t, =, ¢, ) dely del, de, 19)
]Tfoo —o0 0 ’ )

to denote the diffuse term in E€L7). In this work, we considéralf-space problems, and so we must, in addition to the boundary
condition listed as Eq. (17), specifyrse conditions on the desired solutionstagnds to infinity. This point will be addressed
later in this work when the two specific problems of interest are discussed in detail.

Here we seek to compute the velocity profiles

oo o0 X

ug(t) = nTl/Z / / / efczha (7, €)cz dey dey de, (20a)

-0 =00 —&0
the shear-stress profiles

oo 0 XX

1 _2
pa(t) = 37 / / / € € ha(r, €)cxcy dex dey de, (20b)

—00 —00 —00
and the heat-flow profiles

oo o0 X

qa(f)=% / / /e*czha(r,c)(CZ—5/2)czdcxdcvdcz, (20c)
a3/ ’

—00 —00 —00

and so we can obtain these quantities from “moments” of Eq. (16). To this end, we first multiply Eq. (16) by
1 _
¢1(cy,c;)=—¢€ (C§+C?)Cz (21)
b3

and integrate over ally, and allc;. We then repeat this procedure using

¢a(cy,c7) = 1 e_(C§+C?)(C§ + czz —2)c;. (22)
T
Defining
o o0
g20—1(T,cx) = / / ¢1(cy, cz)hg(t, €)dcy de; (23a)
—00 —O0
and
o0 o
820(T,cx) = / / da(cy, cz)ha (T, €) dey deg, (23b)
—00 —O0

we find from these projections four coupled balance equations which we write (in matrix notation) as

o0
s;—TG(r, H+2G6(r.6)=% f V(EHKE §G(t, €N dg, (24)
—00
where the components 6i(z, §) aregy (t, £), fora =1, 2, 3, 4, where we now usg in place ofc, and where
¥ =diag{o1, 01, 02, 02} (25)
and
yE) =r 2t (26)

In addition, the componen!qj(f;‘/, &) of the kernelK (£, £) are as listed in Appendix B of this work.
So, if we can solve Eq. (24) we can compute the quantities of interest from
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i (7) = / ¥ (E)g2a1(r. ) . (27a)

pal®) = / V(&) 82011, ) & (27b)
and

gu(r) = / Wé)[(& —§>gza71(f,$)+gza(f,é)]dé- (27¢)

To complete this section, we project Eq. (17) agaifisty, c;) andg(cy, c;) to find the boundary condition

G(0,£) — SG(0,—£) =0, £ € (0,00), (28)
subject to which we must solve Eq. (24). Here

S=diagl—ay,1—a1,1—ap, 1—a}. (29)

In addition to the boundary condition listed as Eq. (283padition, for each of the two considered problems@n, &) ast
tends to infinity must also be specified. This will be done later in this work.

3. Theedementary solutions

As we intend to find a particular solution if an inhomogeneous source $&€émis added to Eq. (24), we now proceed to
establish (in terms of the ADO method) the elementary solutions of

a o0
EGEE+E6E =T / VEVKE G € de'. (30)

We seek solutions of Eq. (30) of the form
G(r.6)=d(v.5)e ™/, (31)

where the separation constantand the elementary solutiods(v, &) are to be determined. Substituting Eq. (31) into Eq. (30),
we find

W —EDP(,£) =vXE / vENKE EPW, )+ K(—&,6)@ (v, —&")]de’ (32a)
0
and
WE+EDD(v, —E) =vE f VENKE, -6)@0, &)+ K(—¢',—&)® (v, —&")] dg’ (32b)
0

from which we conclude, since

K(E' -8 =K(-¢§,8), (33)
that

P, &) =P(—v,—$§). (34)
Now, adding and subtracting Egs. (32), one from the other, we find that

1 [e¢])
?[EZV(ME)—/W(E/)K(E/,E)V(v,é/)dé/} =AV(v,§) (35a)
0
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and

U@v,§) = gz[vw, £) — / YENK_(E, )V, &) ds/}, (35b)

0

where

UW,&) =d(v,8) + (v, —£) (36a)
and

V0,6) =00, £) — d (v, —&). (36b)
Here

A= i, (37)

V

K (¢ &) =KE & +K(-¢£,¢), (38a)

K_(£,6)=K@E &) — K(—£,§) (38b)
and

K(E &) = §2K+(s’, 62+ Z2K_(¢6) - / w<s”>§zK+(s”, HEK_(E. &) de. (39)

0

We now introduce a “half-range” quaduae scheme (with weights and nodeg, and&;) and rewrite Egs. (35) evaluated at the
guadrature points as

N
1
2 [zzww, &) — D w EKEL E)V (), sk)} =2V, &) (40)
i k=1
and
Vj N
U 6) =g E| V0. 6) - Y wk ¥ EOK &V (v, 80 |, (41)
! k=1

fori=1,2,..., N. Eq. (40) defines our eigenvalue problem, to which we have added the suljstifatbel the eigenvalues
and eigenvectors. Once this eigenvalue problem is solved, we have the elementary solutions from

