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Abstract

A Bayesian system identification methodology is proposed for leakage detection in water pipe networks. The methodology properly

handles the unavoidable uncertainties in measurement and modeling errors. Based on information from flow test data, it provides estimates of

the most probable leakage events (magnitude and location of leakage) and the uncertainties in such estimates. The effectiveness of the

proposed framework is illustrated by applying the leakage detection approach to a specific water pipe network. Several important issues are

addressed, including the role of modeling error, measurement noise, leakage severity and sensor configuration (location and type of sensors)

on the reliability of the leakage detection methodology. The present algorithm may be incorporated into an integrated maintenance network

strategy plan based on computer-aided decision-making tools.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Pipe networks represent one of the largest infrastructure

assets of industrial society. In many cases these networks

suffer from aging and deterioration and fail to fulfill the

specified carrying capacities and required pressure heads.

The high maintenance and revamping costs, including

rehabilitation, replacement and/or expansion of existing

systems to meet current and future demands give rise to

difficult decision-making. All these activities, due to the

large amount of money to be invested, usually become of

primary public interest.

One of the major problems to be faced is the frequent

pipe-breaks with unaccounted water leakages resulting in

service disruption. Water service companies have begun to

develop new leakage detection strategies in order to reduce

leakages to an economical optimum level [1]. The main

objective is to propose reliable computational models to

facilitate pipe replacement decisions in an effort to increase

the overall reliability expected from the pipe network.

An extensive amount of work on pipe rehabilitation and

replacement has been published. The various algorithms

developed have taken the form of non-linear, dynamic,

heuristic and successive linear programming economic

models, which assist decision-making based usually on

historical statistics and cost information. In an early work

Shamir and Howard [2] proposed a model, which estimates

the optimal time for pipe replacement based on pipe

breakage history and the cost for repairing and replacing

pipes. Kettler and Goulter [3], identified a relationship

between breakage rate and pipe diameter as well as a

correlation between the number of pipe failures and pipe

age. They proposed that improvements to pipe breakage or

mechanical reliability may be achieved by selecting larger

pipe diameters. Woodburn et al. [4] presented a model for

determining the minimum cost for rehabilitation, replace-

ment or expansion of an existing network based on a

combination of non-linear optimization and hydraulic

simulation procedures. An explicit algorithm, implementing

a graph theory approach, has been developed by Boulos and

Altman [5]. The algorithm is capable of handling wide-

spread applications, associated with future planning,

expansion and improvement of fluid distribution networks.

Arulraj and Rao [6] proposed an optimality criterion called

the significance index to rehabilitate existing networks.

On many occasions when continuous quantities are

selected as decision variables the results may be misleading
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since pipes are coming in discrete lengths and diameters.

Kim and Mays [7] resolved the problem, to some extent,

using integer pipe lengths as decision variables. More

recently an increasing number of researchers are imple-

menting genetic algorithm techniques in certain aspects of

the design and rehabilitation of pipe networks, e.g. Murphy

et al. [8] and Simpson et al. [9]. Over the years genetic

algorithms have proven to be a reliable technique for

handling water distribution network problems. In addition to

their ability to handle discrete pipe diameters they have been

shown to be quite robust and efficient in searching for

optimal rehabilitation policies [10,11]. Following all these

efforts water distribution companies have started lately, very

reluctantly however, to implement these computational

approaches and corresponding software as decision-making

tools in the management of their water networks [1].

An issue, which is clearly related to an efficient leakage

reduction policy but which has received much less attention,

is the on-line leakage identification. Most of the research

works performed and discussed above are not focused on

leakage detection. It is mostly related to the general issue of

developing efficient algorithms leading to optimal replace-

ment, rehabilitation or expansion solutions for pipe net-

works. Real-time damage estimation and diagnosis of

buried pipelines, however, plays an important role in an

integrated maintenance network strategy. Leakage detection

may be considered, of course, as part of a typical calibration

procedure and can be handled via optimization algorithms

using conventional and evolutionary approaches. It is

important, however, that the proposed algorithm is capable

of incorporating in a quantitative manner all the errors in the

model compared to the real problem. As reported by Goulter

and Bouchart [12], very little research work has been

reported on the inclusion of these probabilistic issues in

optimization design models for water distribution networks.

It is helpful to have a methodology to convert all these

uncertainties and errors introduced in water pipe network

optimization modeling into a measurement of the reliability

of the results obtained by the modeling procedure. Here we

address this issue focusing on leakage identification

algorithms.

Leakage can be detected by correlating changes in flow

characteristics to changes in a hydraulic model for the

network. Significant changes in the hydraulic model are

indicative of the location and the severity of the damage.

This correlation is achieved by updating the hydraulic

model so that its predictions match the measured data

obtained from the sensors. This model updating procedure is

an inverse problem that is usually ill-conditioned due to lack

of sensitivity of the flow characteristics to modest amounts

of leakages, and often non-unique due to insufficient

available data relative to the model (network) complexity.

Difficulties associated with the development of effective

model updating and leakage detection algorithms are: (1)

modeling errors (difference between theoretical model

and actual system behavior), (2) measurement errors, and

(3) incomplete set of observed data due to limited number of

sensors available or due to limited accessibility within the

network.

Very recently Shinozuka and Liang [13] developed an

approach to identify the location and the severity of damage

in a water delivery system by monitoring on-line water

pressures at some selected positions of the network. Their

damage detection approach is based on a neural network

inverse analysis method. Also Andersen and Powell [14]

proposed a leak detection scheme based on an implicit

formulation of the standard weighted-least-squares state-

estimation problem. In both cases however, the schemes are

applied to idealized noise-free conditions.

