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The linearized binary model described by Hamel [Phys. Fluids 8, 418 (1964) ] is used to
obtain a set of kinetic equations and boundery conditions for the Couette flow problem. The
denved set of two coupled integrodifferential equations is solved by iteration implementing
standard discretization techniques. Highly accurate numerical results are presented for the
mass velocity distribution and the total shear stress of the binary gas system.

I. INTRODUCTION

The Aow of a gas mixture close to a plane or a cylindrical
boundary is of basic interest in the field of rarefied gas dy-
namics. Complete solutions of such boundary value prob-
lems can give us the magnitude of the velocity slip or the
temperature jump leading to appropriate boundary condi-
tions for the hydrodynamic equations and in general provide
insightful informetion on the behavior of gas mixtures. Qver
the past years a fairly complete treatment of the slip prob-
lems for a single component gas has been given.' The corre-
sponding problems for gas mixtures have received less atten-
tion. The efforts in this direction are concentrated on the
solution of the linearized Boltzmann equation and its model
equations, including the ones proposed by Serovich,’
Morse,” and Hamel.* As pointed out by Lang and Loyalka,’
kinetic models for a gas mixture do not always include the
detailed effects of intermolecular forces in a satisfying way.
For that reason the solution should be based on the linear-
ized Boltzmann equation itself. Following this principle ac-
curate numerical results have been presented for various
half-space kinetic theory problems.*~” In spite of this fact,
there have recently appeared several analytical and numeri-
cal studies on the two-surface problem of evaporation and
condensation for a vapor gas mixture®® and on the Poiseuille
flow problem for a binary gas mixture,'® which are based on
a modeled linearized Boltzmann equation. It should be not-
ed that although all these results are valid only within the
model approximations, they still provide considerable in-
sight into the phenomena.

In this paper we develop a complete solution of the clas-
sical Couette fiow problem for a two-gas mixture based on a
linearized version of the kinetic model equations proposed
by Hame!® in conjunction with diffuse boundary conditions.
The resulting set of two coupled linear integrodifferential
equations is solved numerically using standard discretiza-
tion techniques and an iteration scheme that is uncondition-
ally stable. The discretization of the velocity variable simply
consists of evaluating the kinetic vector equation at discrete
velocities. The discrete velocity methed has been developed
and used successfully in rarefied gas dynamics to study one-
and two-dimensional monoatomic and diatomic gas flow
problems.'"** The discretization in space is performed ac-
cording to the ordinary diamond-difference scheme. '

The organization of this paper is as follows. In the next
section the kinetic equations and the boundary conditions

521 Phys. Fluids 31 {3), March 1988

0031-9171/88/030521-04%01.90

for the Couette flow problem are developed. In Sec. IIT the
implemented numerical scheme is described and in Sec, IV
extensive numerical results are presented. Finally Sec. V
contains conclusions and a few general remarks,

. KINETIC EQUATIONS AND BOUNDARY CONDITIONS

The linearized form of the model equation propased by
Hamel,* describing the stationary state of a binary gas mix-
ture, gas A and gas B, can be written as'"?

EVh = (nk, + nk.)
X[ —hi+p, +2¢0% + (=]
+npky [ — 2e0% + 26, (m, /my)' !

+2u(t, — 1) — P, (n
where i= A,B, j= AB, i#j, k, and &, represent colli-
siopal parameters, m; is the molecular mass, & is the Boltz-
mann constant, and g, =m./(m 4+ m,). The vector
k. (x,E,) is a measure of the perturbation of the distribution
function £, {x.§,) from an abscolute Maxwellian,

ﬁ(x’gi) = QO,[I +h,(x)§£}]’ (2}
for |4, | €1, where
by = ny(m 20k T,)> 2 exp[ — m, (& — VY2 2kTy]
(3)

and n,, ¥y, and T, are equilibrium values of density, velocity,
and temperature, respectively. The perturbations p; in den-
sity, v; in velocity, and #, in temperature are defined by

pi = (n; — ng)/ng, (42)
v, =V, = Vo)/ m/2kT) 72, (45)
i, = (T‘ - To)/To; (4C)
with
n; =J [ d’ (5a)
fi= [ss s b)
;
and
Tj = _1 (En - Vr.)zm,-f; djg’ (5¢)
3kn,

while the shifted variable ¢, in Eq. (1) is expressed as
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L, = (§| - Va)(m,-/szo)”". (6)