1
¢(Vj,€i)=E[U(Vj,éi)-i-v(vj,éi)] (42a)
and
1
<b<vj,—s,»>=E[ij,s,-)—V(v,-,s,»)]. (42b)
Note that the separation constants defined by
vj = :l:)»;l/z (43)
occur in+ pairs. From this point, we take; to be the positive root listed in Eq. (43). Once we have solved the eigenvalue
problem defined by Eq. (40), we can write our general (discrete ordinates) solution to Eq. (30) as
AN
G(r.xt) =Y [A;® ;. k&) e /Y + B;d(v;, F&) €], (44)
j=1
fori=1,2,...,N. Here the arbitrary constanfsi;} and {B;} are to be determined fno the boundary conditions of a
specific problem. Before proceeding to develop our solutiorieoviscous-slip and the thermal-slip problems, we make one
modification to Eq. (44). While we could use the solution as given by Eq. (44), we can also improve it. We have found that the

eigenvalue problem yields one separation constantygapat approximates the one expected unbounded separation constant.
And so, instead of using what we see as an approximate solution that corresponds Faj. (44), we replace the contribution
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from vq with the exact solution we would expect if the approximation parametarere unbounded. In this way, we replace
one (the least accurate) approximate solution with an exact solution that allows us to capture the correct asymptotic form,

AN
G(r.2£)=AGy + BG_(v.:£) + Y _[A;®(vj, &) e /" + B;d(v;, 7)€"/ ], (45)
Jj=2
fori=1,2,...,N. Here
1 o1t —§&
Gy = 0 and G_(1,§) = 0 (46a,b)
T s T so(t — € /09) ’
0 0
are two exact solutions of Eq. (30). In the work, we use
1/2 1/2
r= (ﬂ) and 5= (ﬂ) (47a,b)
m2 mi

in order to compact our notation.

4. Theproblems

Having developed our elementary solutions of Eq. (30), we are now ready to use them to solve the two specific problems
basic to our current study. First, however, we note that while Egs. (20) define the species-specific quattities, () and
qa (1), for @ =1, 2, the way to define the basic elements for a binary gas mixture is not so clear. Here we follow other works
[13-18] and define these basic elements as

u(t) = @y, 111 (1) + @y, 2u2(7), (48a)

P(T) =9¢p 1p1(T) + @p.2p2(T) (48Db)
and

q(t) = ¢4,191(v) + ¢4,2q92(7), (48c)

where the “adaptation coefficients; ,, i =u, p,q, « = 1,2, are to be specified. Since these factors have been defined in
several ways in other works [13-18], and since the choice of these factors could conveniently be made differently for different
applications of the theory, we develop our solution and report our numerical results without specifying these factors.

4.1. Theviscous-slip problem

The viscous-slip problem (also known as Kramers’ problem) has no driving (inhomogeneous) term in Eq. (24), and so our
solution can be constructed from Eq. (45). Since there is no explicit driving term for this problem, the solution is required to
diverge ag tends to infinity, but at the same time the bulk velocity of the mixture should satisfy

. d
Jim_ ——u(@) =kp, (49)

wherek, is a normalization constant that depends on the choice of adaptation factors to be used. The condition listed as
Eq. (49) requires us to takk; = 0 in Eq. (45), and in order to accommodatédhloices of adaptation factors to be used, we
first normalize our solution by taking

B=—. (50)
o1
It follows that the constanta and A ; can be obtained from the system of linear algebraic equations we find when
4N

G(t,£§)=AG4+ + UiG_(‘E, +&) + Z Aj¢(vj~, :I:Ei)e_r/vf (51)
1 :
j=2

is substituted into a discrete-ordinates version of Eq. (28) evaluated at theadrature pointg;. Once these constants are
established we can use Egs. (27) and express our final results as
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AN
ui(m)=A+t+» AjN,1(vj)e 7, (52a)
Jj=2
4N
up(t) =s(A+1) + ZAjNu,z(uj)e*f/”.f, (52b)
j=2
1 o
PUD = =5+ ) ANy v e (52c)
j=2
1soq N
p2(r) =~ o + Y AN, o(vj) e Vi (52d)
Jj=2
and
AN
Go(D) =) AjNgo(v;)e ™/ (52€)
Jj=2
If we useuasy(r) to denote the asymptotic part (the part that excludes the exponential facters) dhen
ul’asy(f) =A+T (53a)
and
uz’asy(f) =s(A+1), (53b)
where Eq. (47b) has been notédhd so using the definition
uasy(0)
p= 12O (54)
uasy(o)
we see that
tp=A (55)

is the viscous slip coefficient for the bulk velocity of the mixture defined by Eq. (48a) for any choice of the adaptation factors.
To complete Egs. (52), we find