In the present work a Bayesian system identification

methodology is proposed for model updating which allows

for the explicit treatment of the uncertainties arising from

modeling errors and measurement noise. The methodology

has been well developed and successfully applied in

structural model updating applications [15–18]. Here, the

Bayesian methodology is modified accordingly and it is

coupled with hydraulic simulations for updating a para-

meterized class of hydraulic models with the parameters

chosen to simulate a set of possible leakage events (location

and severity of leakage) in the pipe network. The

methodology provides estimates of the probability of each

leakage event (leakage location and severity) given the flow

and/or pressure head measurements obtained from an

integrated monitoring and data management system set up

for the network. The most probable leakage event is

identified as the one with the highest probability, while

the other leakage events are ordered according to their

relative probabilities. The effectiveness of the proposed

framework is illustrated by applying the leakage detection

approach to a specific water pipe network. Several

important issues are addressed, including the role of

modeling error, measurement noise and sensor configur-

ation (location, number and type of sensors) on the

reliability of the leakage detection methodology.

2. Formulation

A typical hydraulic formulation is used for the solution of

the water pipe network. The flow equations to be solved

consist of the mass conservation equations at the junction

nodes and the energy conservation equations around the

loops and the pseudo-loops of the network [19]. The system

is solved using a Newton iteration scheme. Once the pipe

flow rates are estimated the energy grade at the nodes is

explicitly estimated through a marching procedure.

Leakage detection is based on the premise that damage

(leakage) in one or more locations of the piping network

involves local liquid outflow at the leakage location,

which will change the flow characteristics (pressure heads,

flow rates, acoustics signals, etc.) at the monitoring

locations of the piping network. The magnitude of
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changes in the flow characteristics depends on the position

and the severity of the damage (amount of outflow). The

existence of leakage in the pipe network is diagnosed by

monitoring the permanent changes in the flow character-

istics of the system. Once the existence of the damage has

been diagnosed, it is possible by updating the hydraulic

model for a complete set of parameters to identify the

location and the severity of the damage. For this, a

statistical system identification methodology is applied

that effectively tackles the uncertainties due to modeling

error and measurement noise.

2.1. Statistical system identification

The hydraulic pipe network formulation is implemented

to generate a class of solutions describing the flow behavior

of the piping distribution system in an undamaged state or in

a damaged (deteriorated) state due to leakage events. This

class of solutions is generated from a parameterized class of

models denoted by M: Let u be the parameters introduced in

the parameterized class of hydraulic models M: In the case

of leakage identification these parameters are associated

with the location and extend of the damage in the piping

distribution system. A particular model MðuÞ from the class

M is selected by specifying the values of the parameter set u:

Next consider a monitoring system that has been

installed in the network in order to collect and analyze

data obtained from N flow tests performed periodically at L

monitoring locations. Let ~xij be the available flow data from

the jth flow test ð1 # j # NÞ obtained at the ith monitoring

location ð1 # i # LÞ: Without loss of generality we may

assume that the flow data set may consist of pressure heads
~P and flow rates ~Q estimates obtained at the L monitoring

locations. Let ~x ¼ ½~xij� denote the L £ N matrix of data at L

locations from N flow tests.

Let also xðuÞ ¼ ½xijðuÞ� be the flow quantities (pressure

heads, flow rates, etc.) at the monitoring locations computed

from the model MðuÞ corresponding to a particular value

assigned in the parameter set u: The departure between the

model results and the corresponding measured flow

quantities, defined by

eijðuÞ ¼ ~xij 2 xijðuÞ ð1Þ

measures the prediction error from the model MðuÞ: This

departure is due to flow network modeling error and device

measurement accuracy that are unavoidable in the modeling

process of real water distribution systems.

System identification is handled by employing a

statistical approach [15,20] in which the model prediction

error eijðuÞ is considered to be a specific realization of a

random variable taken from a class of probabilistic error

models P; parameterized by the parameter set s: The class

of pipe flow models M and the class of prediction error

models P; which specify the modeling assumptions used in

the description of the system, are parameterized by the

parameter set ½u;s�:

The objective of the statistical system identification

methodology is to update the values of the parameter set

½u;s� and their associated uncertainties using the measured

test data. Here, uncertainty in the values of the parameter set

is quantified using probability density functions (PDF),

which measure the relative plausibility of each of the

models in classes M and P specified by the parameters

½u;s�: The selection of the parameter uncertainty prior to the

collection of data is based on engineering experience and it

is quantified by the initial PDF pðu;sÞ: Using Bayes

theorem, this initial PDF is converted to a posterior

(updated) PDF

pðu;sl~xÞ ¼ c1pð~xlu;sÞpðu;sÞ ð2Þ

which gives the relative plausibility of the models based on

the inclusion of the measured data ~x: The constant c1 is a

normalizing constant selected such that the posterior PDF

pðu;sl~xÞ is integrated to one. In Eq. (2) the expression for

the posterior PDF pðu;sl~xÞ depends on the chosen classes of

pipe network models M; the prediction error models P and

the measured data.

Assuming eijðuÞ; i ¼ 1;…;L; j ¼ 1;…;N to be inde-

pendent and normally distributed with zero mean and

standard deviation s; the likelihood pð~xlu;sÞ may be

written in the form

pð~xlu;sÞ ¼
YL

i¼1

YN

j¼1

1ffiffiffiffi
2p

p
s

exp 2
ðxijðuÞ2 ~xijÞ

2

2s2

" #
: ð3Þ

Assuming also a non-informative prior distribution for the

model parameters over the range of acceptable values of

½u;s�; i.e. assuming that the initial PDF pðu;sÞ is

constant, and substituting Eq. (3) into Eq. (2) yields

pðu;sl~xÞ ¼ c2

1

ð
ffiffiffiffi
2p

p
sÞLN

exp 2

XN
j¼1

kxjðuÞ2 ~xjk
2

2s2

2
666664

3
777775 ð4Þ

where k·k is the usual Euclidean norm. The vector xjðuÞ

denotes the model results, while the vector ~xj denotes the

corresponding measured flow quantities at the measured

locations from the jth flow test. The constant c2 in Eq. (4)

is selected such that the posterior PDF pðu;sl~xÞ is

integrated to one.

