
Couette flow of a binary gas mixture 
Dimitris Valougeorgis 
Deparrmcnt o/ Mathematics and Cenrer for Tramport Theory and Mathematical P kysics, Virginia 
Polytechnic Institute and State Uniuemity. Blacksburg, Virginia 24061 

(Received 9 February 1987; accepted 23 September 1987 ) 

The linearized binary model described by Hamel [Phys. Fluids 8,418 ( 1944) J is used to 
obtain a set of kinetic equations and boundary conditions for the Couette flow problem. The 
derived set of two coupled integrodifferential equations is solved by iteration irnpIementing 
s~andard discretization techniques, Highly accurate numerical results are presented for the 
mass velocity distribution and the total shear s t res  of the binary gas system. 

I. INTRODUCTION 

The flow of a gas mixture close to a plant or a cylindrical 
bundary i s  o f  basic interest in the field of rarefied gas dy- 
namics. Complete solutions of such boundary value prob- 
lems can give us the magnitude of the velocity slip or the 
temperature jump leading to appropriate boundary condi- 
tions for the hydrodynamic equations and in general provide 
insightful informelion on the behavior of gas mixtures. Over 
the past years a fairly complete treatment of the slip prob- 
lems for a single component gas has been given. ' The corre- 
spnding problems for gas mixtures have received less atten- 
tion. The efforts in this direction are concentrated on the 
wlutian of the linearized Boltzmann equation and its model 
equations, including the ones proposed by ~ e r o v i c h , ~  
M o r ~ e , ~  and Hamel.' As pointed out by Lang and Loyalka,' 
kinetic models for a gas mixture do not always include the 
detailed effects of intermolecular forces in a satisfying way. 
For that reason the solution should be based on the linear- 
ized Boltzmann equation itself. Following this principle ac- 
curate numerical rmults have been pr-ented for various 
half-space kinetic theory In spite of this fact, 
there have recently appeared several analytical and numeri- 
cal studies on the two-surface problem of evaporation and 
condensation for a vapor gas mixture"' and on the Poiseuille 
flow problem for a binary gas mixture, I" which are based on 
a modeled linearized Boltzmann equation. It should be not- 
ed that although all these raults are valid only within the 
model approximations, they still provide considerable in- 
sight into the phenomena. 

In this paper we develop a complete solution of the clas- 
sical Couette Row problem for a two-gas mixture based on a 
lintarized version of the kinetic mde1 equations proposed 
by Hamel4 in conjunction with diffuse boundary conditions. 
The resulting set of two coupled linear integrodifferential 
equations is sdved numerically using standard discretiza- 
tion techniques and an iteration scheme that is uncondition- 
ally stable. The discretization of the velocity variable simply 
consists of evaluating the kinetic vector equation at discrete 
velmities. The discrete velocity method has been developbd 
and used successfully in rarefied gas dynamics to study one- 
and twodimensional rnonrratomic and diatomic gas flow 
problems. '." The discretization in space i s  performed ac- 
cording to the ordinary diamonddifference scheme. l3 

The organization of this paper is as follows. In  the next 
section the kinetic equations and the boundary conditions 

Tor the Couette flow problem are developed. In Sec. 111 the 
implemented numerical scheme is described and in Sec. IV 
extensive numerical results are presented. Finally Sec. V 
contains wnclusions and a few generd remarks. 

11. KlNETlC EQUATIONS AND BOUNDARY CONDITIONS 

The linearized form of the model equation proposed by 
Ha~ne l ,~  describing the stationary state of a b i n q  gas mix- 
ture, gas A and gas B, can be written as'' 

g;Vhi = (n,k,, + njk i , )  

X [ - A, + p, + 2ci*vi + tl (cj! - $1 ]  

+ &i(t,  - f i ) (c:  - ; ) I ,  11) 
where i = A,B, j = A,B, i# j ,  k,, and k ,  repreent colli- 
sionaI parameters, mi is the molecuiar mass, k is the Boltz- 
mann constant, and pi = m , / ( m ,  + m,). The vector 
hi ( x , g i )  is a measure of the perturbation of the distribution 
functionJ; (x,&, ) from an absolute Maxwellian, 

f , ( x , g i )  = % , [ I  + h l ( ~ , t i ) ] ,  ( 2 )  

for Ih, I( 1, where 

ao, = n , ~  r n , / 2 ~ k T , ) ~ "  expI - mi (ti - V,)Z/2kTo] 
( 3 )  

and no, V,, and To are equilibrium values of density, velmity, 
and temperature, rspectively. The perturbationsp, in den- 
sity, ri in velocity, and t, in temperature are defined by 

pi = (n l  - ~ ~ ) / n ~ ,  (4a 

v, = (V, - V,)/(rni/2kTo)-I", (4b) 

1, = ( T ~  - T ~ I I T ~ ,  14c) 

with 

and 

wbile the shifted variable ci in Eq. ( 1 ) is expressed as 
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Rtstricting the study to the Couette flow problem we 
consider the flow of a binary gas mixture, enclosed between 
two parallel plates at x = 0 and x = d, caused by the steady 
motion of the upper and lower plate in the z direction, with 
velmity U/2  and - U / 2 ,  respectively. The temperature Tis 
sup- to be constant for both the plates and the distribu- 
tion functionf; depends only on x and 6,. The particles are 
emitted from the walls with a Maxwellian having drift velw-  
ity * U / 2 .  The basic hypothesis U< 1 allows the Boltzmann 
equation to be linearized," according to Eq. (21, where a,, 
is the absolute equilibrium Maxwellian with V, = 0 and 
h(x,g,  1 is the unknown perturbation of the distribution 
function. By assuming purely diffuse reflection at the sut- 
faces, the boundary conditions take the following form when 
linearized: 