N
NuaW))=F§ Y wprE)[@ ). &) + @) ~&0)]. (56a)
k=1
N
Npa(v))=FL > wie @& ). &) — @ (v). )] (56b)
k=1
and
N
Ngaj) =Y widrEF g E[@0), &) + ), —£0)], (56¢)
k=1
where we use the superscript T to denote the transpose operation and where
1 0 £2-1/2 0
Fi= 8 > Fa= 2 - Fga®)= é and F,2(8) = 52—01/2 (57a~d)
0 0 0 1

While we have introduced the (arbitrary) normalization listed in Eq. (50), the bulk velocity
©u,1u1(T) + @y 2u2(T)

Pu, 1+ S5¢u2
will satisfy Eq. (49) for any choice of the adaptation factors.

In regard to our numerical work, we report in a following section of this work, the viscous-slip coeffigiemd the species-
specific profilesuy (t) andgy (7) for selected sets of data. In this way results are available for any choice of the adaptation
factorsy; o . Having completed our solution to the viscous-slip problem, we look now at the second of the two problems solved
in this work.

u(t)=kp (58)
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4.2. The half-space thermal creep problem

In regard to the case of thermal creep, the flow is caused by a constant temperature gradient in the dirpetialhe{ to
the wall) of the flow, and so it is helpful inearize the particle veldty distribution functions about a local Maxwellian, rather
than an absolute Maxwellian as was done in Eq. (1). We thus write

3
Ja(z,m,0)= fa,O(C){1+ 7]|:<02 - E)Kn + Rn] + ha (7, C)}7 (59)
wheren =z/lp, Ky andR,, are the (non-dimensional) temperature and density gradients indiection and
3/2
A _ .2 m
fa,O(C) =Ny <?a> e ¢ , Ao = Zk—;o. (60)

For the problem of thermal creep we takg = — K, and then lekr = K, so that Eq. (59) becomes

5
fﬂl(tv n, c) = fOt,O(C) |:1+ 77<C2 - E)kT + hc{(f, c)] (61)

As a result of this linearizion, an inhomogeneous source
(1/2(E% - 1/2)

1
SE)=k 62
O=k1 22— 172 ©2
1
must now be added to Eq. (24) to yield
o0
d
SE +E-GEH+ZG(r.H =2 / Y (ENKE §)G(t,E)dg'. (63)
—0

Since we have linearized about & Maxwellian, we now require owgolution to Eq. (63) to be bounded agends to
infinity, and so we write our (discrete ordinates) solution as
4N
G(r.2£)=Gp(1,£5)+ AG L+ Y A;®(v;, &) e /Y, (64)
j=2
whereG ,(, £) is a particular solution that corresponds to the inhomogeneous drivingStermWe impose the (arbitrary)
normalizationk7 = 1 and find that we can write
E(E2-1/2—sw)
2E

G[J(tvé)z F($2—1/2—rw) ’ (65)
2F
where we have again used Eqs. (47). After we note definitions given in Appendix A, we can write
(2
5 M2
1,2

In addition, the two constant8 and F required in Eq. (65) are defined by a system of linear algebraic equations which we
write as

E]l 1[1/c
N|:Fi|_§|:1/a;i|’ (67)

where the elements &¥ are given by

(2)42
5 [771 2]
ny1=—-P1+ PO (68a)
M1,2
@2
6 S [711’2]
ni2=n1)— or =g (68b)

Mm.,2
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(242
6 5 [712’1]
}’1211 = r]é’i — §S3 (1) (680)
2.1
and
(2,2
5 [772 1]
np2=—%P2+ 3 o (68d)
N2,1
with
5 5 6
P1=np) 105 — (69a)
and
5 5 6
P2 =5y + 151 — Ny (69b)

At this point we can substitute Eq. (64) into a discrete-ordmagsion of the boundary condition listed as Eq. (28) to define
a system of linear algebraic equations. After solving the set of algebraic equations for the cofigtad{s! ;}, we can write
our final results for the half-space thermal-creep problem as

AN
ur(t)=A—swE+Y AN, 1(vj)e /", (70a)
j=2
AN
up(t)=sA—rwF+» AN, o(v;)e "/, (70b)
j=2
AN
Pa(t) =D AjNpaj)e ™V, (70c)
j=2
5 AN
Q0 =5E+ D AN (v e i (70d)
j=2
and
5 AN
q2(r) = S F + D ANy o(vj) e, (70e)
j=2

where we continue to use the definitions given by Eqgs. (56). Considering that the thermal-slip coefficient for the mixture is
given by

tr = lim_u(@). (71)
we can write
it = (‘pu,l + S‘Pu,Z)A - w(S(Pu,lE + }’(pu’zF). (72)

In contrast to the viscous-slip problem, we see that here the slip coefficient depends on thefactans, », and so for this
reason we intend to report