2.2. Optimal model and model uncertainty

The optimal value of the model parameters denoted by

½û; ŝ�; is simply the most probable value of ½u;s� obtained

by maximizing the updated PDF pðu;sl~xÞ or equivalently by

minimizing the function

gðu;sÞ ¼ 2ln½pðu;sl~xÞ�

¼
1

2s2

XN
i¼1

k~xi 2 xiðuÞk
2
þ

LN

2
ln s2 þ c: ð5Þ
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The optimal ½û; ŝ� for a given sensor configuration depends

only on the data ~x: Performing the optimization for a set of

continuous parameters u; it can be readily shown that the

optimal values û of the network model minimize the

function

JðuÞ ¼
1

LN

XN
j¼1

kxjðuÞ2 ~xjk
2

ð6Þ

where JðuÞ represents a norm of the difference between the

model and the measured output. Through the optimization

procedure it can also be shown that the optimal value ŝ2 of

the prediction error model is

ŝ2 ¼ JðûÞ: ð7Þ

In particular, using the total probability theorem, the

marginal probability distribution for u is obtained as

pðul~xÞ ¼
ð

pðu;sl~xÞds: ð8Þ

Substituting Eq. (4) into Eq. (8) and after some mathemat-

ical manipulation, using Eq. (6) and assuming a uniform

initial distribution pðu;sÞ the integration in Eq. (8) is

carried out analytically to yield

pðul~xÞ ¼ c½JðuÞ�2ðLN21Þ=2
: ð9Þ

For a general initial distribution pðu;sÞ an asymptotic

approximation is available in the form [21]

pðul~xÞ ¼ c½JðuÞ�2ðLN21Þ=2gðuÞ ð10Þ

where gðuÞ ¼ pðu;
ffiffiffiffiffi
JðuÞ

p
Þ: Expression (9) or (10) yields the

uncertainty in the optimal estimate of the model parameters

given the measured data.

2.3. Application to leakage detection

Consider the case of network deterioration due to the

presence of fractures in one or more locations of a water

pipe network consisting of p pipes. Such events will involve

local water outflows that can be modelled by adding a flow

demand at each fractured pipe indicating the location of

each leakage. In addition the amount of each flow demand

will correspond to the severity of the leakage in that

location.

Let K be the number of leakage locations. The amount of

flow demands and the leakage locations (pipe locations

where these demands are added) constitute the set of

unknown parameters u of the integrated class of models M

describing the behaviour of the system with leakages. The

following model parameterisation can be adopted to

efficiently identify the leakage in the network assuming

that leakage occurs at K locations. The model parameter set

u is partitioned into two subsets written as u ¼ ðul; usÞ: The

subset ul is a K-dimensional vector of integers denoting the

pipe sections that have leakage, i.e. denoting the locations of

leakage in the network. The total number of distinct leakage

events in a water distribution system with p pipe sections

and K leakage locations is

NK ¼
p!

K!ðp 2 KÞ!
: ð11Þ

The subset us is also a K-dimensional vector giving the

amount of liquid outflow, quantifying the leak severity

(amount of leakage) at the corresponding K leakage

locations identified in the set ul:

The optimal values û ¼ ðûl; ûsÞ of the model parameters

u ¼ ðul; usÞ are computed by maximizing expression (9).

This optimization problem involves a mixed set of discrete

and continuous variables. The discrete variables, included in

the parameter subset ul; take integer values from 1 to p;

indicating the number of the pipe that has leaked, while the

continuous variables, included in the parameter subset us;

can only take positive values since leakage involves liquid

outflow.

The solution scheme that is adopted to solve the

optimisation problem with K leakages involves an exhaus-

tive search over the discrete parameter subspace. Specifi-

cally, let uðiÞl denote the leakage locations corresponding to

the ith leakage event taken from the total of NK distinct

leakage events. The most probable value ûðiÞs of the

parameter set us; given that leakage occurs at locations

u
ðiÞ
l ; are obtained by maximizing the PDF, given by

expression (9), with respect to the parameters in the set us:

This is a continuous optimisation problem involving the K

parameters in the set us: Then the most probable leakage

event ûl is the one of u
ð1Þ
l ; u

ð2Þ
l ;…; u

ðKÞ
l that maximizes the

updated PDF function

pðuðiÞl ; ûðiÞs l~xÞ ¼ c½JðuðiÞl ; ûðiÞs Þ�2ðLN21Þ=2
: ð12Þ

Thus the most probable leakage event û ¼ ðûl; ûsÞ can be

obtained by solving a series of NK optimization problems.

An exhaustive search of the most probable leakage event

requires the solution of NK optimization problems which

may be computationally expensive or even prohibitive,

considering that each function evaluation of xðuÞ involved in

Eq. (9) requires the solution of a non-linear algebraic system

of equations governing the steady-state flow in pipe

networks. Instead, genetic algorithms [22] can be used to

efficiently solve this type of discrete optimization problem

in order to provide a near optimal solution for the leakage

locations.