Restricting the study to the Couette flow problem we
consider the flow of a binary gas mixture, enclosed between
two parallel plates at x = 0 and x = d, caused by the steady
motion of the upper and lower plate in the z direction, with
velocity U /2and — U /2, respectively. The temperature T'is
supposed to be constant for both the plates and the distribu-
tion function £, depends only on x and §,. The particles are
emitted from the walls with a Maxwellian having drift veloc-
ity 4+ {7 /2. Thebasic hypothesis U< 1 allows the Boltzmann
equation to be linearized,'® according to Eq. (2), where ®,
is the absolute equilibrium Maxwellian with V, =0 and
h(x,E) is the unknown perturbation of the distribution
function. By assuming purely diffuse reflection at the sur-
faces, the boundery conditions take the following form when
linearized:

h(0E) = — (m/2KkTH)UE,, £, >0, (N
and

h(dé) = (m/2kT)HUE,, €, <0 (8)
Further let us write

h (x,§) = (m,/2kTy) ng_. ¥, (x‘gx,)' 9)

Substitute this Axsatz into Bq. (2) and introduce the result-
ing equation into Egs. (5) to obtain, after some manipaa-
tion, the perturbed quantities

Pa=ux,=vy,=tr=0 (10a)
and
m; 44 J‘”
v, = —_— Y,(x,ﬁ,‘,)
’ (ZkTo) 2‘{5 — =
m.

X R i)d,. 10b
“p( TTALI A (106)

Substituting Eqs. (9) and (10} into Eq. (1), ¥;(x) satis-
fies the following coupled integrodifferential equations:

ay,
H—+B,Y,(xu)
ox

= ﬂ;‘/—_a: [ Y (x,5)e " ds
w w — o
+ 2 r Y (x5~ " d (11)
— XJ)E 5,
T’
i=AB, j=AB, i#}, where
ﬁi = (ml/szﬂ)”2(niku' + n}'krf) (123)
and
a, = (m;/2kT,) nk, . (12b)

with 4 = £, (m,/2kT,)'"*. Thus the Couette flow problem
for a binary gas mixture has been reduced to the problem of
solving Eq. (11} subject to the boundary conditions

and
Y(du)=1 pn<0 (13b)
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with the new function ¥, (x ), i = A,B, to be the basic un-
known.

For each species the normatized macroscopic velocity
may be expressed as

v, = L_[ Y,(xs)e 7 ds (14)
JE — =
while the shear stress is defined by
o =m[[[6t8,~Vrr % (15)

It is easy to show that the ratio of this stress to its value in the
free molecular limit, after linearization has taken place, can
be expressed as

(x)= —J‘wa Y, (x,5)s¢ < ds. (16)

The physically significant quantities of the mixture are the
hydrodynamic velocity

u(x) = [man, Vaix)

+ mgngVy(x)]/[mana +mang], (17
and the normal total stress
7=~ [m{ing 14 (x)

+ myingry{x)]/[min, + myng]. (18)

To obtain numerical results for the normalized mass velocity
and stress, we need to study the vector equation (11}, which
is a system of two linear integrodifferential equations for
Y. (x,u) associated with the boundary conditions {13).

11i. FORMULATION OF THE NUMERICAL SCHEME

Equation (11) may be solved by an ieration scheme
described by the equations

aYJ'_+ 1
p— +B.Y1* (xp) = (B, —a,)P}(x) + &, P} (x)
(19}
and
(20

l - -]
¢f*'(x)=—'[ Yt Hxs)e T ds,
\|||ﬂ' — m

where [ denotes the iteration index, with a starting guess
P?(x) = 0. For an infinite medium the convergence rate of
this iteration map is shown by the following Fourier analysis
ta be always less or equal to one. Let