{1 =uq(c0) =A —swE (73a)
and
fo=up(c0) =sA—rwF (73b)

as well as species-specific profileg(t) andg, (t) for selected sets of data. It follows that once adaptation factors are specified,
the thermal-slip coefficient for the mixture can be evaluated from

ST = ¢u,181 + ¢u,282. (74)

As our solutions are complete, we continue with an implementation of the algorithms defined here to establish numerical
results with what we consider to be a very good standard of accuracy.
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5. Numerical results

The first thing to note in regard to our numerical work is the way we defined the quadrature scheme for the analytical
discrete-ordinates method used in this work. To keep matters simple, we used the transformation

() =e" (75)

to mapé € [0, oo) ontow € [0, 1], and we then used the Gauss—Legendre scheme mapped (linearly) onto the [iBf&ivah
order to evaluate the merits of the solutions developed here for the half-space viscous-slip and thermal-creep problems, we have
elected to use the three data cases defined by Sharipov and Kdlethgahese three data cases refer to a mixture of the species:
(i) Ne—Ar, (ii) He—Ar and (iii) He—Xe. As we are reporting numerical work only for the case of rigid-sphere interactions, we
can see that the McCormack model requires, for this case, only three ratios: the ma@sratig), the diameter ratigdy /d2)
and the density ratitn1/n2). In addition, by formulating the McCormack model in terms of a convenient mean-free path and
by observing the ratios of parameters that result, we can see that the constar(tufﬁ@t;jBZ)l/ 2in Eq. (A.35) of Appendix
A need not be specified.
For the sake of our computations we consider that the data

d .
my=39.948 mj = 20183 d_i — 1406 (Ne—Ar mixture)

d:
mp=39.948 mq1=4.0026 d—i =1.665 (He—Ar mixture)

and

d .
mp=13130, mj = 4.0026 d—i —2226 (He—Xe mixture)

are exact. We follow Sharipov and Kalempa [14] and tabulate our results for these three cases in terms of the molar concentration
defined (in terms of the first particle) as

__m/n2 (76)
1+n1/no

In Tables 1-3 we list some typical results for the viscous-slip problem, and similar results for half-space thermal-creep problem
are listed in Tables 4-7. Although wevgacomputed all theasic quantitieg (), go () and py (t), we have (for economy of
space) omittegb,, (t) from our tabulations, and we report results only for two choices of the accommodation coefficients.

While we have no definitive proof of the accuracy of our results, aliebe the results listed in our tables are correct (within
the context of the kinetic model used) to all digits given. To establish some confidence in our numerical results, we found
stability in the results as we varied the only approximation paramétieom 20 to 100 and we obtained identical results from
two independently implemented numerical codes: one based on MATLAB and the other on FORTRAN. In addition, we have
also used the identity

ni n
—p1(0) + == p5H(1) =0, (77)
n n
Table 1
The viscous-slip coefficient
Ne—Ar mixture He—Ar mixture He—Xe mixture
a; =10 a; =03 a; =10 a; =03 a; =10 ap =03
ap»=10 ap =0.6 ap»=10 ap =0.6 ap»=10 ap =0.6
¢ P
0.0 1.01837 2.26010 1.01837 2.26010 1.01837 2.26010
0.1 1.02446 2.40900 1.04375 2.37943 1.05671 2.38333
0.2 1.02980 2.57378 1.07010 2.51563 1.09891 2.52599
0.3 1.03424 2.75760 1.09715 2.67285 1.14546 2.69340
0.4 1.03759 2.96460 1.12434 2.85672 1.19678 2.89311
0.5 1.03963 3.20041 1.15059 3.07526 1.25300 3.13622
0.6 1.04008 3.47283 1.17386 3.34006 1.31339 3.43976
0.7 1.03862 3.79302 1.19002 3.66856 1.37452 3.83100
0.8 1.03486 4.17770 1.19034 4.08692 1.42417 4.35455
0.9 1.02831 4.65301 1.15387 4.62895 1.41346 5.06330

1.0 1.01837 5.26255 1.01837 5.26255 1.01837 5.26255
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Ne—Ar mixture

He—Ar mixture

He—Xe mixture

T u1(7) u2(7) u1(7) u2(7) u1(7) u2(7)
0.0 755303 -1) 9.64122-1) 8.46368—1) 2.46223 968271—-1) 4.83343
0.1 925139-1) 1.22950 101778 305860 113443 592751
0.2 105946 143216 115358 351600 126763 676873
0.3 118367 161666 127907 393269 139123 753506
0.4 130233 179106 139884 432666 150949 825931
0.5 141738 195887 151487 470573 162428 895576
0.6 152989 212199 162824 507417 173660 963227
0.7 164049 228160 173962 543462 184708 10293711)
0.8 174962 243848 184944 578883 195611 1094331)
0.9 185756 259319 195802 613805 206400 1158331)
1.0 196453 274612 206558 648319 217095 1221561)
2.0 300483 422178 310979 980986 321183 1829411)
5.0 603383 848848 614308 1940621) 6.24416 35747Q1)
9.0 1003881) 1.412331) 1.014941) 3.206391) 1.025131) 5.871161)
Table 3

