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Surface tension effects on the nonlinear behavior of long waves

in a two layer flow

M. Ballas, D. Valougeorgis

Abstract The propagation of long waves of finite ampli-
tude at the interface of two viscous fluids in the presence
of interfacial tension is examined. The effect of capillarity
on the shape of the waves at the interface of two super-
posed fluids is investigated for a wide range of density
differences, viscosity ratios and imposed pressure gradi-
ents. It is found that in planar geometry surface tension
stabilizes the interfacial disturbances. Attention is given to
the case in which the upper fluid is more dense and
comprises a thin film above the lower fluid. With the
heavier fluid on the top the flow pattern is always unstable
when surface tension effects are neglected. In this case the
interfacial waves do not grow forever and reach a finite
amplitude only when the interfacial tension is greater than
a critical value.

1

Introduction

Pipeline transport of a very viscous oil is an operation that
involves considerable capital investment and operating
expenditure. It has been found that this cost can be sig-
nificantly reduced if flow patterns, such as oil-water core-
annular flows are implemented, since the addition of water
as a lubricant greatly reduces the pressure drop over the
pipe.

A theoretical model supplemented with experimental
results was produced by Ooms et al. (1984) to study the
nature of core-annular flow consisting of a very viscous oil
core and water annulus through an horizontal pipe. By
means of hydrodynamic lubrication theory it has been
found that the wavy shape of the interface can generate
pressure variations in the annular layer. These variations
produce perpendicular forces on the core which counter-
balance the buoyancy effect due to gravity. To simplify the
mathematical modeling, the core was assumed to be solid
and the interface to be a solid-liquid interface whose
shape was chosen freely. The authors concluded that the
appearance of a stable rippled interface is essential for the
existence of such flows.

In reality the oil core has a finite viscosity and the shape
of the interface is determined by the gravity and viscous
forces, the pressure drop over the pipe and the interfacial
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tension. Therefore as a first approximation to the real flow
problem, Ooms et al. (1985) calculated the finite amplitude
waves for a plane Couette-Poiseuille flow of two super-
posed layers of fluids of different viscosity. This approxi-
mation can be regarded as realistic since the thickness of
the water film, in the aforementioned core-annular flow, is
very small compared to the wavelength and the pipe ra-
dius. Starting from the Navier-Stokes equations and sim-
plifying them via perturbation analysis, they have
investigated the influence of the viscosity, gravity and
pressure gradients on the propagation of long finite am-
plitude waves neglecting surface tension effects. For the
case of pure viscosity stratification with equal densities, it
is concluded that the existence of such waves for any
Reynolds number, already suggested by Yih (1967), is
possible. It has been also found that for the case of unequal
viscosities and densities, the interfacial growing waves
obtained by Hooper and Boyd (1983) become stable when
nonlinear effects are taken into account. All numerical
results are obtained with the lower fluid being more dense
compared to the upper fluid.

Hooper and Grimshaw (1985) studied the nonlinear
instability at the interface between two viscous fluids. They
have shown that because of surface tension and nonlinear
effects, the interface can evolve to some finite amplitude
steady state. Renaldy (1989) addresses the weakly non-
linear behavior of periodic disturbances in two layer flow.
One of the most complete reviews of long wave and lu-
brication theories for core-annular flows appeared in Chen
and Joseph (1991). They extend the work of Hooper and
Grimshaw (1985) and compare their approach to the lu-
brication approximation of Papageorgiou et al. (1990).

The present study analyzes the nonlinear instability at
the interface between two viscous fluids by extending the
work of Ooms et al. (1985) to incorporate the influence of
the surface tension. Our aim is to include this effect in the
calculations for completeness of the analysis and to pro-
vide a better approximation of the oil-water core-annular
flow problem by taking the lower fluid to be less dense
compared to the upper fluid. This arrangement is strongly
unstable and the only way to produce a finite amplitude
steady state is by taking under account capillarity, which
in planar geometry acts only as a stabilizing mechanism of
the interfacial disturbances.