¥t ) = Yt ) — Yilxa)
and

@ ) =9 (x) — Pl(a) (21b)

and subtract Egs. (19) and (20) for successive values of { to
find the following equations:

(21a)

!
K a’x +ﬁ.-¢4*'(x#)=(ﬁ;—af)¢’§(x)+“i¢’j(x)
{(22a)
and
141 1 JN“I + 1 — g
gt (xy=— rﬁf (x5)e < ds. (22b)
il
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Assuming for simplicity @, = a; and B; = §; and introduc-
ing the Ansatze

git o) =gl p)e™, (23a)

@lix) = e, (23b)
and

i (%) =wpl(x) (23c)
into Eqs. (22a) and {22b), we obtain

w=-"11" e’ (24)

= — s
V7 Jow L (A5/B,)°

Here a is the eigenvalue corresponding 1o the Fourier fre-
quency A and the spectral radius (largest eigenvalue)
£ = sup, lo| represents the slowest possible reduction in the
error from one iteration to the next. The maximum value of
jw|, which occurs for A =0, is @ = 1. However for a finite
system, the flat A = 0 mode, with the corresponding eigen-
function g( 1) = 1, cannot be present and thus the method
described by Egs. (19) and (20) converges absolutely
(p<l)

To implement the proposed method on a digital com-
puter, we treat the space and velocity variables through a
number of discretization techniques. The discrete velocity
approximation consists of reguiring Eq. (19) 1o hold only
for a number of discrete velocities g, and then applying a
compatible quadrature approximation to the inlegral terms.
The discrete velocity equations may be wnitten as

ay{+l
o 5"’" +B,YIH () = (B —a)P(x) + a,®(x),
x
(25)
where ¥Y(x,u,, ) isdenoted by ¥, ,, (x). We choose the points

{ #£,, } 10 be the zeros of the Hermite polynomials of degree
2M and the Gauss-Hermite quadratuire formulas

o LS Y, 26

 (x) = m}__‘,l o (X1, (26)
where the w,_ are the weights associated with the u integra-
tion, are taken to operate on an even number of velocities
that are symmetric about s¢ = 0.

To discretize the spatial variable we use the so-called
diamand-difference scheme.'* We define a spatial grid with
K mesh points and the associated diamond-differenced dis-
crete-velacity equations are

(/MY —FIrh)
+(B2UY G+ Yin
=[(B —a)/2(Pl,,, +PL)

+ (a./z){tb:k +1 T q’;k) (27)
and
1 2M
¢: =—— K"m‘ wm! {28)
R

withA=x,,, ~ x,. The cases gz, >0 and £, <0 are con-
sidered separately in order to construct marching schemes
that follow the direction of the particle travel. To illustrate
the sweep through the mesh, we first march upward and
calcntate successively ¥, . ¥, 50 Y, i fora,, >0, with
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TABLE I. Normalized shear stress in the “‘single™ gas Couette flow prob-
lemn.

Exact
Distance Present numerical
between work results
plates m, /mg =10 fora
d n,/ng =10 single gas*
a.l 0929 0.924
1.0 0.602 0.601
2.0 1.444 0.444
1c 0.354 0.354
44 0.294 0.294
5.0 0.252 0.252
14 0.194 0.196
[L4X1] 0.647 0.147
204 0.0806 0.0804
"See Ref. 17.

Y, known from the boundary condition. Since ¥,,, » is
known for g, <0 from the second boundary condition we
then march from x = 4 to x = 0. These sweeps through the
mesh are executed for all discrete velocity pairs { — u,, ¢, ).
The sweeping algorithm described above is very effective
mainly becanse we obtain one iteration matrix that is lower
triangular. We complete our discussion on the numerical
scheme by introducing the quadrature approximations

V:‘,k = d)u

(29)
and

2M
T:',k = — 2 Yl,m,k }um wm

m=1
for the relative velocity and the normalized shear stress, re-
spectively, in terms of the unknown function ¥, ,.

(30)

IV. NUMERICAL RESULTS

The numerical evaluation of the problem, as it has been
carried out, depends on the following parameters:

M/ g, talMy, kan/kags kanskes, d.