The viscous-slip problem: heat-flow profiles for the cage- 1.0, ao = 1.0 andC = 0.5

Ne—Ar mixture

He—Ar mixture

He—Xe mixture

T q1(7) q2(7) q1(7) q2(7) q1(7) q2(7)
0.0 189366 —1) 2.20338-1) 2.01585—1) 5.44563—1) 2.2919q—1) 1.09101
0.1 154414—-1) 1.66050—1) 1.62946—1) 4.12577-1) 1.88953—1) 8.49530—1)
0.2 13515%—1) 1.39133-1) 1.42141-1) 3.46192—1) 1.66994—1) 7.24066—1)
0.3 120599 —1) 1.20029-1) 1.26690—1) 2.98938—1) 1.50595—1) 6.32992—1)
0.4 108780 —1) 1.05257—1) 1.14298-1) 2.62360—1) 1.37376-1) 5.61368—1)
0.5 988249-2) 9.33169-2) 1.0396Q—1) 2.32786—1) 1.26292—1) 5.02669—1)
0.6 902527—2) 8.33959—2) 9.51224—2) 2.08213-1) 1.16764—1) 4.53306—1)
0.7 827593-2) 7.49926—2) 8.74385-2) 1.87401—1) 1.08431—1) 4.11047-1)
0.8 761370—2) 6.77728—2) 8.06745—2) 1.69523—1) 1.01050—1) 3.74389-1)
0.9 7.02355—2) 6.15014—2) 7.46631—2) 1.53996—1) 9.4448%—2) 3.42263-1)
1.0 649414—2) 5.60054—2) 6.92799-2) 1.40391—1) 8.84958—2) 3.138771-1)
2.0 321782-2) 2.47749-2) 3.587371-2) 6.30190—2) 5.02212—-2) 1.47335-1)
5.0 577450 —3) 3.66393—3) 7.48265—3) 9.9390%—3) 1.32122-2) 2.50836—2)
9.0 846370 —4) 453106 —4) 1.32329-3) 1.35016—3) 3.00230-3) 3.6395%—3)
Table 4

The thermal-slip coefficients for the casg= 1.0 andap = 1.0

Ne—Ar mixture

He—Ar mixture

He—Xe mixture

C & &2 & &2 & &2

0.0 604774—1) 5.87362—1) 4.70214—1) 5.87362—1) 4.42313-1) 5.87362—1)
0.1 600986—1) 5.83201-1) 4.73861—1) 5.80695—1) 4.54594-1) 6.04903-1)
0.2 597620-1) 5.797171-1) 4.78681—1) 5.76174—1) 4.68238—1) 6.25615—1)
0.3 594687—1) 5.76933—1) 4.85008—1) 5.74625—1) 4.83583—1) 6.5070(—1)
0.4 592196-1) 5.74871-1) 4.93284-1) 5.77203-1) 5.01099-1) 6.82026—1)
0.5 59016%—1) 5.73553—1) 5.0409Q—1) 5.85548 —1) 5.21483—1) 7.22615—1)
0.6 588597-1) 5.73006-1) 5.18165-1) 6.02021—1) 5.45779-1) 7.77615-1)
0.7 587506—1) 5.73255—1) 5.36343—1) 6.30009—1) 5.75544—1) 8.56322—1)
0.8 586919-1) 5.74333-1) 5.59045-1) 6.74031—1) 6.12694—1) 9.76405—1)
0.9 586859—1) 5.76278—1) 5.83581—1) 7.3758Q—1) 6.54585—1) 1.16839

1.0 587362-1) 5.79143-1) 5.87362—-1) 8.01401-1) 5.87362—-1) 1.28637
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Table 5
The thermal-slip coefficients for the casg= 0.3 andap = 0.6

Ne—Ar mixture He—Ar mixture He—Xe mixture
C 01 {2 01 {2 01 {2
0.0 549447-1) 5.09525-1) 4.45575-1) 5.09525-1) 4.28722-1) 5.09525-1)
0.1 539213-1) 4.96294-1) 4.46866—1) 4.95415-1) 4.38344-1) 5.1183%-1)
0.2 528974-1) 4.8314%-1) 4.48563—1) 4.81026-1) 4.48693-1) 5.1367Q—1)
0.3 518723-1) 4.70062—-1) 4.50765-1) 4.66445-1) 4.59883-1) 5.14969-1)
0.4 50845Q—1) 4.57050—-1) 4.53588—1) 451795-1) 4.72056—-1) 5.15685—1)
0.5 498144-1) 4.44091-1) 4.57144-1) 4.37239-1) 4.85384—-1) 5.15856—1)
0.6 487781-1) 4.31186-1) 4.61492-1) 4.22980-1) 5.00052—1) 5.1572Q-1)
0.7 477358-1) 4.18292-1) 4.66449-1) 4.09198-1) 5.16120-1) 5.15971-1)
0.8 466824 —1) 4.05375-1) 4.70961—1) 3.957571-1) 5.3270X-1) 5.18251—1)
0.9 456133-1) 3.92363-1) 4.70646—1) 3.80798-1) 5.421271-1) 5.24294-1)
1.0 445192-1) 3.79127-1) 4.45192-1) 3.522571-1) 4.45192-1) 4.72090-1)
Table 6
The thermal-creep problem: velocity profiles for each species for theugasd.0, a; = 1.0 andC = 0.5