In practice, it is expected that deterioration will proceed

progressively with leakage occurring at one location at a

time. Using a monitoring system, the algorithm could be

used to search for single leakages. This involves the solution

of as many as NK ¼ p optimization problems and thus the

computational effort is relatively small. Furthermore, when

the leakage locations are expected to occur only in a certain

number of pipes forming the network the computational

complexity of the problem is significantly reduced, even for

the case of searching for multiple leakage locations.
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To conclude the theoretical formulation of the method-

ology, it is stated that the leakage detection in networks with

multiple leaking events involves a continuous optimization

problem searching for the leakage severity, which is

embedded in a discrete optimization problem searching

for the most probable leakage location.

3. Application to networks

In order to demonstrate the effectiveness and

efficiency of the proposed leakage detection method-

ology the whole approach is applied to an example

network shown in Fig. 1. This network can be

considered as a simplified, typical, municipal water

distribution system or a water distribution network for

an industrial unit. It comprises 50 pipe sections, 31

junction nodes and 20 loops (no pseudo-loops). The

water is supplied from an elevated tank by gravity. The

lengths of the horizontal and vertical pipe sections are

1000 and 2000 m, respectively, and the elevation of the

tank is 52 m. Pipe and junction numbering is given in

Fig. 1, where the pipe diameters, varying from 300 to

600 mm, are also indicated. Flow demands are assumed

at each node of the network throughout the water

delivery system. The water flow is in the turbulent flow

regime with a friction factor estimated by the formula of

Swamee and Jain [19].

The class of models used for identifying leakage in the

network assumes that the piping-roughness coefficients are

the same for all pipes and the flow demands are uniform

throughout the water delivery system. The nominal values

for the piping-roughness coefficients are taken to be equal to

0.26 mm for all pipes and the flow demands are assumed

equal to 50 l/s at each junction node. The total volume of

water supplied from the elevated tank is 1550 l/s and is

equal to the total flow demands in the network.

3.1. Data simulation

Measured data are simulated from a pipe network model

with characteristics that are different from the ones that

correspond to the class of models used for monitoring and

identification of the network condition. The measured data

produced in this way allows the simulation and study of the

model error effect on the leakage detection results. In

addition, in order to account for the measurement noise in

the sensors, an error term is added to the predictions of the

perturbed model to simulate the observed discrepancy

between the actual pipe network predictions and the

measurements from the sensors.

Specifically, the simulated measured data are generated

from the following equation

~xij ¼ ~xm
ij þ ~xn

ij; 1 # i # L; 1 # j # N: ð13Þ

The first term, ~xm
ij ; in Eq. (13) represents the pressures and/or

the flow rates that are generated from a class of pipe network

models with characteristics that deviate from the nominal

characteristics defining the class of models used for

identification. Here, the characteristics that are perturbed

from their nominal values include the piping roughness

coefficients in each pipe and the flow demands at the nodes.

The perturbation from the nominal values of the piping-

roughness coefficients for each pipe and of the flow

demands for each node is assumed to follow a zero-mean

uniform distribution with bounds ð2a; aÞ and ð2b; bÞ;

respectively. The size of the perturbation, that is, the values

of a and b; represents the magnitude of the model error

expressed as a percentage of the nominal values of the

system characteristics. The statistical generation of these

perturbations reflects the uncertainty in the actual values of

these parameters. Hereafter, the aforementioned perturbed

model is assumed to be representative of the actual

behaviour of the system and is referred to as the ‘actual

system’.

Fig. 1. Water pipe network configuration.
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It is obvious that when the above procedure to simulate

the measured data is used, the class of models for

identification is not capable of representing the behaviour

of the actual system exactly. Following this approach it is

possible to simulate and study the effects of the model error

on the leakage detection results.

The second term, ~xn
ij; in Eq. (13) accounts for the

measurement error that comes from the sensors. It is chosen

to be a zero-mean, uniformly distributed random variable

with bounds ð2c; cÞ: The magnitude of c represents the size

of measurement error at a measured location expressed as a

percentage of the actual system predictions at the measured

location.

Depending on the type of the measured data used in the

identification procedure, two cases, namely Cases A and B,

are considered separately. In Case A the measured data

consists of pressures at junction nodes, while in Case B the

measured data consists of flow rates in pipes. For

demonstration purposes, the case of a single leakage and

the case of two leakages are examined separately.

3.2. Detection of a single leakage

The case of a single leakage ðL ¼ 1Þ located at pipe

section 26 is considered. Seven monitoring devices are used,

spread all over the network and relatively far from the

vicinity of the leaked pipe 26. For Case A the manometers

are located at the junction nodes 6, 9, 13, 18, 21, 25 and 30,

while for Case B the flow meters are located at the pipe

sections 1, 3, 16, 19, 29, 36 and 43. The leakage location is

simulated by adding a node at the damaged pipe while the

prescribed flow demand corresponds to the amount of

leakage at the leakage location. Simulated measured data

are generated from Eq. (13) using the actual system with the

corresponding leakage location.

The problem of identifying the leakage location and

severity is addressed given that only a single leakage is

expected. The number of possible leakage scenarios, given

in Eq. (11), is equal to the number of pipe sections in the

water network ðNK ¼ 50Þ: The class of models used for

leakage identification involves two parameters ðul; usÞ; with

ul denoting the leakage location and us accounting for the

amount of leakage.

By means of the identification procedure, first the most

probable amounts of leakage ûðiÞs of the parameter set uðiÞs are

estimated for each leakage scenario i: In the case of the

single leakage, i indicates the pipe number that has leaked.

Then the normalized probability

pi ¼ kpðuðiÞl ; ûðiÞs l~xÞ ð14Þ

of each leakage event i is computed, for the corresponding

most probable leakage severity value ûðiÞs : The values of pi

establish an order for the leakage events according to their

relative normalized probability. The most probable leakage

event is identified as the one with the highest

normalized probability pi: The normalizing constant,

k ¼
PNK

i¼1 pðuðiÞl ; ûðiÞs l~xÞ; is conveniently used for plotting

purposes without affecting the interpretation of the results.