The first two parameters are the relative molecular mass and
the relative number density of the A species with respect to

an [IA] D2 o3 04 0.5 112 0.7 0.8 e 1.0
wix)

FIG. 1. Mean mass flow velocity profiles for 7, /iy, = 1.0
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the B species, ka0, kpp, Kkap (kps = kag)* are collisional
parameters assumed to be constants and d is a number pro-
portional to the Knudsen number, defined by d = 8, 4. All
these coefficients have a qualitative effect on the physical
quantities of interest of the Couette flow problem. However,
for simplicity and clarity we restrict our results to the special
casek,, = k,p = kgp. By taking 8, = 1 the physical char-
acteristics of the first gas are fixed and the new parameterd is
now equal to the distance between the plates, measured in
mean free paths. Thus the velocity and shear stress of the two
component gas mixture depend only on 4, m, /mg, and
n, /ng. More numerical results may be obtained upon re-
quest.

In the case of a single gas we have the known result that
the shear stress between the plates is constant.'® In a similar
fashion it has been shown that for a binary gas mixture in
conjunction with the Couette flow problem, the shear stress
of each component is a function of x while the total stress of
the mixture remains constant.® This resultis used successful-
Iy as a benchmark for testing the accuracy of the numerical
results. All computations are based on a set of 64 discrete
velocities and are converged to a pointwise relative criterion
of 10~ * on the velocity. To judge the accuracy to expect from
the numerical scheme in Table 1, we compare our results for
the single gas case, which is a limit situation of the present
work to exact numerical results available in the literature.'”
The agreement is excellent and we believe that the numerical
results obtained in the framework of the proposed method
are accurate to at least two significant figures.

The velocities shown in Figs. 1 and 2 (the Couette flow
problem is symmetrical about a point at x = d /2) for the
inverse Knudsen number 4, the relative molecular mass
m, /my, and the relative number density n,, /ny taking the
values in the sets {0.1, 1.0, 10.0}, {0.5, 2.0}, and {0.1, 10.0},
respectively, provide some information about the qualitative
nature of the flow field. The plotted mean flow velocity of the
mixture is associated with the velocities of the component
gases according to Eq. (17). The velocity profiles shown in
Fig. 1 indicate that the velocity slip at the boundaries be-
comes larger as the binary gas mixture becomes lighter. The
distributions presented in Fig. 2 show that, keeping the mo-
lecular mass ratio constant, the magnitude of the velocity
slip becomes larger as the concentration of the heavier com-

"m0y Dz 03  Df 05 D& 07 0B DD 10
ulx)

FIG. 2. Mecan mass flow velocity profiles for m, /m, = 0.5,
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TABLE II. Normalized total shear stress of the binary Couette flow prob-
lem.

Distance m, fmy
between 0.5 20
plates LA™ r, /Ry
d a.1 10.0 0.4 10.0
0.1 0.905 0.927 0.9438 0.931
0.5 0.679 0.732 0.789 0744
1.0 C.529 0.52% 0.666 0.607
20 0.372 0.435 0514 0.44%
k1] (.288 G345 0.421 0.359
4.0 0.235 0.287 0.358 0.299
50 0.199 0.245 a3n 0.257
70 0.152 0.191 0.247 0.200
10.0 0.112 0.143 0.189 0.151
20.0 0.060 0.078 0.106 0.082

ponent decreases. Overall it is evident that the molecular
ratio is the dominant parameter affecting the shape of the
velocity profiles that are also sensitive to the concentration
ratio. Finally Table II contains results for the total shear
stress equation (18) for a wide range of the Knudsen num-
ber (Kn = 1/d) and for different sets of parameters,

V. CONCLUSIONS

We have derived the solution to a system of kinetic equa-
tions governing the fluid dynamic guantities of the Couette
fiow problem for a binary gas mixture. The numerical con-
vergence of the method is excellent and the velocity profiles
and the normalized shear stresses of the gas mixture have
been computed very accurately with modest computational
effort. To the author’s knowledge these results have not been
reported previously. The present analysis can be extended to
investigate kinetic theory problems described by a set of four
coupled equations such as parailel-plate heat transfer and
evaporation in binary mixtures.
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