Ne—Ar mixture He—Ar mixture He—Xe mixture

4 u1(7) u2(7) u1(7) u2(7) u1(7) u2(7)

0.0 161427-1) 1.33496-1) 1.57774-1) 1.34776-1) 1.72434-1) 1.582327-1)
0.1 23465Q—1) 2.0378%-1) 2.22911-1) 1.98945-1) 2.36530-1) 2.27514-1)
0.2 278299-1) 2.45648-1) 2.60670-1) 2.37882-1) 2.73961-1) 2.70694—1)
0.3 311995-1) 2.78192-1) 2.89263-1) 2.68519-1) 3.02416-1) 3.052171-1)
0.4 3396371-1) 3.0511%-1) 3.12347-1) 2.94144-1) 3.25453-1) 3.344771-1)
0.5 363026 1) 3.28090-1) 3.31610-1) 3.16251-1) 3.447271-1) 3.60018-1)
0.6 38320%-1) 3.48090-1) 3.48021-1) 3.35689-1) 3.61190-1) 3.82719-1)
0.7 400838-1) 3.65731-1) 3.62208-1) 3.53005-1) 3.75454-1) 4.03148-1)
0.8 416409-1) 3.81444-1) 3.74605-1) 3.68571-1) 3.87948-1) 4.21698-1)
0.9 430262-1) 3.95544-1) 3.85530-1) 3.82684-1) 3.98982-1) 4.38659-1)
1.0 442663-1) 4.08274-1) 3.95225-1) 3.95538-1) 4.08793-1) 4.54252-1)
2.0 518478 -1) 4.88964—1) 4.52581—-1) 4.80481-1) 4.67313-1) 5.61595—1)
5.0 577603—-1) 5.57531-1) 4.94838-1) 5.6177Q—-1) 5.111871-1) 6.77819-1)
9.0 588323-1) 5.71122-1) 5.02555-1) 5.81196-1) 5.19526-1) 7.12253-1)
Table 7
The thermal-creep problemeht-flow profiles for the casg = 1.0, ap = 1.0 andC = 0.5

Ne—Ar mixture He—Ar mixture He—Xe mixture

T —q1(7) —q2(7) —q1(7) —q2(7) —q1(7) —q2(7)

0.0 895414—1) 7.52679-1) 8.62425-1) 7.7448Q-1) 9.94638-1) 8.54990—1)
0.1 112207 971566 —1) 1.06318 978581—1) 1.19797 106944
0.2 125061 109138 117530 109088 131439 119009
0.3 134625 117882 125793 117298 140150 127952
0.4 142232 124731 132318 123737 147117 135047
0.5 148495 130299 137662 128977 152887 140879
0.6 153768 134932 142140 133344 157774 145784
0.7 158275 138853 145955 137044 161979 149974
0.8 162174 142212 149245 140217 165640 153597
0.9 165576 145118 152111 142966 168859 156759
1.0 168568 147652 154627 145366 171709 159539
2.0 185623 161626 168953 158686 188563 175403
5.0 196928 170100 178730 166945 201414 185916

9.0 198609 171179 180371 168046 204045

187413
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where
n=njq+ny, (78)

to see that our computations confirmed (to the same number of digits listed in our tables) that
ni n2
(@) = 7p1(f) + 7p2(f) (79)

is constant. We have also been able (after taking note of some differing definitions) to confirm, for the case of rigid-sphere
interactions, the three—four digit numerical results for the viscous-slip problem and the half-space thermal-creep problem
reported for the case of purely diffuse boundary conditions, ée= 1 andas = 1, by Sharipov and Kalempa [14,15] for
the three mixtures defined in that work. Finally we have seen that our computations yield known results available from the
S-model calculations [26] when we allow our data to collapse to the single-species gas. We have obtained this reduction to a
single gas in three ways: (i, = 0, for which the quantities with subscript 2 yield the single-gas results; i 0, for which
the quantities with subscript 1 yield the single-gas results, andi(jig= mo andd; = do. That we obtain identical results from
these three limiting cases can be attributed, we believe, to the good way the mean-figeupathin this work is defined [14].
We find it especially interesting to see that thenodel can be obtained from the McCormack model when the data for the gas
mixture is reduced to that of a single species.