and 

Further let us write 

Substitute this Ansarz into Eq. (2)  and intrduce the result- 
ing equation into Eqs. ( 5 )  to obtain, after some rnanipda- 
tion, the perturbed quantitim 

and 

Suhtituting Eqs. (9)  and (10) into Eq. ( 1 ). Y, [x&)  satis- 
h a  the following coup1ed integrodifferential equations: 

i = A,B, j = A,B, if j, where 

Bi = (m,/2kT,)"'(n,kI,  + n ,k , )  (12a) 

and 
111 k a, = (mJ2kTo) n, $, PI. (12b) 

with p = lx, (mi/2kT,)  'IZ. Thus the Couette flow problem 
for a binary gas mixture has b m  reduced to the problem of 
solving Eq. ( I I ) subject to the boundary conditions 

y-(Oyl= - 1 ,  p>O, (13a) 
and 

Y , (dyI= l ,  p<O, (13b) 

with the new function Y, ( x p  ), i = A,B, to be the basic un- 
known. 

For each species the normalized macroscopic velmity 
may be expressed as 

while the shear stress is defined by 

It is easy to show that the ratio of this stress to its value in the 
free molecular limit, after linearization has taken p l m ,  can 
be expressd as 

The physically significant quantities of the mixture are the 
hydrodynamic velocity 

u ( x )  = m, n, V,  (x) 

and the normal total stress 
T =  - [m:/'nA (XI 

+ rnr1n,.rB ( x )  ] / [mY2n, + m F f ,  j . ( I S) 

To obtain numerical results for the normalized mass velocity 
and stress, we need to study the vector equation ( 1 1  ), which 
is a system of two linear integrodifferential equations for 
Yi ( x y  ) associated with the boundary conditions ( 13). 

Ill. FORMULATIOH OF THE NUMERICAL SCHEME 

Equation ( 1 1 ) may be solved by an iteration scheme 
described by the equations 

and 

q C 1 ( x )  =- I Jrn ~ ~ + ' ( x r ) e ' d s ,  (201 
,lG - -  

where I denotes the iteration index, with a starting guess 
a l (x )  = 0. For an infinite medium the convergence rate of 
this iteration map is shown by the following Fourier analysis 
to k always less or equal to one. Let 

d + ' ( x l c r )  = Y ~ + ' ( X # )  - Y~(x&) (Zla l  

and 

F!+ ' ( x )  = * ! + ' ( x )  - @ ; ( X I  (21bl 

and subtract Eqs. ( 19) and (20) for succasive values of I to 
find the following equations: 

and 
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Assuming for simplicity a, = a, and Pi = 4- and introduc- 
ing the Ansatze 

and 

into Eqs. (22a) and (22b),  we obtain 

Here a is the eigenvalue corresponding to the Fourier fre- 
quency R and the spectral radius (largest eigenvalue) 
p = sup, lo 1 represents the slowest possible reduction in the 
error from one iteration to the next. The maximum value of 
Iw 1 ,  which mcurs for R = 0, is o = 1. However for a finite 
system, the flat A = 0 mode, with the corresponding eigen- 
function g( p ) = 1, cannot be present and thus the method 
described by Eqs. (19) and (20) converges absolutely 
( p < l ) .  

To implement the proposed method on a digital com- 
puter, we treat the space and velocity variables through a 
number of discretization techniques. The discrete velocity 
approximation consists of requiring Eq. ( 19) to hold only 
for a number of discrete velocities p, and then applying a 
compatible quadrature approximation to the inlegral terms. 
The discrete velocity equations may k written as 

where Y ( x y ,  ) is denoted by Y,,, ( x ) .  We choose the points 
{p , }  to be the zeros of the Herrnite polynomials of degree 
2M and the Gauss-Hermite quadratlire formulas 

where the w, are the weights associated with thep integra- 
tion, are taken to operate on an even number of velocities 
that are symmetric about p = 0. 

To discretize the spatial variable we use the so-called 
diamond-difference scheme. We define a spatial grid with 
K mesh points and the associated diamond-differenced dis- 
crete-velocity equations are 

and 

w i t h h = x , , ,  -x,.Thecasesp,>Oandp,<Oarecon- 
sidered separately in order to construct marching schemes 
that follow the direction of the particle travel. To ilIustrate 
the sweep through the mesh, we first march upward and 
calculate successively Y ,,,,, , Yi,;;,,, ,..., Y ,,m,, forpR > 0, with 

TABLE I.  Normaliztd shear st- in the "single" gas Couette Row prob 
lem. ... 

Distance Present 
between work 
plates m , / m ,  = 1.0 

d n, /n, = 1.0 

Exact 
numerical 

ruul t Q 
for a 

s~nglt gas' 

Yt,,,, known from the boundary condition. Since Y,,, is 
known for p, < 0 from the second boundary condition we 
then march from x = d to x = 0. These sweep through the 
mesh areexecuted for all discrete velocity pairs ( - p, $, ) . 
The sweeping algorithm descrikd above is very effective 
main1 y k u s e  we obtain one iteration matrix that is lower 
~riangular. We complete our discussion on the numerical 
scheme by introducing the quadrature approximations 

Vi,& = @ 1.k (29) 

and 

for the relative velocity and the normalized shear stress, re- 
spectively, in terms of the unknown function Y,,,, . 

IY. NUMERICAL RESULTS 

The numerical evaluation of the problem, as it has been 
carried out, depends on the following parameters: 

m,/m,, n,/n,, k,,/k,,, k,,/k,, 2. 
The first two parameters are the relative molecular mass and 
the relative number density of the A species with respect to 

ulul 

FIG. 1. Mean mass flow velocity pm6les for n, /n, = 1.0. 
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