3.2.1. Idealized scenario with no errors

First, no model or measurement uncertainties are

introduced ða ¼ b ¼ c ¼ 0%Þ: The amount of leakage is

taken to be equal to 22.8 l/s, which corresponds to 1.5% of

the total water volume supplied in the network. The

computed peak values of the normalized posterior PDF pi

are plotted in Fig. 2A and B for each pipe section of the

water distribution network for Cases A and B, respectively.

It is seen that in both cases tested, although the leakage

severity is quite small compared to the total water volume,

the proposed methodology identifies correctly the pipe

where the leakage is assumed. When no model or

measurement uncertainties are introduced, the peak value

of the posterior PDF of the most probable scenario is equal

to one, while the corresponding values for all other

Fig. 2. Peak values of normalized PDF at each pipe section using (A) manometers and (B) flow meters. Leakage is located at pipe 26 with severity equal to

22.8 l/s (1.5% of the total water volume).
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undamaged pipes are identically equal to zero (within

round-off error), independently of the leakage severity. This

is a typical result for all cases tested, and in this way the

assumed location and severity of the leakage is easily found.

3.2.2. Effect of model errors

The above situation is highly idealized and almost never

occurs in real water delivery systems. More realistic

situations are simulated next, when some model errors are

introduced by imposing perturbations in the values of the

roughness coefficient and the flow demands. The amount of

leakage is taken to be equal to 22.8 l/s.

First, perturbations equal to 5 and 10% are introduced

in the model error magnitude a; corresponding to the

piping roughness coefficient. The results related to the

identification of the leakage location are plotted in Fig. 3A

and B using manometers (Case A) and flow meters (Case

B), respectively. The most probable leakage scenario

predicts leakage in pipe 26, which coincides with the

actual leakage location. Again, the peak values of the

posterior PDF of the most probable leakage event are

several orders of magnitudes larger than the correspond-

ing values of the other leakage scenarios. This is an

indication that the location of the damaged pipe is clearly

identified even for small amounts of leakage compared to

the nominal flow rate of the particular pipe and for

relatively large model error introduced in the parameter-

ized model.

The computed amounts of leakage are compared to the

actual amounts in Table 1 for Cases A (Figs. 2A and 3A)

and B (Figs. 2B and 3B). It is seen that when a ¼ 0% the

actual amounts of leakage are exactly estimated. For a ¼ 5

and 10% there is some departure between the computed and

the actual amounts when the experimental data are obtained

using pressure-measuring devices. The higher the model

error is, the higher is the departure between the identified

and the actual amounts of leakage. The agreement is

excellent when flow meters are used.

We continue our study on the effects of the model

uncertainties on the leakage identification process by

implementing a second mechanism to introduce model

errors. The nominal values of the flow demands are

perturbed by an amount b equal to 2 and 5%. Fig. 4A and B

shows the corresponding normalized peak values of the

posterior PDF in each pipe for Cases A (manometers) and

B (flow meters), respectively. It is seen that the departure

of the peak values of the posterior PDFs between the most

probable scenario and the second most probable scenario

becomes smaller compared to corresponding previous

results (Fig. 3A and B). It is pointed out however, that

the most probable leakage scenario coincides with the

actual leakage event. Even for a small leakage equal to

1.5% of the total water supply and for an uncertainty equal

to 5%, the departure between the most and the second most

probable events is at least one order of magnitude. It is

worth noting that the second most probable leakage

scenario corresponds to leakage at pipe 21, which is

adjacent to pipe 26.

It should be noted, however, that for even more difficult

situations involving even smaller amounts of leakage and/or

larger uncertainties (larger model errors) it will not be

possible to identify successfully the leakage location. There

is always a threshold level beyond which no reliable results

are obtained. The proposed methodology is capable of

identifying these threshold values. In many cases when the

accurate leakage location is not possible it is still useful to

Fig. 3. Peak values of normalized PDF at each pipe section using (A) manometers and (B) flow meters. Leakage is located at pipe 26 with severity equal to

22.8 l/s (1.5% of the total water volume). A perturbation a ¼ 5 and 10% is assumed in the piping roughness coefficient.

Table 1

Comparison between computed and actual amounts of leakage in pipe 26

for various uncertainties in the pipe roughness coefficient using (A)

manometers and (B) flow meters

Case Actual leakage (l/s) Computed leakage (l/s)

a ¼ 0 a ¼ 5% a ¼ 10%

A 22.8 22.8 26.9 30.4

B 22.8 22.8 22.8 22.8
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identify the region in the pipe network which contains the

damaged pipe.

In Table 2 the computed amounts of leakage for Cases A

(Figs. 2A and 4A) and B (Figs. 2B and 4B) are compared to

the actual amounts. It is seen that the leakage severity for

b ¼ 0 is computed exactly, while for b – 0 it is over-

estimated. It is evident that for the water pipe network under

investigation the estimation of leakage severity is particu-

larly sensitive to demand variations. In these cases, an

improved sensor placement configuration capable of

collecting better information from the network is essential

and will resolve to some extend the problem. It is seen that,

for the pipe network under examination, the identification of

the amount of leakage is less accurate than the correct

identification of the leakage location when uncertainties in

the demands are introduced—in the sense that this

identification is more sensitive to model errors.

In general, as expected, the departure between computed

and actual quantities becomes larger as the leakage severity

is decreased and as the model errors are increased.