In regard to adaptation factors, we note that

1/2

Pu,o0 = %(i> , =12, (80)
nimji +npmy \ my

can be used with our solutions, in the manner of Eq. (48a), to obtain the bulk velocity of the mixture and the slip coefficients

as they are defined by Sharipov and Kalempa [14,15]. On the other hand, Sharipov and Kalempa [13] and Naris, Valougeorgis,

Sharipov and Kalempa [18] have used the adaptation factors

1/2
Qu,a = n_a(l) ., a=1L12 (81)
ni—+np \my

to define the velocity profile for a binary mixture. Note that the mean molecular mésdefined in Eq. (9).

6. A relationship between the two considered problems

In a recent work [31] Sharipov used physical arguments to provide, within the context §frtfuelel for a single-species
gas, a relationship between the heat flow from Kramers’ protdaththe thermal-slip coefficient. In a following work [32],
Siewert used the defining equations relevant to the linearized Boltzmann equation (and some kinetic models) and a form of
the boundary condition (that includes the Maxwell and GQgrani-Lampis boundary conditiorss special cases) to find and
evaluate an explicit relationship between the heat flow from Kramers’ problem and the thermal-slip coefficient. These two
results [31,32] define, for the case of a single-species gas, a relationship between the viscous-slip problem and the half-space
thermal-creep problem that can be used, for example, to help evaluate numerical results obtained for the two problems. We have
extended the mentioned results [31,32] to the currently considered case of a binary-gas mixture described by the McCormack
model. Since our derivation follows very closely the one given in [32], we list here only the final result. If we add sulicripts
for the viscous-slip problem aril for the half-space thermal-creep problem, we find we can write

n rn n n
Bok1+ 20k =5 (—1§T,1+—2CT,2>, (82)
n n noq noy
where
ﬁ:-(ﬂEJrﬁF). (83)
noq nop
Here,E and F are the constants defined by Eq. (67), the thermal-slip coefficignisare as defined by Egs. (73) and
o
Oka= [axator (84)
0

where the heat flow profiles for Kramers’ problem are defined by Eq. (20c). We have confirmed, to many significant figures,
Eq. (82) as part of our testing of the solutions reported in this work.
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7. Concludingremarks

To conclude this work, we note that we believe our solutions to the considered problems of viscous slip and thermal creep
are especially concise and easy to use. We have included eagfaren of the Maxwell boundargondition in our formulation,
and we have reported what we believe to be highly accurate results for some test cases. It should be noted that our complete,
species-specific results listed, for the two considered problems, in Egs. (52) and (70) are continuousvarititde and thus
are valid for allzr > 0.

In this work we have considered only the case of rigid-sphere interactions, but as pointed out by Sharipov and Kalempa
[14] the solutions can be used for other scattering laws such the one defined by the Lennard-Jones potential simply by using,
instead of Egs. (A.34) and (A.35), appropriate definitions of the omega integrals [1,2]. In addition, it is clear that we now have
essentially all we need to solve well the classical flow problems (Poiseuille, thermal creep and Couette) in a plane channel for a
binary gas mixture that can be described by the McCormack model. In developing our solutions here for the McCormack model,
we have noted one aspect of the computation that made this work especially interesting when compared to our previous work
[28,29] for mixtures described by the Hamel model. This aspe&ttie solution can be seen in Eqg. (39) where there appears an
integral term that we have not seen in any of our previous work with the ADO method. While this integral term has required
some attention, the ensuing additional work is considered modest when we take into account the merits of the McCormack
model. We also see that the way in which Egs. (35) and (39) were formulated can be utilized for other problems in rarefied gas
dynamics.

Since our solutions require only a matrix eigenvalue/eigenvector routine and a solver of linear algebraic equations, the
algorithm is especially efficient, fast and easy to implement. In fact, the developed (FORTRAN) code solves both problems for
all quantities of interest with 5 or 6 figures of accuracy issl¢han 0.1 seconds on a 1.2 GHabite Pentiumlll machine —
which confirms, we believe, the merit of this work.
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Appendix A. Basic elements of the defining equations

Here we list some basics results that are required to define certain elements of the main text of this paper. First of all, in
regard to Eq. (5), we note that

Kpa(d ) =KD () + KL 0+ K o)+ Kih (o). a.p=12 (A1)
where
K@ o =1+ {21 n)] - nFy (2~ 5/2) )¢ - (A2)
K2 o= (2/3)[1—2r*n§1;]( —3/2)(c? —3/2), (A.3)
K ) =2m1[(c - 02— (1/3)c' %2, (A.4)
K o) =[4/5)p1(c'? - 5/2) - n3)(c? ~ 5/2)¢ - e, (A.5)
K§h( o) = {20y + n3[r3(¢? ~ 5/2) + 2~ 5/2]}c e, (A.6)
KA )= @/3)r*n{%(c'? ~ 3/2) (2 - 3/2), (A7)
K =2 0 - (1/3)c' %2, (A.8)
K§he o= (4/5)r](6)( —5/2)(c?—5/2)¢ -, (A.9)
K§O o) =1+ {2[1- 5] -y (2~ 5/2) )¢ -e. (A.10)
K$(c o) = (2/3)[1— 15h](c2 ~ 3/2)(c? - 3/2). (A.11)