2

Analysis

The flow pattern, shown in Fig. 1, is consisting of two
immiscible superposed fluids between two plates, where
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Fig. 1. Typical flow configuration

the lower plate is at rest and the upper plate is moving with
velocity u,,. In this study subscripts 1 and 2 denote
quantities characteristic to the lower and upper fluid re-
spectively. The distance between the plates is h, the
thickness of the two layers is h;(x, t) and hy(x, t) with
hy > h,, while the viscosity and density parameters are
denoted by y and p respectively.

The analysis is restricted to two dimensional waves with
a wavelength /, large compared to the distance h between
the plates (h/4 < 1) and to Reynolds numbers less than or
equal to one (pu,h/n < 1). In this case, as discussed by
Ooms et al. (1985), the inertial terms are small compared
to the viscous terms and the Navier-Stokes equations can
be reduced to equations.
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at the interface y = h;. In Eqgs. (1)-(4) ¢ is the pressure
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The no slip boundary conditions at y = 0 and y = h, have
already been incorporated into Eqs. (1) and (2). Substi-

tuting the dimensionless quantities H; = h; /h, H, = hy/h,
X=x/h, Y=y/h, T =tu,/h, Ui = u;j/uhy, Vi = vi/uy,
@, = ¢,h/n,u, and ®, = ¢,h/n,u, into Egs. (1)-(5) and
keeping the surface tension term, the following complete
set of dimensionless equations
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is obtained, where C; = 1,/#, is the viscosity ratio,
C, = (p, — p,)gh*/n,u,, expresses the density difference,
C; defines the dimensionless pressure drop over one
wavelength and C4 = y/n,u,, is the dimensionless surface
tension term.

After some manipulation a single equation for the shape
of the wave at the interface is obtained

(11)
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Equation (12) may be solved for the only unknown H; as a
function of the independent variables X and T to show the
evolution of the interface, subject to an initial disturbance
for the complete family of parameters under investigation.
This equation reduces to Eq. (86) of Ooms et al. (1985) by
assuming that the surface tension term is small compared
to the pressure terms at the interface and thus C4 = 0.

3

Results

The numerical results included in this section, present the
departure of the wavy interface H; (X, T) from an initial
sinusoidal disturbance of the form

(14)

where H; = 0.8 and A(®) = 0.1, for a wide range of pa-
rameters C;, C;, C; and C,. For the computer simulation
we have used a finite difference form of Eq. (12). A first
order marching scheme in time is used, supplemented by
an upwind difference for the first order spatial derivatives
and central difference for all other higher order spatial
derivatives. A second order McCormark scheme is also
used, to provide benchmark results and to test the accu-
racy of the first order scheme. All the results that appear in
the present work are from the first order scheme with a
time step AT and a length step AX small enough to pro-
vide accurate results comparable to the McCormack
scheme. In all cases enough time is given to the interface
to deform and propagate.

The effect of viscosity stratification on the shape of the
interface was studied first. It is clear that the present flow
configuration generates a finite amplitude steady wave for
all values of C; tested, greater or less than one. It should be
noticed, that the sawtoothlike interface which exists when
the less viscous liquid comprises the thin upper film and
which has also been found by Ooms et al. (1985), is not
developed when the more viscous liquid is at the top. Also,
the equilibrium wave travels much faster when C; > 1.

The stabilizing effect of surface tension on possible
instabilities due to viscosity stratification is shown clearly
in Fig. 2 which presents the evolution of the interface for
different values of the surface tension parameter C,. The
irregular shape of the interface for C; = 1074
(C; = C3 = C4 = 0) is altered dramatically even for small
values of the surface tension parameter C,. Similar be-
havior has been observed for the whole range of C; be-
tween 10* and 10*.
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Fig. 2. Surface tension effect on the temporal evolution of an
interfacial wave for C; = 107 and C, = C; = 0; solutions shifted
vertically by 0.3 units

The effect of capillarity is also shown for the case of the
Couette-Poisseuile flow problem in Fig. 3. By setting
C, = 107* and C; = —0.1, which implies a pressure gra-
dient opposite to the direction of movement of the upper
plate, the backward facing sawtoothlike interface also
produced by Ooms et al. (1985), is obtained. However, by
setting C4 = 1072 all regions of high interfacial curvature
disappear.