3.2.3. Effect of measurement errors

The study on the effects of the errors is completed by

implementing additional uncertainties due to measurement

errors. These errors are again simulated by adding a zero-

mean uniform noise in the data generated by the actual

system, with a standard deviation c equal to 2 and 5% of

the actual system predictions at the measured locations.

Two leakage severity scenarios are considered which

correspond to leakage amounts equal to 57.0 and 22.8 l/s,

which represent 3.7 and 1.5%, respectively, of the total

supplied water volume (1550 l/s). In Fig. 5A and B the

computed peak values of the posterior PDF are plotted for

each leakage scenario and for each pipe section of the water

distribution network for Cases A and B, respectively. For

c ¼ 2% the leakage location is correctly identified for all

cases. It is worth noting that the second most probable

leakage location predicted by the methodology is pipe 20 or

21, which is very close to the correct leakage location. For

larger measurement errors ðc ¼ 5%Þ the leakage location is

correctly identified for the cases of 57.0 l/s. However, for

the smaller leakage of 22.8 l/s, the correct leakage location

is not identified in Case A. It is interesting to note that this

small amount of leakage corresponds to 1.5% of the total

water supply. Moreover, in Case B, although the correct

leakage location is identified as the most probable, other

leakage locations have been predicted with a probability

close to that. In addition, in Table 3 the computed amounts

of leakage for Cases A (Figs. 2 and 5) and B (Figs. 2B

and 5B) are compared to the actual amounts. For c ¼ 0; the

correct amount of leakage is clearly identified and the exact

amount of leakage is computed. It is also noted that for

c – 0 the amounts of leakage, as is shown in Table 3, are

computed with good accuracy for all cases tested. It may be

concluded that for the water pipe network under investi-

gation the errors in the experimental data have a more

serious effect on the sensitivity of the results related to the

location rather than the severity of the leakage.

3.2.4. Effect of sensor type and location

We conclude this section by investigating the effect of

the positioning of the measuring devices on the system

identification methodology. This is demonstrated by study-

ing the same test case network shown in Fig. 1. The leakage

Fig. 4. Peak values of normalized PDF at each pipe section using (A) manometers and (B) flow meters. Leakage is located at pipe 26 with severity equal to

22.8 l/s (1.5% of the total water volume). A perturbation b ¼ 2 and 5% is assumed in the demands.

Table 2

Comparison between computed and actual amounts of leakage in pipe 26

for various uncertainties in the demands using (A) manometers and (B) flow

meters

Case Actual leakage (l/s) Computed leakage (l/s)

b ¼ 0 b ¼ 2% b ¼ 5%

A 22.8 22.8 38.7 61.5

B 22.8 22.8 38.9 59.6
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is kept in pipe 26 and only the case of leakage severity equal

to 57.0 l/s, i.e. 3.7% of the total water supply is studied. The

seven measuring devices, however, are placed in different

positions. This new positioning, which can be either less or

more informative about the system is such that the sensors

are concentrated in certain sub-regions of the network. The

manometers (Case A) are all located in the lower right

region of the network, specifically at junctions 17, 18, 19,

23, 24, 25 and 31. The flow meters (Case B) are located in

the upper left region of the network, specifically at the pipe

sections 1, 2, 3, 7, 18, 25 and 26. The flow meter

configuration includes a sensor, which is located at the

leaking pipe 26.

In Fig. 6A and B the computed normalized peak values of

the posterior PDF are plotted for each pipe section of the

water distribution network using manometers (Case A) and

flow meters (Case B), respectively. All three different types

of uncertainties involving the pipe roughness coefficients a;

the flow demands b and the measurement data c are

examined. Consequently, a direct comparison between the

present results and those obtained with the previous

measuring devices configuration is possible. Comparison

of the results in Figs. 3 and 6(i) dealing with uncertainties in

pipe-roughness coefficients shows that with the new sensor

configuration the identification results are improved for the

case of flow measurements, while they have deteriorated for

the case of pressure measurements. Comparison of the

results in Figs. 4 and 6(ii) dealing with uncertainties in flow

demands shows that the identification results obtained from

the new sensor configuration are less informative for both

the cases of flow and pressure measurements. In particular,

Fig. 5. Peak values of normalized PDF at each pipe section using (A) manometers and (B) flow meters. Leakage is located at pipe 26 with severity equal to (i)

57.0 and (ii) 22.8 l/s (3.7 and 1.5% of the total water volume). A perturbation c ¼ 2 and 5% is assumed in the modeled measurements.

Table 3

Comparison between computed and actual amounts of leakage in pipe 26

for various uncertainties in the measurement data and two different amounts

of leakage using (A) manometers and (B) flow meters

Case Actual leakage (l/s) Computed leakage (l/s)

c ¼ 0 c ¼ 2% c ¼ 5%

A 22.8 22.8 23 23.3

57.0 57.0 57.0 57.0

B 22.8 22.8 24.3 25.3

57.0 57.0 53.0 57.3
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the methodology fails to predict the actual leakage location

for the case of b ¼ 5%: The most probable leakage location

predicted by pressure measurements is in pipe 20 and in pipe

27 for flow rate measurements, both of which are adjacent to

the damaged pipe 26. Finally comparison of the results in

Figs. 5(i) and 6(iii) dealing with uncertainties in the

measured data shows that the identification results obtained

from the new sensor configuration are significantly

improved for both cases of pressure and flow rate

measurements. Specifically, in contrast to the previous

Fig. 6. Peak values of normalized PDF at each pipe section using (A) manometers in the nodes (17, 18, 19, 23, 24, 25, 31) and (B) flow meters in the pipe

sections (1, 2, 3, 7, 18, 25, 26). Leakage is located in pipe 26 with severity equal to 57.0 l/s.
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sensor configuration, which was not informative enough for

accurate leakage predictions, the new sensor configuration

provides reliable prediction of the position of leakage.