K35’ €)= 2m[(¢' - )2 — (1/3)c'2c?], (A.12)
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K5 01 = [@/5)82(c"2 = 5/2) ~ 1) (c2 = 5/2)¢ -, (A13)

Kf%(c/, c)= s{2né’l)l + n;?i[sZ(c/Z —5/2)+ 2 5/2]}¢ - e, (A.14)

K3 o) = (4/3)5 05 (2~ 3/2) (% - 3/2). (A.15)

K o) =203 - 0% — (1/3)c %7 (A.16)
and

k{9 )= @/5m5) ("2 = 5/2) (c? ~ 5/2)c e (A.17)
Here

=2 (R (A.18)
and

s* =52/(1452). (A.19)
In addition,

w1 =145 — i) —ni). (A.20)

w2 =1+ 155~ g~ N3 (A.21)

pr="1+n) =) — 0t (A.22)
and

B =145y — 15y =031, (A.23)
where

’7,(k/) = vl(kj) /i (A.24)

Following McCormack [23], we write

@ _16map 11
V0B = g P ab (A.25)
2
2 _ 64(map 12 5.1
aﬂ—l—s( e ) ”5<9aﬂ‘59aﬂ : (A-26)
2
@ _16(map\“ma (10,11 Mp 20
Vo p = ( p~ ) mﬂnﬂ< 3 .Qaﬂ-i- mago‘ﬂ , (A.27)
2
@ _16(mgp\“mg (10 11 2
3
6 _ 64(map\"ma (5
Vo g = 15( o~ ) mﬂ"ﬁra,ﬁ (A.29)
and
3 3/2
©® _ 84 (map\”(ma ®)
I 15( Mg ) (mﬂ> 8l (A-30)
with
G _ 22, (15ma | 29mp\ g (mp 12 513
ra’ﬁ_rzaﬂ+<4mﬂ + B )%~ \ 2 (5245 — 247 (A.31)
and, after a correction by Sharipov and Kalempa [14],
6) 22, 99,11 S,12 113
Typ=—%af + g Pap ~ 5%p + 5%p- (A.32)
In addition,

Mmy,g =mamg/(me +mg) (A.33)
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and thes2 functions are the Chapman—Cowling integrals [1,2] which for the case of rigid-sphere interactions take the simple
forms

13 11
,3_390[;3’ Qaﬂ=12.(2 B and 22 ﬂ—ZQ B (A.34a—c)
with
1/ nkTp 1/2
4=z dy +dg)°. A.35
B-3(5ms) rdp (A.35)

Appendix B. Thebasic kernelsfor flow problems

The components of the kern&l(¢’, ) required in Eq. (24) are as follows:

k1€ 6) = 20188 + 1— iy — 7y (62 + 62— 1)/2+ 281(8'2 - 1/2) (62 - 1/2) /5. (B.1)
k12 §) = —(1/2n7) + 281 (52— 1/2) /5. (B.2)
k13 &) =20 08" +r{n{) + n[r2 (62 - 1/2) + €% — 1/2]/2} + 20 (62 - 1/2) (62 - 1/2) /5. (8.3)
kL€' &) = W/2r% 7 + 20 (62 - 1/2) /5, (B.4)
ko1& 6) = —n)+4pa (62~ 1/2)/5. (B.5)
k22(€'.£) = (4/5)py. (B.6)
ka3(E' &) =rni% + 40y (62 — 1/2) /5, (B.7)
k2.4(€' &) = 4/51), (B.8)
ka1, = 20578 +s{n5 + 15 [s2(6'2 — 1/2) + 82 — 1/2]/2) + 203 ("2~ 1/2) (62~ 1/2) 5. (8.9)
ka2(&'. &) = /25315 + 205 (2~ 1/2) /5. (B.10)
k33§ &) = 20085 + 1— 15y — Sy (/2 + 82— 1)/2+ 26,(8'2 - 1/2) (62 - 1/2) /5. (B.11)
k3a(E'. &) = —(1/2n5 + 282(62 — 1/2) /5. (B.12)
ka, 18 6) = susy + 4ny) (62— 1/2) /5. (B.13)
ka2, 6) = (4/5)n5). (B.14)
kg€ &) =—n3) +4p2(6'2 ~ 1/2) /5 (B.15)
and
ka,4(8', &) = (4/5)Bo. (B.16)
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