Next the influence of a difference in density between the
two fluids is studied, for the characteristic value of
C; = 10* and zero pressure gradient and surface tension.
It is seen in Fig. 4 that for C, > 0 a damping of the wave is
expected and for large values of C, the initial disturbance
totally disappears. However, even for a small negative
value of the density difference (C, = —0.005), which
means that the slightly more dense fluid comprises the
thin film at the top, the evolution of the wave is quite
different. The wave deforms rapidly, takes an unphysical
shape and the numerical solution fails. This is a clear in-
dication that the instability derives from the deformation
of the interface due to the imposed inverse density gra-
dient. It is obvious that the instability becomes more
severe for large negative values of C,.

Finally, attention is confined in the influence of capil-
larity in this strongly unstable arrangement. The unstable
interfacial wave observed in Fig. 4 for C; = 1074,

C, = —0.005 and C; = C; = 0 may be stabilized if a non
zero surface tension parameter is used. It is shown in
Fig. 5 that for C4 > 0.02 the amplitude of the initial dis-
turbance does not grow with respect to time and after

267



268

T=21

=T=18

~T=15

T=12

0.51 | — w=0
—— =107
0
0 1 2 3 1 5 6

Fig. 3. Surface tension effect on the temporal evolution of an
interfacial wave for C; = 1074, C, = 0 and C; = —0.1; solutions
shifted vertically by 0.3 units
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Fig. 4. Effect of density difference on the temporal evolution of
an interfacial wave with a viscocity ratio of C; = 107 and
C, = C; = 0; solutions shifted vertically by 0.5 units
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Fig. 5. Surface tension effect on the evolution of interfacial waves
for negative values of C,; solutions shifted vertically by 0.3 units

some time a wavy interface of finite amplitude is devel-
oped. Figure 5 shows also the evolution of another stable
wavy interface for C; = 0.05, C; = —0.9, C; = 0 and

Cs = 0.045. In general when the negative value of C, is
increased, a larger value of C, is required to produce stable
waves. It is seen that when enough amount of capillarity is
present the steepening of the forward faces of the interface
profile does not result to break up. The stabilizing effect of
surface tension counterbalances the destabilizing effect of
negative Cy(p; < p,).

This is in accordance with the linear stability analysis of
Babchin et al. (1983), where it is seen that when C, < 0,
which implies that the heavier fluid is at the top, and
C4 = 0 the flow is always unstable. On the other hand, the
presence of the surface tension term C, > 0 acts as a sta-
bilizing mechanism of the Rayleigh-Taylor instability.

The implemented values of constants C;, C; and Cy4
correspond to characteristic sets of parameters of physical
importance and have been used in the past to model ex-
perimental oil-water core-annular flow patterns.

4
Conclusions

The classical stability problem of plane Couette-Poiseuille
flow of two superposed layers of fluid of different viscosity
and density under the effect of surface tension has been
investigated. The main flow consists of fluid 1, while fluid
2 comprises a thin lamella above fluid 1.

It has been found that by taking under account surface
tension effects, Couette-Poiseuille flow is always stable
when the less dense fluid comprises the thin film above the
main flow. This result holds for any viscosity ratio. The
flow pattern is always unstable when the more dense fluid
is at the top and surface tension effects are neglected. In



this case the flow configuration becomes stable only when
surface tension effects are taken under account and if the
value of interfacial tension is larger than a critical value.
The magnitude of interfacial tension which reduces the
initial disturbance to a stable finite amplitude wave de-
pends on the viscosity ratio, the density difference and the
imposed pressure gradient.
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