The above results indicate clearly that an optimal sensor

placement strategy [23,24] is very important for efficient

detection of damage in water pipe networks. The critical

issue is to estimate the proper number and location of

sensors in order to obtain the maximum possible infor-

mation from the network without knowing in advance the

location and amounts of leakage in the system. This is a

difficult task which will be addressed in detail in later work.

3.3. Detection of multiple leakages

It has been shown in Section 2 that the proposed

methodology is capable in a straightforward manner of

studying simultaneous multiple leakages in a water

distribution system. An application is presented in this

section using the water pipe network of Fig. 1, with two

leakages in pipe sections 26 and 42. The amounts of leakage

are taken to be 114 and 44.7 l/s, which represent 7.4 and

2.9%, respectively, of the total water supply. It is noted that

while in the case of one leakage there are 50 possible

leakage scenarios, now, with two leakages, it is estimated

using Eq. (11) with K ¼ 2 and p ¼ 50 that there are

Nk ¼ 1225 possible leakage scenarios. It is obvious that the

required computational effort is significantly increased.

The implementation however of the whole approach

remains the same.

The results from the identification methodology are very

similar to the case of one leakage event. When no

uncertainties exist in the system, the results indicate the

two leakage locations and the corresponding amounts very

accurately, independently of the positions and the amounts

of leakage. When uncertainties are introduced, more careful

investigation is required, since there are several leakage

scenarios with a probability value close to the probability of

the most probable leakage scenario.

Some typical results from the most probable leakage

scenarios are presented in tabulated form. In Table 4, the

first five most probable leakage events are given based on

the use of manometers (Case A) and flow meters (Case B)

with introduced uncertainty a ¼ 5% in the pipe roughness

coefficient. Each leakage event is described in terms of

Table 4

The first five most probable leakage events with a perturbation a ¼ 5% in the pipe roughness coefficient using (A) manometers and (B) flow meters. Actual

leakage locations are in pipes 26 and 42 with corresponding amounts 114 and 44.7 l/s

Case Leakage location (pipe number) Leakage severity (l/s) Peak value of normalized PDF

Location 1 Location 2 Severity 1 Severity 2

A 26 42 113.4 44.0 1.000

26 43 118.2 30.1 1.494 £ 1022

26 46 107.1 65.1 1.972 £ 1025

26 47 112.9 47.6 1.775 £ 1025

26 41 106.2 67.7 1.671 £ 1025

B 26 42 114.2 44.7 1.000

26 48 109.4 49.6 7.778 £ 1025

26 37 107.0 52.0 1.324 £ 1025

26 36 121.3 37.5 6.857 £ 1026

26 47 118.9 39.9 5.922 £ 1026

Table 5

The first five most probable leakage events with a perturbation b ¼ 2% in the demands using (A) manometers and (B) flow meters. Actual leakage locations are

in pipes 26 and 42 with corresponding amounts 114 and 44.7 l/s

Case Leakage location (pipe number) Leakage severity (l/s) Peak value of normalized PDF

Location 1 Location 2 Severity 1 Severity 2

A 26 42 115.9 42.0 1.000

26 43 120.6 28.6 8.816 £ 1022

26 41 109.0 64.8 3.902 £ 1022

26 31 105.5 64.4 3.445 £ 1022

26 46 109.9 62.2 2.849 £ 1022

B 26 42 114.7 43.5 1.000

26 48 109.9 48.3 1.118 £ 1022

26 37 107.5 50.7 1.279 £ 1023

26 43 103.9 54.3 1.098 £ 1024

26 47 119.3 38.8 6.140 £ 1025
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the two-leakage location and severity and its corresponding

normalized probability. The probability results shown in the

last column have been normalized such that for each case

the most probable leakage event corresponds to probability

equal to one. Similar results are given in Tables 5 and 6 for

introduced uncertainties in the demands ðb ¼ 2%Þ and in the

experimental data ðc ¼ 2%Þ; respectively. It is seen that in

most cases the ‘actual leakage event’ is estimated correctly.

Again it has been found that as the amount of leakage is

reduced and the model and measurement errors are

increased there are certain threshold values of model and

measurement errors above which the identification of the

leakage event is not possible.

The results in Tables 4–6 have been obtained using a

combinatorial approach searching for all possible leakage

scenarios. For more than two leakages, genetic algorithms

[22] may be implemented in order to sustain reasonable

computational effort and time levels converging to the near

global solution.

4. Conclusions

A Bayesian probabilistic framework for leakage detec-

tion in water pipe networks has been developed and

successfully tested with simulated data. Prediction of the

most probable leakage locations and severity involves a

series of continuous optimization problems followed by a

discrete optimization problem. For the cases considered, an

exhaustive search is used to solve the discrete optimization

problem. When the system is free from model error and

measurement noise, the model is capable of identifying the

damage ‘exactly’. More realistic circumstances are also

examined in detail by introducing uncertainties in the

hydraulic model and the measurement data.

The procedure is applied to a sample network for the case

of a single and of multiple leakages and the effectiveness of

the new methodology is demonstrated. The location of the

leakage is correctly identified and its severity is accurately

computed, when the model and measurement errors do not

exceed certain threshold values above which the diagnosis

of the system is not possible. These threshold values depend

on the configuration and the characteristics of the water

distribution system under investigation and the location and

severity of leakage as well as the number, location and type

of sensors. More important, the present approach is capable

of identifying these threshold values beyond which no

reliable diagnosis is possible. The location of the measuring

devices has a significant effect on the reliability of the

system identification. Optimal sensor location strategies

[23] can be used to improve the reliability of the leakage

prediction estimates.

The present approach may be part of an integrated

software to assist decision-making for overall water network

management strategy based on computer-aided tools. The

main principles of this work can be extended to compres-

sible fluids.

Acknowledgements

This work has been partially supported by the Greek

Secretariat of Research and Technology (PENED 1999-

99ED580 and PAVET 2000-00BE72) and by the Athens

Water and Sewerage Company. This support is gratefully

acknowledged.

References

[1] Savic D, Walters G. Hydroinformatics technology and maintenance of

UK water networks. J Qual Maintenance 1997;3(4):289–301.

[2] Shamir U, Howard CD. An analytic approach to scheduling pipe

replacement. J Am Water Works Assoc 1979;71:248–58.

[3] Kettler AJ, Goulter IC. An analysis of pipe breakage in urban water

distribution networks. Can J Civil Engng 1985;12(2):286–93.

[4] Woodburn J, Lansey K, Mays LW. Model for the optimal

rehabilitation and replacement of water distribution system com-

ponents. Proc Natl Conf Hydraul Engng, New York 1987;606–11.

Table 6

The first five most probable leakage events with a perturbation c ¼ 2% in the measurement data using (A) manometers and (B) flow meters. Actual leakage

locations are in pipes 26 and 4 with corresponding amounts 114 and 44.7 l/s

Case Leakage location (pipe number) Leakage severity (l/s) Peak value of normalized PDF

Location 1 Location 2 Severity 1 Severity 2

A 26 42 115.6 43.2 1.000

26 47 111.1 50.6 7.629 £ 1021

26 43 118.0 31.3 2.310 £ 1021

26 46 109.7 64.1 1.919 £ 1021

26 40 100.5 85.1 5.236 £ 1022

B 26 45 94.71 69.7 1.000

26 48 108.8 49.0 7.660 £ 1021

26 34 97.54 53.9 7.213 £ 1021

26 39 103.5 47.8 5.143 £ 1021

26 38 98.74 60.2 3.469 £ 1021

Z. Poulakis et al. / Probabilistic Engineering Mechanics 18 (2003) 315–327326



[5] Boulos P, Altman T. A graph-theoretic approach to exhibit nonlinear

pipe network optimization. Appl Math Modeling 1991;15:459–66.

[6] Arulraj P, Suresh RH. Concept of significance index for maintenance

and design of pipe networks. J Hydraul Engng 1995;121(11):833–7.

[7] Kim HJ, Mays LW. Optimal rehabilitation model for water

distribution systems. J Water Resour Plann Manage ASCE 1994;

120(5):674–92.

[8] Murphy LJ, Simpson AR, Dandy GC. Design of a network using

genetic algorithms. Water 1993;20:40–2.

[9] Simpson AR, Dandy GC, Murphy LJ. Genetic algorithms compared to

other techniques for pipe optimization. J Water Resour Plann Manage

1994;120(4):423–43.

[10] Dandy GC, Simpson AR, Murphy LJ. An improved genetic algorithm

for pipe network optimization. Water Resour Res 1996;32(2):449–58.

[11] Savic D, Walters G. Evolving sustainable water networks. Hydrol Sci

1998;42(4):549–63.

[12] Goulter IC, Bouchart F. Reliability-constrained pipe network model.

J Hydraul Engng 1990;116(2):211–29.

[13] Shinozuka M, Liang J. On-line damage identification of water

delivery systems. Engng Mech Conf 1999;.

[14] Andersen JH, Powell RS. Implicit state-estimation technique for water

network monitoring. Urban Water 2000;2:123–30.

[15] Beck JL, Katafygiotis LS. Updating models and their uncertainties—

Bayesian statistical framework. J Engng Mech ASCE 1998;124(4):

455–61.

[16] Vanik MW. A Bayesian probabilistic approach to structural health

monitoring. PhD thesis, California Institute of Technology, Pasadena,

CA, 1997.

[17] Vanik MW, Beck JL, Au SK. Bayesian probabilistic approach to

structural health monitoring. J Engng Mech ASCE 2000;126(7):

738–45.

[18] Katafygiotis LS, Lam HF. A probabilistic framework for structural

health monitoring. Proceedings of the 12th Engineering Mechanics

Conference, New York: ASCE; 1998. p. 1379–82.

[19] Potter MC, Wiggert DC. Mechanics of fluids. Englewood Cliffs, NJ:

Prentice-Hall; 1997.

[20] Beck JL. Statistical system identification of structures. Proceedings of

the Fifth International Conference on Structural Safety and

Reliability, New York: ASCE; 1989. p. 1395–402.

[21] Katafygiotis LS, Papadimitriou C, Lam HF. A probabilistic approach

to structural model updating. Int J Soil Dyn Earthquake Engng 1998;

17(7–8):495–507.

[22] Goldberg DE. Genetic algorithms in search, optimization and machine

learning. Reading, MA: Addison-Wesley; 1999.

[23] Papadimitriou C, Beck JL, Au SK. Entropy-based optimal sensor

location for structural model updating. J Vib Control 2000;6(5):

781–800.

[24] Udwadia FE. Methodology for optimal sensor locations for

parameters identification in dynamic systems. J Engng Mech ASCE

1994;120(2):368–90.

Z. Poulakis et al. / Probabilistic Engineering Mechanics 18 (2003) 315–327 327


	Leakage detection in water pipe networks using a Bayesian probabilistic framework
	Introduction
	Formulation
	Statistical system identification
	Optimal model and model uncertainty
	Application to leakage detection

	Application to networks
	Data simulation
	Detection of a single leakage
	Detection of multiple leakages

	Conclusions
	Acknowledgements
	References


